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Some arithmetic properties of the Legendre polynomials
by
L. CArnrz (Durham, North Carolina)

1. The writer ([2], [3]) has indicated a connection between divisibi-
lity properties of the Legendre polynomial Pn(a) for special values of o
and the complex multiplication of elliptic functions. If p = 2m-+1 is an
odd prime, put
kit 2
(L1) Wala) = (?) o
r=0

Then we have

(1.2) Walz) = Py(1—22) (mod p)
and

mp (12N o [t ’
(1.3) W () = (1—2) Pm(l_m)—-(w 1) P"‘(m—1)'

Assume that the elliptic function sns admits of complex multipli-
cation and let the period quotient belong to the imaginary quadratie
field of discriminant d. If k* denotes the corresponding singular modulus,
it is proved in [2] that

1.4) , W.ik*) = 0 (modp).

Tt is proved in [3] that, for example, when p = 3 (mod4), then Wn()

has the three linear factors z--1, z—1, 24} (modp); if the Legendre

symbol (—2/p) = —1, then the quadratic #*—6x+1 is a factor (modp)

of Wy(@);if (—3/p) = —1, then 2®—z-+5 is a factor (modp) of Wn(a).
It is not difficult to show that for p = 1(mod4)

(1.5) P(8) = Wn(—1) = 20 (modp),

where a is the unique odd integer determined by

{1.6) p = a*+b, a=>b+1(modp).
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In [4] the writer showed that for p = 1(mod12) we have

(1.7) Pm((~3)‘/2) = Wu(—w) = —2u(c/p) (mod p)
where

(1.8) F=3, o+twt+l=0(modp)

and u is determined by means of

(1.9) p=u430, u= —1 (mod 3).

2. The proof of (1.7) depends upon Good’s formula [6]

(2.1 P (x) = ——Z{w+ 2*—1)'2 cos —t—} (t>m).

Mr. W. A. AlL-Salam has called the writer’s attention to the following
formula of Catalan [5]

Ppo) =

2
f (14 cos H)z-+isinH)™ dd
[}

tle

which has the finite analog
i1

2mer A1
(2.2) P(z) = — {(1+ cos —t_) T+ sm~7~} (t>m).
r=0

Comparing (2.2). with (2.1), the former has the advantage of not con-
taining (2*—1)*2. We now take t=p—1 in (2.2) and apply the method
used in [4]. Put { = ¢™/®~D and let Z denote the cyclotomic field R(¢),
where R is the rational field. Then if P is a prime ideal divisor of (p)
in Z, we have for some primitive root g(modp)

(2.3) ¢ = g(modP).

Thus

b

2
= "7, 2igin o -,
1 p—1

2nr
2 cos

p—
and (2.2) becomes in view of (2.3)

D2
—Ppa) = 27" Y{a(2+"+g7)+ (g —g )"
r=0

p-1

= 27" IMa@+k+kY)+ (k—k))™ (mod ) .

k=1
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For brevity we put

(2.4) )

Then

(@) = (afp) = o™ (modp).

-1

—Pp(a) = 9(2) Y p(R)p{a(*+2k-+1)+ (% 1))
k=1

f

IH

Put

p-1
»(2) Y w(k(k+1)p(a(k+1)+(k—1))

k=1

Z’/’ k)"l’(a‘l' ‘7;_“}_':’[‘)

(k—1)/(k+1) = as (& == 0 (mod p))

and the above congruence becomes

p~1

(2.5) —Ppia)=p(—2) D p(s'—1)p(a-+s) (modyp).

8=0

Alternatively this may be written as

P-1
(2.6) —Pp(a) = p(—2a) D p(a’s’—1)p(s+1) (modp) .

8=0

Note that we have assumed a==0(modp).

3. Suppose now that p =1 (mod3) so that p(—3) = 1. Put

(3.1)

—3 == ¢* (mod p)

and apply (2.6) with o =¢. If we s = 2/r—1, we get

- m(c) =

I

»—1
»(—20) D) p2/r)p{—3(2—r)—r"}

re=1

p~1
P(20) D p(2r)p(r*—3r+3)

-1
p(e) D) w((r+1) (¢ —r-+1))

=0

p—1

o) ) p(r*~1)

r=0

p(c}2u,
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where w is defined by means of (1.9). Thus we have proved the

congruence
(3.2) P,le) =

where ¢ satisfies (3.1) and u is defined by (1.9).
The formula (3.2) includes (1.7). This is a consequence of the

evident fact that

—2uyp(c) (modp) ,

2 =i(1—0)", @) =90),
where i* = —1{modp) and p = 1(mod4).
By employing Gauss’s formula ([1], p.97)
F(2a, 2; at+p+1; @) = Fla, p; at-p+1; 40(1—a)),

" we can obtain a ﬁumber of results related to (3.2) in the case p
= 2m-+1 = 4n-+1 = 1(mod12). Indeed (3.3) implies

—a)) (modp) ;

(3.3)

F(—m, —m; 1; @) = F(—n, —n; 1; da(1
by (1.1) this may be written in the form
(3.4) Walw) = W,(da(1—2)) (modp).
Now if w*4-w-1= 0(modp), we have

Prf0) = Won(—0).
Using (3.4) this becomes
3.5 Pyle) = Wald) = p(2) Wa(d)(modyp),

the second statement follows on reversing the series. But if we again
use (3.4) we get

__ql2 12
(3.6) 3 ) = p(2) P, (ST)(modp) .

() = w(2)wm( i

Using (1.3), this becomes

(3.7)

23
Pm(c)Ew( 3 )Wm(—(2+3‘/2)2)(modp).

This process can be continued; for example we find
Wl — (243"} =

Similarly when p = 2m+1 = 4n-+1, we find that
Wa(—1) = W, 2)7"Wo(—4) (mod p) .

P,(154+8-3Y%,

(3.8) (—8) = (—
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It »n is even so that 2Rp then also

9.012

3 3
(39) Wu(—1) = ('—‘)) an( ;)1/2) (— 9) W (——————*2-”—2—- )(modp)

The value of W(—
We remark also that Clausen’s formula ([1], p. 86)
[F(a, B; a+B8+1%; @) = Fal2a, 26, a+B; 2a-+28, atB+3; )
Im-+1 = 4n+1)

1) is furnished by (1.5) and (1.6).

implies (for p =

m

: r m s r
Wi(x) EZ(—I) (T ):c (modp).

r=0

(3.10)

Thus in particular by means of (3.5) and (3.8) we can determine the

residues of
m 3 m m 3
7 m
1 r 221‘ 23)‘
(=1) (,) ;20

7=0 =0

for p = 1(mod12), p = 1(mod4), respectively.

4. The congrnence (2.6) can be verified in the following way. Using
(2.4) we get

Ew(m_w s41) Z(a ~1)e+1)"
p-1
= S () () S

Since
{(p—1tH or k = 0),

(p—1lk, k>10),

1’-—-1k— 0
2 :{-1

8=0

the triple sum reduces to

2":( 1),,,_,( )(2m~ ) =—2(— )’( )( ) -

P

for any integer a not divisible by p. Since p = 2m--1, m = —}(modp),

, 80 that

(~1)'(7:) = (_l)f(—ﬂ%) e (2:) ) (;Z) _ g (‘%)"(_m; 1)" _

(2n! ’
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hence
p-1

@) Y plt—p(s+)

=0

I

m m—1 o
(=3 =T ““)
in the usual notation for hypergeometric funetions. But ([7], p. 370
ex, 15)
m—% m m—1 1
Pp(w) = (Qm)m( m W) F(—‘z—’ - et ﬁ'z),

g0 that

)

(4.2) Pola) = 1p(—2a,)11"(——-g~, —-m—;l—; 1; {ﬁ).

Comparing (4.2) with (4.1) we get (2.6).
More generally it is clear that we have proved the identical con-
gruence

p—1

(4.3) e "Pple) = —y(—2) D] (%" —1)™p(s+1) (modp) ,
§=0

where z is an indeterminate. ITndeed we have

b ([ =
(44)  a™HRPEEB () = (1) (“j;bm) ;0' (4 —1)™(s+1)"* (mod p)

where P{) is the ultraspherical polynomial ([7], p. 80) and % is an in-
teger, 0 <k < m.
‘We note also that the Jacobi polynomial (7], p. 67)

o= ST )

r=0

safisfies
p—-1

i . b —
(45) P,(ﬁ‘m’ k_m)(w) = _ 2 (1+ T‘l"] 82) (]+ &—1 sz)k (mOdp) ,

2 2

8=0

Wl}llere k, k are non-negative integers such that A4k << 2m. More gene-
rally '

-1
z4+1 \* z—1 \*
(4.6) ~§(1+ > sz) (1—{— 5 sz) = Pg,”;"”""“"")(m) (modp),

o<tm<h -k

for arbitrary non-negative integers h, k.

5. It is shown in [8], § 7 how irreducible factor
- ] S (modp) of W(xz)
can be obtained by making use of certain singular moduli; indeed, ﬂ;he
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complete factorization is obtained for p < 23. We shall now carry out
the factorization for p = 29 and 81. The following table, which holds

for all p > 3, is useful.

condition —1Np factors «-+1, z2—2, 2—%,
’ —1Np ” —34z+1,
' —2Np ” 2’ —6z+1,
2 —3Np ” #*—e+1,
’ —3Np ” wz—w—}—ils ,

It follows from (1.1), (1.2) and (1.3) that
1) Walu) = 'u-me(%), W) = (—1)™Won(l—1) (modp).

Thus each of the quadratic factors in the table (except o*—a-1) gives
rise to certain additional factors. For example when p = 29 we get the
six (irreducible) quadratics

P—zt+l, 2—6z+1, 2*tde—4, PF—2+7, *—2—9, 2*—162+16.
Since Wy (z) is of degree 14, only one additional quadratic remains to

be found. To do this we compute a few additional singular moduli;
the results will be used for p =31 and can be applied to larger

values of p.
We use the notation of Weber [8]:
‘ 16
= 20,2
(5.2) PE? = A
o A

, 7 16
where of course k*--%? = 1. For example when n =2, we have ([8],

p. 721),
fl((__r))llz) — 21[4.

Thus (5.3) yields (A*—1)® = 4&*, *—6k*+1 in agreement with a pre-
vious result. Similarly for n = 3, we have F((—3)""} = 2'°; using (5.2)
we get k*—k*+2, which is again a known result.

For n =17, we have f((—7)") = 2'7, so that

kﬁklz — 24/212 — 1/256;
this leads to the quadratic factor
(5.4) o —z+1/256 (—TNp).
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For o = 6, we have

| A((—617) = 2242
from which we get
(5.5) (B—1p—(24+2"2YF = 0.

For n = 5, we have f{(—5)"*) = 145", so that

(5.6 B39 —4-5"). |
For m = 10, we have 2°f((—10)*) = 145, which yields
1+51/2)1z 1
(5.7) - S =0,

Now for p =29 we have —I10N29. Since 5= 11" (mod29), we
find that (5.7) yields the quadratic factor 2?1421, which is irredu-
cible (mod29). We have therefore the following complete factorization

(.8) Wy = (@ —a+1)(z—ba-+1)(s"+do—4)(" —24-T) x
x (2 — 2 —9) (@® — 165-+16)(2* + 142 +1) (mod 29).

For p = 31, we have from the first three lines of the table the
factors

(5.9) r+1, =—2, x—%, F—8x+l, 2'—62+1;
note that
(510) 2*—3a+1 = (v+11)(z—14), & —6z+1 = (2-+-13)(z+12).

In view of the second of (5.1) we get the additional linear factors

(6.11) r—12, 2-13.

Again since 5 = 6%(mod31) it is easily verified that (5.7) reduces
to 2k*—2k*+1, which yields the quadratic factor

(5.12) -3
Employing (5.1) we get also
- (513) F—2042, 241,

Combining (5.9), (5.10), (3.11), (5.12), (5.13) we have finally the fac-
torization

(5.14) Wy(z) = (2+1)(@—2)(2—$) (z+11) (z—14) (2 12) (. —12) X
x (2+13) (2 —13)(2* —z-- })(#* —22+2) (@* 1) (mod 31) .
The factorizations (5.8) and (5.14) have been checked directly.
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We remark that for p < 31, the irreducible factors of W, (xz) are
either linear or quadratic; indeed for p = 1(mod4), they are all quad-
ratic. We note also that for p = 47, the first three lines of the table
together with (5.1) give the 15 linear factors z4-1, #—2, x—4%, 2—7,
x420, #+6, »—21, 48, -9, 17, o-+11, 2—12, 2416, v—4,
x#+3, while the fourth line gives #°—a+1. Now —7N47, but (5.4)
yields nothing new; also —62N47 but (5.5) yields nothing.
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