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Wegen (8) besteht
. ; .
(11) a}};’+ a'sni)"" aﬂ,g’+...+a¥,’1§’ = aﬁﬁ) = Qa4 -
Aus (9), (10) und (11) folgt, daB
Unyz) 2 Opnfa)e1,
also sind wir aus (4) zu einem Widerpsruch gelangt, und dgmmit ist der
Satz bewiesen.
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On primes in arithmetic progressions
by »
J. H. vax Lint (Eindhoven) and H.-E. RiCHERT (Markurg)

As usual, for a real number » and coprime positive integers & and 1
we denote by z(x, &, I) the number of primes p < @ for which p = lmod%
The aim of this paper is to prove the following theorem of the Brun-
Titchmarsh type.

THROREM 1. If & and y are real numbers, k and 1 integers satisfying
1<k<y<we, (&k,1)=1,

then

7wz, b, ) —n(z—y,k, 1)

y 4 )
< — |1 —.
p(k)logVy/k ( log Vy/k)

The only conditions we impose on the parameters y, k and [ are the
natural ones. In particular, we do not need the assumption & = O(z°)
with 6 < 1 frequently used in this connection, although our estimates
contain explicit numerical constants. Note however, that even if we had
replaced the term 4/(logVy/k) in Theorem 1 by a corresponding O-term
the result would have been superior to the best estimate hitherto known
in this direction (Klimov [1], p.182, where 2loglogy occurs instead of
the above constant. 4). These improvements have been made possible
mainly by a more careful treatment of the remainder term in the Selberg
gieve. In our proofs we are more concerned with a convenient presentation
than obtaining sharp estimates for the constants thronghout the paper,
for example the constant 4 in the remainder term of Theorem 1 can be
replaced by 3 by a more refined argument.

We shall also prove

THEOREM 2. If @ and y are real numbers, k and 1 integers satisfying

1<k<y<so, (k1)=1,
then

(@, b, )—n(@—y, by 1) < ———l

p(k)log(y/k)
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If we take y = # in the above theorems we obtain the following

estimates for =(z, &, 1).
COROLLARY 1. For 1 <k <, (k,1) =1 we have

w(x, k, 1) <

i )
g(k)logVak\ " logVulkl

COROLLARY 2. For 1 <k <, (k,1) =1 we have

3z
o b ) < e eatal)
(cf. Prachar [2], p. 44)
1. Defining(1)
T - 2 i(ﬁ)_ :“ '”')
+(@) g.u () ss S é’ >0,
(n,k)=1 (n,k)=1
we have
(L1)  Sy(o) = g _ () w(m)
%K’(‘%” o(n) d%; p(d) Km%:,d @(m)
(7:", :b (mB)==(m, K[ d)=(m,d) =1
_2"(‘” (””) for (K, k) = 1.
aK
Hence
I d) (m) K »
Si(z) = = — —
% S e sxk(K), (K, k) =1,

and therefore

K
1.2 Hy(x) = E 1 q Pl 7
(1.2) w(®) ©(E) o) } p (m)

%ﬁxx;fﬁ (m1]§m(fn 1;_1 <p(m)
K @
= Z ﬂZ(K)—E—SKk(~)<S,C(m) Z wHEK).
ISK<z (P( ) K IS KL
(&,k)=1 (o)1
Taking % =1 in (1.1) we find
(1.3) 8@) < SE K o
— @
% = 5 Sl

() An empty sum shall be zero, an empty produet one.

On primes in arithmetic progressions

and denoting by g(n) the greatest squarefree divisor of n
(n 1 1
wo o= SEOFILYT 3 L 1,
I<RST I<g(n)sz n <

From these inequalities we infer

P(E)

(1.5) Sr(z) = e —log.

2. Let(?)
Ap(2, 9,2, E) = |lz—y < n <@, n =lmodk, (n, Px(2)} = 1}],
l<y<e, 2>1, (k,)=1, KE,

Pg(z) = HP-

DL
PLE

where

LEMMA 1. We have

y HE(?)

Api(z, 9,2, K) < ka( )+ ng(z)'

Proof. We put

= u(d)— d SKd z/d)
F%@ 8

i.e.
(2.1) Ag=0 for d>a=.

For 1 <t < 2, t{Pg, where Pr = Pg(z), we find

2.2) p(tm) Sgm(2/tm)

p(tm)  Sk(2)
dsl)m%dt (m t) l
n(t) p(m) 4 (s)
(p(t SK 2) (p( )149 zjitm W(S)
(7" t)=1 (s,Etin)=1
= p(t) P (sm) () = )
‘p(t)SK(z) 1<t o p(sm) 77-4;?1" <;0(t)SK(z)’

(sm,Kf)=1

(?) By |M] we denote the number of elements of the set M.
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and because of (2.1) On primes in arithmetic progressions 213
use of (2.
‘ZMdl Z’ 2(d) 1 wn (m : Therefore, since %,;|k, by Lemma 1, (1.5) and (1.2)
APy 1<Kd<—Z1 (d) SK(Z dz/d (p(m .
)= oS Tiw) < Ty (@) < Fm— +4
1 £ N, Fxe) 1 A= 1ip)loge
 Sx(?) Wk, 21 %‘ T 8x(2) p<e
(n,K)=1 and since p(k) < o
Sinee 1, = 1, we obtain h Tk(a) _ 1 ( 1 n {)
Az, y,2,K) < 2 (Z /1,1)2 = szlﬂdz Z 1 p(k) @ p].;[w(l——l/p) logz
a-y<n<x  din a,\Pr L—y<nm
n=lmodk dPg Va1 na%ﬂf&‘igl'fuz] We remark that (ef. [3], (3.31))
Aag A 1\~1
<3 Zhas S [Jf-2 <ovatn
dy|PK[ 1y 5] 12 P
v=12 y»«l 2 <
y Aay Az, where v is Euler’s constant. We now take z = (2¢)"°, and obtain
- %dZ ayd, 2 0+ (2 M‘i!) ; log (2
WPk lld1 diPg E o Thlx) o og(2x)
yel, ) ——— < 342 73
. o (k) (20)
<2 Sow| 3 ) 1 Hx .
Sk & ? 4 d Siz(z) ’ Here, the right-hand side is decreasing for 2z > ¢, and for # = 10® it
1 g ias is < E
Using (2.2) we see that the first term equals y/kSx (2) LEMMA 3. For z >10% and h even(®)
Let p(k) denote the greatest prime divisor of by p(1) = 1 H(2) 3 2
Levuma 2. P 3 3 . AP Y R
or @ = 10°, p(k) < 2 we have(?) 2 (2) < p(h) log’z
15 (k)
Ti(w) = 1@@1 <5 o Proof. By Cauchy’s inequality
(nJ)=1 v
Proof. Let 2> 1 Hi(2) < Ta(#)dn(2),
. b
T = (6 Py (2), where
and o*(n)
Tale) = Y Bn) g
K =Py 2), sZ:: vim
ie. (n,)=1
by = Pg(2). : Since 2|k and
Then, 2 v(@)
o (n) 4"%q :
= f 0
Ty (2) = 4, (2, », 2, K). 2 (n) % 7@ or pu(n) #0,

(*) Here, we can prove that, for all values of z, 525 can be replaced by 5.

(4) This lemma is true without any vestriction on 2 and &. We can also show
that the estimate holds with an ahsolute constant instead of hfp(h).
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we have(®)
. £@q
T < Tue) = ) atm) Y=
lsn<z am ? (d>
(n,2)=1
4v(d)d . 4 16
< [ o
ZM 2 M(M)\zn(1+(p__l)2)< =
1<d<z 1<m<zld »>2
(@2)=1 (m,2d)=1

Therefore, by Lemma 2 and (1.5)

I3 2*
@(h) log'z”

H

e S
Si(2) ¢’ (h
1

>

—
o

~—
[

Here, we required p(h) <2 However, since both Hj(z) and S(z) are
independent of the prime factors of » which are > z while the right-hand
side is increased by these prime faetors, this condition is no longer nec-
essary.

3. Proof of Theorem 1. Let

Az, y, k1) = nm(z, &y )—n(z—y, &, 1)
and
b =2K]2, k)

Then, with a suitable number 7,, we have

A(m7y7 k’ Z) < A(m7 y””’ Zl)+17
since for odd values of % the numbers mk+-1 are alternately even, and
at most one of the even terms is prime.

By definition, 4dpy (%, y,#, h) counts at least the primes p in the
interval #—y < n < @ which satisfy p > 2 an p ==, mod h. Hence, using
Lemma 1 and (1.3), we find

¥ + =) Hj(#

(3.1) ¥ )
@(k)81(2) * S3(2)

Az, 9, k1) < +a(z, h,1)+1 for any &> 1.

Se for all

() Here, weo use [] (1-1—
L 3

values of 2.

4
m) = 15.9396... Actually, Ja(2) <

iom®
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We put
w=Vylk.

As 2|k, we have by (1.4) and Lemma 3 for z > 10°

(3.2) log'l/% lﬂ“)k’%ﬁ@ A, 9, 75,1)——1]

0g %
—— —1-+48
logu{l 0gz 1+ u*  log’z u*

logu 2 logu }

Choosing
logz = logu—2

the right-hand side of (3.2) becomes

48  logu logu}

2
log {logu——2 T + (logu—2) T

This function is decreasing in u, and for u = " it is < 4 which proves
Theorem 1 for u > ¢'°. The proof for the remaining values of « will be
given in section 4 after the proof of Theorem 2.

4. Proof of Theorem 2. Taking # = 2 in (3.1) we obtain

k)logVy/k 12 3
Q = ipL)-—Og—M/—A(m,y, k, 1) <1ogu(-—+——z) << for l<u<e?’
y 2 w 2
Next, note that
—1
ae, b )+1< D) 2(K)<—— for 2310
1<K<B
(E2)<1
Hence, by (3.1), (1.4) and (1.2)
zR
Q< 10gu{~—~— -+ } for 2>10
logz
Defining o by
% = 2 e
V2
we choose
2z =¢".
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Then,

< log(/V2)+ o {
w

1
(4.1) Q 1+-——} for o >logl0.
2w

For o >V2 (>1log10) this function is deereasing, and for w = V2
it i§ < i This proves Theorem 2.
It remains to prove Theorem 1 for 1 < u < ¢'°. Obviously, for u < ¢,

=

Theorem 1 is a consequence of Theorem 2. For « > ¢' however, the cox-
responding o being > 6.4, (4.1) gives for u < ¢

4
Q<14 <l4—0:.
logu
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An improvement of Selberg’s sieve method I
by

W.B. JURAT and H.-BE. Ricumrr (Syracuse, New York)

The sieve method is concerned with counting in a finite set M of
positive integers those elements which are not divisible by any prime
p < z or rather with. estimating the number A (M;z) of these elements
from above and from below. If z is sufficiently large compared with the
largest element in 3 the numbers counted in A (If; 2) will haive a restricted
number of prime divisors, and it is this fact that makes estimates of 4 (M5 2)
interesting. The estimates, however, depend essentially upon only the
number of elements in M, say |M|.

For relatively small values of # the classical sieve of Eratosthenes-
Legendre is quite satisfactory (§1). However, the interest lies in larger
values of z which were first treated successfully by Viggo Brun.
Later, Buchstab was able to give improved estimates, starting from
initial estimates, by using identities of Meissel’s type (of. (2.2)). For
an upper estimate the sieve method was formulated generally and
this estimate minimized by A. Selberg. He also gave a lower estimate
which can be derived from his upper estimate by using Buchstab’s method
(¢f. Ankeny-Onishi [1]). In applications a combinatorial argument of
Kuhn led to further improvements. In a series of papers Y. Wang very
successfully combined all methods mentioned above.

We propose in this paper a method (based on Theorems 1 and 4)
which leads to a new two-sided estimate (Theorem 5) by employing only
the simplest upper estimate of Selberg for 2* > | M| (cf. Corollary to Theo-
rem 2) and extensions of the classical estimate (Theorem 3).

The new estimate improves Selberg’s upper and lower estimate for
#* < | M|, and cannot be further improved upon by Buchstab’s method.
In particular, the new lower estimate is positive already for 2t < | M|
(with arbitrary ¢ > 0 and large 2), which decides a question left open
by A. Selberg ([15], p.292). Furthermore, our estimate is completely
uniform for all sets of a certain regular behaviour (condition Hy(M)).
This condition restricts, however, our present presentation to what might
be called the linear sieve. Exceptional primes are allowed which we com-
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