ACTA ARITHMETICA XIX (1971) # A note on numbers with a large prime factor III by ## K. RAMACHANDRA (Bombay) § 1. Introduction. Let us denote by P(u,k) the largest prime factor of (u+1)(u+2)...(u+k) where u and k are natural numbers, $k \leq u$. From the well-known deep results of G. Hoheisel and A. E. Ingham, it follows that, for $u \leq k^{3/2}$ and k large, $P(u,k) \geq u+1$. In other words one at least of the numbers $u+1, \ldots, u+k$ is a prime number. In an earlier paper [5] we considered non-trivial lower bounds for P(u,k) when $k \sim u^{1/2}$ and in a later paper [6] we considered non-trivial lower bounds for P(u,k), roughly in the range $k^{3/2} \leq u \leq k^{\log\log k}$. Next (for fixed k of course) let $Q(v) = \min P(u, k)$ as u runs over all numbers $\geq v$. In [6] we pointed out, that as a consequence of our results and an argument due to P. Erdös follows THEOREM A. We have $$\liminf_{k\to\infty} \left(Q(k^{3/2}) \ (k\log k)^{-1} \right) \geqslant 1.$$ This was an improvement of an inequality due to Erdös where in place of 1 stood $\frac{1}{3}$. In both his paper [2] and in a letter to me (dated 6. 10. 1969), Erdös has expressed the opinion that any further improvement, however slight, beyond 1, would be considerably difficult. So far, I have not succeeded in getting an improvement; but I have succeeded in proving the following theorem, whose proof is the main object of this paper (for another result see Theorem 6 and the remark below, of this paper). THEOREM B. Let $Q_1(v) = \min P(u, k)$ as u runs over all numbers $\geq v$ with the exception of numbers u in the range $$k^{(\log k)(\log \log k)^{-1}} \le u \le k^{(\log k)^3 + \frac{1}{1000}}$$ Then $$\liminf_{k o\infty}ig(Q_1(k^{3/2})\ (k\log k)^{-1}ig)\geqslant 2$$. To prove this theorem we have to use some results of H. Halberstam and K. F. Roth on k-free integers [3], to cover the range $u \leq k^{(\log k)(\log \log k)^{-1}}$. To cover the range $u \geqslant k^{(\log k)}$, we have to use some famous results of A. Baker [1] and in this connection I use the presentation of Baker's theory set forth in my paper [4]. I have also to use a somewhat interesting lemma (Lemma 5 of this paper) due to me. In addition I have to use some results of [6], but this paper is self contained as far as possible. In concluding the introduction, I record with pleasure my indebtedness to Professor Erdös for the enthusiasm shown by him in my work at its various stages. It is also a pleasure to thank Professor A. Schinzel for his interest in this work. § 2. The following theorem is implicitly contained in the work of Halberstam and Roth [3]. THEOREM 1. Let u, k and l_1 be natural numbers such that $u \geqslant k$, $l_1 \geqslant 2$. Let n_1, \ldots, n_I $(I \leqslant k)$ be any I integers which are divisible by the l_1 -th power of some prime (may be different prime for different numbers ni) greater than k and further satisfying $u < n_1 < n_2 \ldots < n_I \leqslant u + k$. Let U be the maximum of the numbers $d(n_i)$ (i = 1 to I). Then for every fixed $\epsilon > 0$, (1) $$I = O\left(U\left(\frac{u}{k}\right)^{\frac{1}{2l_1-1}} 16^{(1+s)l_1}\right)$$ where the constant implied by O depends only \varepsilon. (Hereafter we write O, to mean this fact.) To prove this theorem however, we need a simple lemma. LEMMA 1. Let $(1-z)^{2l_1-1} = P(z) - z^{l_1}Q(z)$, where $l_1 \geqslant 2$ is an integer, P(z) and Q(z) are polynomials of degree at most l_1-1 (with integer coefficients). Then the resultant R1 of these polynomials is an integer and $$d(|R_1|) = O_{\epsilon}(4^{(1+\epsilon)l_1}).$$ **Proof.** Now Q(z) is a monic polynomial and $R_1 = \prod P(a)$ where aruns over the zeros of Q(z). The defining relation between P and Q shows that $P(a) = (1-a)^{2l_1-1}$. Write $\beta = 1-a$ so that β is a zero of Q(1-z) = 0and so $R_1^2 = (Q(1))^{4l_1-2}$. (Actually $Q(1) = (-1)^{l_1-2} {2l_1-1 \choose l_1-2}$, though we do not need this.) If we write $(Q(1))^2 = \prod_{n} p^{2n_p}$, then $$d(|R_1|) = \prod_{p} \left(1 + a_p(2l_1 - 1)\right) < (2l_1)^{\sum_{p} 1} d(|Q(1)|)$$ where in the exponent p runs over the prime divisors of Q(1). Using |Q(1)| $<2^{2l_1}$ this is easily seen to be $O_e(4^{(1+\epsilon)l_1})$. (For, $\sum_{n=1}^{\infty}1=\sum_{p\leq x}1+\sum_{p>x}1$ $\leq \frac{x(1+e)}{\log x} + \frac{2l_1\log 2}{\log x}$ and we need only set $x = l_1^{1-e}$ to get the result.) Next we state two lemmas contained in their paper (our statement differs only slightly from theirs). LEMMA 2. Let $\eta = 4^{-(1+\epsilon)l_1}$ where $\epsilon > 0$ is fixed, p, p_0 primes, p > k, $p_0 > k$ and $k \ge k_0(\varepsilon)$. Suppose that $$m |p - p_0|^{2l_1 - 1} \leqslant \frac{1}{2} p_0^{l}$$ and $$|p^{l_1}m - p_0^{l_1}m_0| \leq \eta p_0,$$ where m and mo are natural numbers. Then $$mP(p/p_0) = m_0 Q(p/p_0).$$ LEMMA 3. The number of pairs (m, p) satisfying (2) and (3) is $$O_{\epsilon}(d(m_0p_0^{l_1})4^{(1+\epsilon)l_1}).$$ Lemmas 2 and 3 follow from their argument. However in proving Lemma 3 we have to use Lemma 1 above. The next lemma is also theirs. LEMMA 4. Let $\varepsilon > 0$ be arbitrarily small and fixed, $k \ge k_0(\varepsilon)$ and $0 < k \leq u$. Then $$M(u, k; X) = \sum_{\substack{m, p \\ u < p^{l_1} m \leqslant u + k, X < p \leqslant 2X}} 1 = O_{\epsilon} \left(U4^{(1+\epsilon)l_1} \left(\frac{u}{X} \right)^{\frac{1}{2l_1-1}} (kX^{-1}\eta^{-1} + 1) \right),$$ where, in the sum prime denotes that we restrict $p^{l_1}m$ (p>k) to some representation of each of the numbers n_1, \ldots, n_I . (This convention shall be adopted untill we complete the proof of Theorem 1.) Here η is the number already introduced in Lemma 2, and $X \ge 1$. Proof. Suppose I' and J are sub-intervals of [u, 2u] and [X, 2X]respectively and that $|I'| \leq \eta X$ and $$|J| \leqslant \frac{1}{4} (u^{-1} X^{2l_1})^{\frac{1}{2l_1 - 1}}.$$ It follows as in their paper (if N(I', J) defined below is $\neq 0$ so that $X < 2u^{1/l_1}$ $$N(I', J) = \sum_{p,m,p \in J, p^{l_1} m \in I'} 1 = O_s(U4^{(1+s)l_1})$$ and again that $$M(u, k; X) = O_s \left(U4^{(1+s)l_1} (kX^{-1}\eta^{-1} + 1) \left((uX^{-1})^{\frac{1}{2l_1-1}} + 1 \right) \right).$$ Also M(u, k; X) = 0 if $X \ge 2u^{1/l_1}$. This proves the lemma. Proof of Theorem 1. Now if $k \geqslant k_0(\varepsilon)$ $$\begin{split} \sum_{\substack{u < p^{11} m \leqslant u + k, p > k}}^{\prime\prime} 1 &= \sum_{n=0}^{\infty} M(u, k; 2^{n} k) \\ &= O_{e} \bigg(U4^{(1+\epsilon)l_{1}} \bigg(\frac{u}{k} \bigg)^{\frac{1}{2l_{1}-1}} \Big(\eta^{-1} + \sum_{n=0}^{\infty} 2^{-\frac{n}{2l_{1}-1}} \Big) \bigg). \end{split}$$ This proves the theorem since $\eta^{-1} = 4^{(1+\epsilon)l_1}$ and the infinite sum over n is $O(l_1)$. Thus the theorem is proved if $k \ge k_0(\epsilon)$. But if $k \le k_0(\epsilon)$ the theorem is trivially true since then $I = O_{\epsilon}(1)$. This completes the proof of Theorem 1. As in our paper [6] we define P(u, k) to be the maximum prime factor of $(u+1) \dots (u+k)$ and $Q(X, Y) = \min P(u, k)$ taken over all u satisfying $X \leq u \leq Y$ (we assume $Y \geqslant X+1$), and $Q(X) = Q(X, \infty)$. We now proceed to prove THEOREM 2. We have, for any positive constant c_1 , $$(4) \quad \liminf_{k \to \infty} \left\{ Q\left(k^{3/2}, \, \operatorname{Exp}\left(\frac{(\log k)^2}{8\log 2\, (1+e_1)}\right)\right) (k\log k)^{-1} \right\} > 1 + \left(\frac{e_1}{1+e_1}\right)^{1/2}.$$ For proving this theorem as well as for further use, we need a general lemma. Let $k \ge k_0$ which may depend on finitely many constants. LEMMA 5. Let $u < n \leqslant u + k$ (where u and k are natural numbers), c > 0 a constant, $f_k^{(l)}(n)$ (l and n natural numbers) be the number of primes not exceeding $(1+c)\log k$ whose l-th power divides n. Let $f_k'(n)$ be the number of distinct prime factors of n which do not exceed $\operatorname{Exp}\operatorname{Exp}(\log\log k - (\log\log\log k)^2)$ (for our applications, $(\log\log\log k)^2$ may also be replaced by $g(k)\log\log\log k$, where $g(k)\to\infty$ and there will be a slight change in the inequality which follows), and $f_k''(n)$ the number of remaining prime factors which do not exceed $(1+c)\log k$. Let $\varepsilon > 0$ be a small constant, $k > k_0(\varepsilon)$, $l \geq 2$, $\varepsilon^{(l)} = \sum p^{-l}$ and A and j natural numbers. Then if n runs over $K (\leq k)$ of the numbers in the interval mentioned we have $$\begin{split} &\sum_{n} \left\{ \left(f_{k}^{\prime}(n) + \varepsilon \right)^{\frac{1}{4 \cdot d \cdot j}} \left(f_{k}^{\prime\prime}(n) + \varepsilon \right)^{\frac{1}{4 \cdot j}} \left(f_{k}^{(l)}(n) + \varepsilon \right)^{\frac{1}{2}} \right\} \\ & \leqslant \left(Kk \right)^{\frac{1}{2}} \left(\frac{k}{K} \right)^{\frac{1}{4 \cdot j} (1 + \frac{1}{d})} \left((1 + 2\varepsilon) \log \log k \right)^{\frac{1}{4 \cdot d \cdot j}} \left((1 + 2\varepsilon) \left(\log \log \log k \right)^{2} \right)^{\frac{1}{4 \cdot j}} \times \\ & \times \left(1 + c + \varepsilon^{(l)} + 2\varepsilon \right)^{\frac{1}{2}} \end{split}$$ Proof. By using Hölder's inequalities (with an obvious notation), $$\begin{split} \sum \left(a_{i}^{\frac{1}{4A_{j}}} b_{i}^{\frac{1}{4j}} c_{i}^{\frac{1}{2}}\right) \leqslant & \left(\sum \left(a_{i}^{\frac{1}{2A_{j}}} b_{i}^{\frac{1}{2j}}\right)\right)^{\frac{1}{2}} \left(\sum c_{i}\right)^{\frac{1}{2}} \leqslant \left(\sum a_{i}^{\frac{1}{4j}}\right)^{\frac{1}{4}} \left(\sum b_{i}^{\frac{1}{2}}\right)^{\frac{1}{4}} \left(\sum c_{i}\right)^{\frac{1}{2}} \\ \leqslant & \left(\sum 1\right)^{\frac{1}{4q_{1}}} \left(\sum a_{i}\right)^{\frac{1}{4A_{j}}} \left(\sum 1\right)^{\frac{1}{4q_{2}}} \left(\sum b_{i}\right)^{\frac{1}{4j}} \left(\sum c_{i}\right)^{\frac{1}{2}} \end{split}$$ where $\frac{1}{q_1} + \frac{1}{Aj} = \frac{1}{q_2} + \frac{1}{j} = 1$ and so $\frac{1}{q_1} + \frac{1}{q_2} = 2 - \frac{1}{j} - \frac{1}{Aj}$. Applying this we see that the sum in question does not exceed $$K^{\frac{1}{2} - \frac{1}{4j}(1 + \frac{1}{A})} k^{\frac{1}{2} + \frac{1}{4j}(1 + \frac{1}{A})} \left(\frac{1}{k} \sum \left(f'_k(n) + \varepsilon \right) \right)^{\frac{1}{4AJ}} \left(\frac{1}{k} \sum \left(f''_k(n) + \varepsilon \right) \right)^{\frac{1}{4J}} \times \left(\frac{1}{k} \sum \left(f''_k(n) + \varepsilon \right) \right)^{\frac{1}{2}}$$ $$\leqslant (kK)^{\frac{1}{2}} \Big(\frac{k}{K}\Big)^{\frac{1}{4j}(1+\frac{1}{A})} \big((1+2\varepsilon)\log\log k\big)^{\frac{1}{4Aj}} \big((1+2\varepsilon)\,(\log\log\log k)^2\big)^{\frac{1}{4j}} \times \\$$ $$\times (1 + c + \varepsilon^{(l)} + 2\varepsilon)^{\frac{1}{2}}.$$ Here we have used the well-known result $\sum_{p \leqslant x} \frac{1}{p} = \log \log x + C + O\left(\frac{1}{\log x}\right)$, and the final inequality proves the lemma. We deduce a useful corollary from Lemma 5, which we state as THEOREM 3. Let $P(u, k) \leq (1+c) \log k$, c_2 a constant satisfying $0 < c_2 < 1$, $k \geq k_0(c_1, c_2)$, and $K = [c_2 k]$. Then there exists a natural number l depending only on c and c_2 , and $K_1 = k - K + 1$ distinct integers n_1, \ldots, n_{K_1} in (u, u + k] with the properties $$f'_k(n_i) \leqslant (\log \log k)^{c_3}, \quad f''_k(n_i) \leqslant (\log \log \log k)^{c_4}$$ and $$f_k^{(l)}(n_i) \leq [c_2^{-1}(1+c)] \quad (i=1,2,\ldots,K_1).$$ Here c_3 and c_4 are positive constants depending only on c and c_2 . Consequently for such n_i we have firstly (supposing $k \ge k_0$) $$d(n_i) \leqslant l^{(\log\log k)^{c_3+c_4}} \left(1 + \frac{\log(u+k)}{\log 2}\right)^{c_2^{-1}(1+c)}$$ and secondly, the maximum 1-th power free factor of ni does not exceed $$\left(\operatorname{Exp}\operatorname{Exp}\left(\operatorname{log}\operatorname{log}k-(\operatorname{log}\operatorname{log}\log k)^2+c_3\operatorname{log}\operatorname{log}\operatorname{log}k\right)\right)k^{2(\operatorname{log}\operatorname{log}\log k)^24_l}$$ $\leq k^{(\log \log k)^{1/2}}$. One may also note that if $F_k(n)$ denotes the number of prime factors of n which exceed k, then $F_k(n_1) + \ldots + F_k(n_{K_1}) \leq (1 + c + o(1))k$. Proof. In Lemma 5, choose $j = [A_1 \log \log \log \log k]$ where A_1 is a large constant and $A = [A_2 j^{-1} \log \log \log k]$ where A_2 is a large constant. The minimum term of the sum in Lemma 5 does not exceed $$\left(\frac{k}{K}\right)^{\frac{1}{2}+\frac{1}{4j}(1+\frac{1}{A})}\left((1+2\varepsilon)\operatorname{log}\log k\right)^{\frac{1}{2Aj}}\left((1+2\varepsilon)\left(\operatorname{log}\log\log k\right)^{2}\right)^{\frac{1}{4j}}\left(1+c+\varepsilon^{(l)}+2\varepsilon\right)^{\frac{1}{2}}.$$ It follows that $e^{1/2j}$ times $(f_k^{(l)}(n) + e)^{1/2}$ does not exceed the above expression and this gives our assertion regarding $f_k^{(l)}(n_l)$. The other assertions follow similarly. The last statement follows from the fact that the g.c.d. of any two of the numbers n_i cannot exceed k. We are now in a position to prove Theorem 2. In view of the results of my earlier note [6], we can assume that $u \ge k^{\log \log k}$. We start with the fundamental formula (Lemma 1 of [6]) $$(5) \qquad \sum_{\alpha=1}^{j_0-1} \sum_{n \leq uk-a} \left\{ \vartheta\left(\left(\frac{u+k}{n}\right)^{1/a} \right) - \vartheta\left(\left(\frac{u}{k}\right)^{1/a} \right) \right\} = k \log \frac{u}{k} + O\left(\frac{k \log u}{\log \log k}\right)$$ where $j_0 = \frac{\log u}{\log k} - 1$ if u is a power of k and otherwise $j_0 = \left[\frac{\log u}{\log k}\right]$. We set $l_2 = \left[g \frac{\log u}{\log k} \right]$ where g is a constant satisfying $\frac{1}{2} < g < 1$. We assume that $P(u, k) \leq (1+c) k \log k$ where 0 < c < 1. The contribution from $a \geq l_2$ is easily seen to be $$\sum_{a=l_2}^{j_0} \sum_{n \leqslant uk^{-a}} \sum_{u < np^{d} \leqslant u+k} \log p \leqslant (1-g) \, \frac{\log u}{\log k} \, \log k \big(1+o(1)\big) \sum_{\substack{u < np^{l_2 \leqslant u+k} \\ k < p \leqslant (1+o)k \log k}} 1.$$ Let K_2 be the number of integers in (u, u+k] divisible by p^{l_2} for some p in the range k . Then if <math>I is the number of integers common to these and also the $K_1 = k-K+1$ integers of Theorem 3, we have $K_2 + (k-K+1) - I \le k$. Hence $I \ge K_2 - K + 1$. Consider these common integers I in number. Then by Theorem 1 (taking l_2 for l_1) $$I = O_{\epsilon} \left(l^{(\log \log k)^{\circ}_{3} + c_{4}} \left(1 + \frac{\log (u + h)}{\log 2} \right)^{c_{2}^{-1}(1+c)} h^{\frac{1}{2\sigma} + c} 16^{(1+c)d \frac{\log u}{\log h}} \right).$$ Let us confine to $u \leq k^{c_5 \log k}$ so that $$I = O_s \left(\operatorname{Exp} \left((\log \log k)^c 6 \right) k^{\frac{1}{2g} + \epsilon + g c_5 \log(16)(1+\epsilon)} \right)$$ = $O_s \left(\operatorname{Exp} \left((\log \log k)^c 6 \right) k^{\frac{1}{2g} + 4(\log 2)g c_5 + 2\epsilon} \right)$ if we choose $4(\log 2)gc_5 \leqslant 1$. In fact we define c_5 by $\frac{1}{2g} + 4(\log 2)gc_5$ = $1-3\varepsilon$. Choosing c_5 thus we have $$I = O_{\epsilon}(k^{1 - \frac{\epsilon}{2}}).$$ This gives $K_2 \le K + I - 1 \le c_2 k (1 + o(1))$ and thus the contribution from $a \ge l_2$ is $$\leq ((1-g)c_2+o(1))k\log u$$. But, since the intervals $\left(\left(\frac{u}{n}\right)^{1/a}, \left(\frac{u+k}{n}\right)^{1/a}\right]$ for $n \leqslant uk^{-a}$ are disjoint, $$\sum_{a=1}^{l_2-1} \sum_{u((1+c_7)k\log k)-a < n \leqslant uk-a} \left\{ \vartheta\left(\left(\frac{u+k}{n}\right)^{1/a}\right) - \vartheta\left(\left(\frac{u}{n}\right)^{1/a}\right) \right\}$$ $$\leq \sum_{q=1}^{l_2-1} \left(1+c_{\gamma}+o\left(1\right)\right) k \log k \leq \left(g\left(1+c_{\gamma}\right)+o\left(1\right)\right) k \log u \, .$$ If we secure that $g(1+c_7)+(1-g)c_2<1$ it follows now from (5) that with $c_8=\min(c,c_7)$, $P(u,k)>(1+c_8)k\log k$. Obviously $c_7<1$ and we could take $c=c_7=c_8$. Now any $c_5<(1-(2g)^{-1})\left(4(\log 2)g\right)^{-1}$ will do. Here the R. H. S. increases from $-\infty$ to $\frac{1}{2}$ in [0,1] and so we could choose c_5 to be any constant $<\frac{1}{8\log 2}$. Let us fix $c_5=\frac{1}{8\log 2(1+c_1)}$. Then g will be determined by $\frac{1}{g}+\frac{g}{1+c_1}=2-6\varepsilon$, i.e. by $\left(\frac{1}{g}\right)^2-\frac{2-6\varepsilon}{g}+\frac{1}{1+c_1}=0$. Now $1+c=1+c_7$ can be chosen to be any constant less than 1/g since c_2 is arbitrary. This proves Theorem 2. § 3. Next we shall apply Baker's method (I follow my paper [4] which is slightly more convenient for my purposes) to prove THEOREM 4. We have for every $\varepsilon > 0$, $$\liminf_{k\to\infty} \left(Q\left(e^{(\log k)^{4+s}}\right) \left(k\log k\right)^{-1}\right) \geqslant 2.$$ In view of Theorem 2, we may now confine to $u > e^{(\log k)^2(\log \log k)^{-1}}$. For simplicity we shall suppose, in Theorem 3, that 0 < c < 1. We record a special case of Theorem 3. LEMMA 6. Let $u > e^{(\log k)^2(\log \log k)^{-1}}$, $P(u, k) \leq (1+e)k\log k$ for some c satisfying 0 < c < 1 and $k \geq k_0(e)$. Then there exist a positive constant c_2 $(c_2 < 1$ depending only on c), and $K_1 = k - \lfloor c_2 k \rfloor + 1$ distinct integers n_1, \ldots, n_{K_1} in (u, u+k] with the properties $$n_i = m_i p_i^{l(i)}$$ where $m_i \leqslant k^{(\log \log k)^{1/2}}$ and $(p_i, m_i) = 1$ $(i = 1, 2, ..., K_1)$. Remark 1. Let c_8 be a small positive constant and $K_3 = [c_8 k]$. Then by the last statement of Theorem 3, the minimum of $F_k(n_t)$ over K_3 of the integers n_i is $\leqslant \left(\frac{1+c}{c_8} + o(1)\right)$. Hence there exists $K_4 = K_1 - K_3 + 1$ integers n_i with the further property that $F_k(n_i) \leqslant \frac{1+c}{c_8}$. Define $G_k(n)$ to be the number which results from n after replacing in its prime factor decomposition all primes exceeding k by 1. Then by an argument of Erdös (private communication, letter dated 18, 11, 69), the minimum of $G_k(n_i)$ taken over any $K_5 = [c_9 k]$ of the K_4 integers n_i (c_9 small positive constant), does not exceed $(k!)^{2K_5^{-1}}$. So in Lemma 6 we may replace c_2 by a slightly bigger positive constant (but still < 1), and assume $m_i \leqslant k^c$ where C is a positive constant depending only on c. This unfortunately does not lead to a lowering of 4+e in Theorem 4. Remark 2. In view of the fact that m_i are small, it follows that the p_i are all distinct and we can assume that $p_i > k$ for each i. Now let the integers $l^{(i)}$ be all distinct. Then $l^{(i)} \leq \frac{\log(2u)}{\log k}$ and since the maximum of the integers $l^{(i)}$ is at least $(c_2+o(1))k$, u will have to exceed e^k . We have $u < m_1 p_1^{i(1)} < m_2 p_2^{i(2)} \leq u + k$ and so $$0<\log\frac{m_2p_2^{l^{(2)}}}{m_1p_1^{l^{(1)}}}<\log\frac{u+k}{u}, \text{ i.e., } 0<\left|\log\frac{m_2}{m_1}+l^{(2)}\log p_2-l^{(1)}\log p_1\right|<\frac{k}{u}.$$ But it is easy to see that $ku^{-1} < e^{-ba}$ where $a = \max(l^{(1)}, l^{(2)})$. By Baker's result [1, IV] it follows that $a < (4^9 \cdot 2 \cdot (\log k)^2)^{49}$ and this contradicts $u > e^k$. It also shows for instance that, whether $l^{(1)} = l^{(2)}$ or not, $a < (\log k)^{100}$. In view of Remark 2, the proof of Theorem 4 now depends on lower bounds for $L = \left| \log \frac{m_2}{m_1} - a \log \frac{p_1}{p_2} \right|$ so as to contradict $L < \frac{k}{u}$ in the range $u > e^{(\log k)^{4+\epsilon}}$. To apply the results of my paper [4], it is necessary to have the multiplicative independence of $\frac{m_2}{m_1}$ and $\frac{p_1}{p_2}$. This is trivial to prove. It is perhaps not unreasonable (in view of possible improvements if any on Theorem 4) to prove slightly more, viz. LEMMA 7. Suppose that $u < p_1^a m_1 < p_2^a m_2 < \ldots < p_r^a m_r \leqslant u + k$, where a, m_1, \ldots, m_r, u , k are natural numbers, p_1, \ldots, p_r primes, each of the m_i are B-free where B is positive integral constant independent of u, k, a, p_i 's, m_i 's, p_i does not divide $m_i, k < p_i < k^2$ and finally $u > k^{\log \log k}$. Then $\frac{p_2}{p_1}, \frac{m_2}{m_1}, \frac{p_3}{p_2}, \frac{m_3}{m_2}, \ldots, \frac{p_r}{p_{r-1}}, \frac{m_r}{m_{r-1}}$ are multiplicatively independent. Proof. It suffices to confine our attention to the ratios $\frac{m_{i+1}}{m_i}$ = $\frac{u_{i+1}p_{i+1}^{-a}}{u_ip_i^{-a}}$ (we have written u_i for $p_i^am_i$). Since $m_i\neq m_j$ trivially, the lemma is true for r=2. Assume now that $\prod_{i=1}^{r-1}\left(\frac{u_ip_i^{-a}}{u_{i+1}p_{i+1}^{-a}}\right)^{b_i}=1$, where b_i are integers none zero and $(b_1,\ldots,b_{r-1})=1$. Now b_i are determined by (finitely many) linear homogeneous equations (uniquely up to a constant multiple; for, uniqueness follows by assuming the truth of the lemma for r-1 in place of r) with bounded coefficients, and so bounded. We have $$a = \frac{b_1 \log \frac{u_1}{u_2} + b_2 \log \frac{u_2}{u_3} + \ldots + b_{r-1} \log \frac{u_{r-1}}{u_r}}{b_1 \log \frac{p_1}{p_2} + \ldots + b_{r-1} \log \frac{p_{r-1}}{p_r}}.$$ Here the denominator has absolute value at least k^{-A_1} (A_1 constant), and so $a = O\left(\frac{k^{A_1}}{u}\right)$ which is a contradiction since $u > k^{\log \log k}$ and $a \ge 1$. Suppose we prove that, under the condition $a < (\log k)^{100}$ $$L > C(\varepsilon)e^{-(\log k)^{4+\varepsilon}}$$ for every fixed $\varepsilon > 0$. Then since L < k/u, Theorem 4 follows. We concentrate therefore on proving THEOREM 5. Let a_1 and a_2 be positive multiplicatively independent rational numbers with sizes (i.e. size of a rational number a/b is defined to be |b| + |a/b| provided a and b are integers satisfying (a, b) = 1) not exceeding S_1 and β_0 a rational number whose size does not exceed $(\log S_1)^{100} = S$, say. Then for every fixed $\varepsilon > 0$, $$|\beta_0 \log a_1 - \log a_2| > A(\varepsilon) e^{-(\log S_1)^{4+\varepsilon}}$$ where $A = A(\varepsilon)$ is a constant depending only on ε and not on $\alpha_1, \alpha_2, \beta_0$. Remark. Until we complete the proof of Theorem 5, which shall be along the lines of my paper [4], we shall ignore the other notations of the present paper and follow the notation of [4]. It may also be mentioned that I follow my paper instead of Baker's [1, I] since my paper is more convenient for my purposes. Proof. In the notation of my paper n=f=d=1. We can take $C_1=S_1^2,\,C_2=2$ (S will be assumed to exceed an absolute constant without loss of generality; note also that all the constants $C_1,\,C_2,\,\ldots,\,D_{11}$, of my paper may be replaced also by bigger constants). However we make a small change. We write $W=|(\log a_1)^{m_1}|$ and we see that it cancels out ultimately. We take instead of our original $C_3,\,C_3=C_1^3$ and instead of the estimate (4) on page 3, we write down $|p(\lambda)| \leq C_5^{Lh} C_2^{2k} (SL)^{2k}$. Next we take $C_4=3\log S_1$ and instead of the estimate $\beta C_5^{Lh_1+k}(SL)^{k_1+2/k}$ (on page 4 line 9 from the bottom) we write down the estimate $$\leq \beta (L+1)^2 C_3^{Lh} C_2^{2k} (SL)^{2k} C_1^{Lh_1} 7^{Lh_1} (C_2 SL)^{k_1} W C_4^{k_1}$$ $$\leq \beta (28C_1 C_3)^{Lh_1} (C_2 C_4)^{3k} (C_2 SL)^{3k} W.$$ Hence we get (1) $$|f^{(m)}(r)| \leq \beta (28C_1C_3)^{Lh_1} (C_2^2C_4SL)^{3k}W,$$ where $C_1 = S_1^2$, $C_2 = 2$, $C_3 = C_1^3$ and $C_4 = 3 \log S_1$. Next we have $$\begin{array}{ll} (2) & \max_{|z|=4h_2} |f(z)| \leqslant (L+1)^2 C_3^{Lh} C_2^{2k} (SL)^{2k} C_8^{Lh_2} (C_2 SL)^{k_2} W, & \text{where } C_8 = C_1^8 \\ & \leqslant (4C_3 C_8)^{Lh_2} (C_2 SL)^{3k} W. \end{array}$$ On page 5, line 9 from the top, we change the estimate to (3) $$\leqslant \beta (L+1)^2 C_3^{Lh} C_2^{2k} (SL)^{2k} C_1^{Lh_2} 7^{Lh_2} (C_2 SL)^{k_2} \\ \leqslant \beta (28C_1 C_3)^{Lh_2} (C_2 SL)^{3k}.$$ We can take for A some integer $\leq C_{10}^{Lh_2} S^{k_2}$ where $C_{10} = C_1$, and it would follow that $|\theta| \geq A^{-1}$ and so we have $$|W^{-1}f(l)| > C_{10}^{-Lh_2}S^{-k} - \beta (28C_1C_3)^{Lh_2}(C_2SL)^{3k}.$$ On page 6, we write down using (1) and (2) the estimate $$(5) |f(l)| < \frac{1}{2\pi} \frac{2\pi 4h_2}{4h_2 - 2h_2} (4C_3C_8)^{Lh_2} (C_2SL)^{3k} \left(\frac{h_2}{4h_2 - 2h_2}\right)^{(k_1 - k_2 + 1)h_1} W +$$ $$+ \frac{1}{2\pi} \sum_{r=0}^{h_1} \sum_{m=0}^{k_1 - k_2} \frac{1}{m!} \beta (28C_1C_3)^{Lh_1} (C_2^2C_4SL)^{3k} W \cdot 2\pi \cdot \frac{1}{2} \cdot \left(\frac{1}{2}\right)^m \cdot 2 \cdot (2h_2)^{h_1(k_1 - k_2 + 1)}$$ $$< (8C_3C_8)^{Lh_2} (C_2SL)^{3k} 2^{-h_1(k_1 - k_2 + 1)} W + \beta W (1.12C_1C_3)^{Lh_1} (C_2^2C_4SL)^{3k} \times$$ $$\times (2h_2)^{h_1(k_1 - k_2 + 1)}.$$ We now set $k_2 = \lceil k_1/2 \rceil$ and so $$2^{-h_1(k_1-k_2+1)}<2^{-4h_1k_1},$$ $$(2h_2)^{h_1(k_1-k_2+1)} < (2h_2)^{h_1(k_1/2+2)}$$ and $k_1 - k_2 < k_1/2 + 1$. We now come to the final step. We have to see that (4) and (5) contradict, i.e. (6) $$C_{10}^{-Lh_2}S^{-k} \geqslant (8C_3C_6)^{Lh_2}(C_2SL)^{3k}2^{-\frac{1}{2}h_1k_1} + \beta(28C_1C_3)^{Lh_2}(C_2SL)^{3k} + -\beta(1.12C_1C_3)^{Lh_1}(C_2C_4SL)^{3k}(2h_2)^{h_1(k_1/2+2)}$$ Here $C_1 = C_{10} = C_3^{1/3} = C_8^{1/8} = S_1^2$, $C_2 = 2$, $C_4 = 3 \log S_1$. To satisfy (6) we must have $$2^{\frac{1}{2}h_1k_1} \geqslant (8C_1C_3C_8)^{Lh_2}(2SL)^{4k} + \beta (224C_1C_3)^{Lh_2}(2C_4SL)^{4k}(4h_2)^{h_1(\frac{1}{2}k_1+2)},$$ i.e. we must have something like $$2^{\frac{1}{2}h_1k_1} \geqslant (1000C_1^{12})^{Lh_2}(2C_4SL)^{4k}(1+\beta h_2^{h_1k_1}),$$ i.e. something like $$2^{\frac{1}{2}h_2k_1}\geqslant C_1^{13Lh_2+4k\log(SL)(\log C_1)^{-1}+8k\log\log S_1(\log C_1)^{-1}}(1+\beta e^{h_1k_1\log h_2}),$$ i.e. (7) $$2^{\frac{1}{2}h_1k_1} \geqslant C_1^{13Lh_2+12k\log(SL)(\log\log S_1)(\log C_1)^{-1}} (1 + \beta e^{h_1k_1\log h_2})$$ where $C_1 = S_1^2$. Let A_1 be a positive constant (we mean independent of S, S_1), $E > A_1^{-1}$ another positive constant, $\delta > 0$ a small constant, $$\tilde{r} = [(1+2E+\delta)(E-A_1^{-1})^{-1}]+2, \quad C_{15} = C_9(\log S + \log C_1)$$ where C_9 is a large constant, $C_{14} = C_{15}^{4} I_{16}$ where C_{16} is a large constant, $h = [C_{14}], L = [h^{1+E}], k = [\frac{1}{9}h^{1+2E}]$. We also define somewhat (but not quite) similar to (with a positive constant b) my paper [4], (8) $$\begin{cases} h_1 = h, \ k_1 = k; \ h_2 = [C_{16}h_1 \cdot h^b], \ k_2 = \left[\frac{k_1}{2}\right], \dots, \\ h_r = [C_{16}h_{r-1}h^b], \ k_r = \left[\frac{k_{r-1}}{2}\right]; \dots (r = 2, \dots, \tilde{r}). \end{cases}$$ We choose C_{15} and C_{16} to satisfy $$(9) \qquad 2^{\frac{1}{\hbar}h_{r}k_{r}} \geqslant e^{13Lh_{r+1}\log C_{1}+13k\log(SL)(\log\log S_{1})}(1+\beta e^{h_{r}k_{r}\log h_{r+1}})$$ $$(r=1,2,...,\tilde{r}-1)$$ as follows If S is large we see that all the h_r and k_r are large, h_r is increasing, k_r is decreasing and for $r \leq \tilde{r} - 1$, $$h_r k_r \log h_{r+1} < C_{17} h_{\tilde{r}-1}^{1+\delta_1} h^{1+2E}$$ where $\delta_1 > 0$ is an arbitrarily small constant and the constant C_{17} depends only on δ_1 , E, A_1 , δ . Suppose now that $$\beta < e^{\frac{-C_{17}h_{\infty}^{1+\delta_{1h}^{1+\delta_{1h}^{1+2E}}}{r-1}}.$$ Then we have to choose C_{15} and C_{16} such that (11) $h_r k_r \ge 200 (Lh_{r+1} \log C_1 + k \log (SL) \log \log S_1)$ $(r = 1, 2, ..., \tilde{r} - 1)$. It is plain now that it suffices to satisfy (12) $$k \geqslant C_{18} C_{16} L h^b \log C_1$$ where C_{18} depends only on A_1 , δ , B. It is plain that this inequality can be secured by first fixing C_{16} and then a large C_9 (provided that $bA_4 \leq BA_1 - 1$). This gives immediately that (10) is false (see the last sentence of this section). It is plain that $h_{\tilde{r}+1} < (2C_{16})^{\tilde{r}+2}h^{1+(\tilde{r}+2)b}$ and so $C_{17}h_{\tilde{r}+1}^{1+\delta_1}h^{1+2B}$ does not exceed $$C_{17}(2C_{16})^{(1+\delta_1)(\widetilde{r}-2)}h^{2+\delta+2E+(1+\delta_1)(\widetilde{r}-2)b}$$ and by the definition of h this does not exceed $$C_{19}(\log S_1)^{\mathcal{A}_1(2+\delta+2\mathcal{B}+(1+\delta_1)(\tilde{r}-2)b)}$$ and this by putting $b = E - A_1^{-1}$ and making both A_1 and b small, gives $$\beta > C_{20} e^{-(\log S_1)^{k+\ell}},$$ where U_{20} depends only on ε . We have still to check the inequality $(L+1)^2 < h_{\tilde{r}}$. This requires $$(2h)^{2+2E} < (\frac{1}{2}C_{16})^{\tilde{r}-1}h^{1+(\tilde{r}-1)b},$$ i.e. something like $$2+2E\leqslant 1+(\tilde{r}-1)b,$$ i.e. $$2+2E \leq 1+([(1+2E+\delta)(E-A_1^{-1})^{-1}]+1)b$$. We are compelled to choose $b = E - A_1^{-1}$. This completes the proof of Theorem 5, since $h_r > (L+1)^2$ contradicts easily the multiplicative independence of a_1 and a_2 . § 4. Thus we have proved Theorem 4. We now resume the notation of this paper. In view of Theorems 2 and 4 we can now confine to the gap $$\operatorname{Exp}\left((\log k)^2\left(\log\log k\right)^{-1}\right)\leqslant u\leqslant\operatorname{Exp}\left((\log k^{4+s})\right)$$ where $\varepsilon > 0$ is an arbitrarily small, but fixed constant. (When u does not lie in this gap we know that by Theorems 2 and 4, P(u, k) exceeds $(2-\varepsilon_1)k\log k$ provided $\varepsilon_1 > 0$ is any constant and $k \ge k(\varepsilon_1)$, $u \ge k^2$.) In this gap we prove Theorem 6 (below) which is not quite satisfactory. The proof of Theorem 6, which is quite simple, is based on the following IMMMA 8. Let $l_3 \geqslant 2$ be a natural number, $X \geqslant 1$ and m, n natural numbers. Then $$S = S_{l_3}(X) = \sum_{\substack{x < um^{l_3} \leq 2X \\ w > k}} 1 = O(X^{l_3^{-1}} + l_3^{-1}Xk^{-l_3+1}).$$ Proof. We have easily $$S = \sum_{k < m < (2X)^{\frac{1}{3}}} \left(\left[\frac{2X}{m^{l_3}} \right] - \left[\frac{X}{m^{l_3}} \right] \right) \leqslant X \sum_{m > k} m^{-l_3} + O(X^{l_3^{-1}})$$ and this gives Lemma 8. We now take $$X = u$$, write $h = \min\left(k^{l_3}, u^{1-l_3^{-1}}\right)$ and we get $S = o\left(\frac{uk}{h}\right)$. It follows that there exists a gap of length [h], viz. $x \le nm^{l_3} \le x + h$, with x in (u, 2u], where $S_1 = \sum_{\substack{x \le nm^{l_3} \le x + h \\ n \ge k}} 1 = o(k)$, provided l_3 exceeds a function of k which tends to infinity with k. As a consequence we have Lemma 9. Let l_3 exceed a function of k which tends to infinity with k and let $h = \min(k^{l_3}, u^{1-l_3^{-1}})$. Then there exists an x satisfying $u \leq x < x + h \leq 2u$ such that for all y satisfying $x \leq y < y + k \leq x + h$, we have (uniformly), $$\sum_{y< nm^{l_3}< y+k, m>k} 1 = o(k).$$ We can now use Lemma 6 to prove Theorem 6 (below). Suppose $P(u, k) \leq (1+c) k \log k$ for some c satisfying 0 < c < 1. Lemma 6 now gives at least K_1 distinct integers with $l^{(i)}$ satisfying $$k^{I(i)} \leqslant 2u$$, but $u \leqslant k^{(\log \log k)^{1/2}} (2k \log k)^{I(i)}$; i.e. $$l^{(i)} \leqslant \frac{\log{(2u)}}{\log{k}}, \quad \text{ but } \quad l^{(i)} \geqslant \frac{\log{u}}{\log{(2k\log{k})}} - \frac{(\log{\log{k}})^{1/2}\log{k}}{\log{(2k\log{k})}}$$ If we take l_3 to be the least integer $l^{(i)}$ which occurs, we then have $$\begin{split} k^{l_3} &\geqslant \operatorname{Exp}\left\{\frac{\log u \log k}{\log \left(2k \log k\right)} - \frac{(\log \log k)^{1/2} (\log k)^2}{\log \left(2k \log k\right)}\right\} \\ &= \operatorname{Exp}\left\{(\log u) \left(1 - O\left(\frac{\log \log k}{\log k} + \frac{(\log k) \left(\log \log k\right)^{1/2}}{\log u}\right)\right)\right\} \end{split}$$ and $$u^{1-l_3^{-1}} \geqslant \operatorname{Exp}\left\{ (\log u) \left(1 - O\left(\frac{\log k}{\log u}\right)\right)\right\}.$$ Thus we have (by contradiction to Lemma 9) icm THEOREM 6. Let $\operatorname{Exp}\left((\log k)^{2}(\log\log k)^{-1}\right) \leqslant u \leqslant \operatorname{Exp}\left((\log k)^{4+\varepsilon}\right), \ \varepsilon > 0$ arbitrarily small but fixed constant and $$h = \operatorname{Exp}\left\{ (\log u) \left(1 - G \left(\frac{\log \log k}{\log k} + \frac{(\log k)(\log \log k)^{1/2}}{\log u} \right) \right) \right\}$$ with a certain positive constant G. Then there exists an x satisfying $u \leqslant x \leqslant 2u$ such that for every integer n in [x, x+h] we have $$P(n, k) > (2-\epsilon_1)k\log k$$ where ε_1 is an arbitrarily small positive constant (the constant G in h may depend on ε_1 , but certainly does not depend on ε). Remark. We can make slight improvements on this theorem and we do not wish to state them here. We may also remark that in Theorem A of the introduction we can improve the R.H.S. to 2 if we can prove something like (for $k \ge 100$) $$|a\log a_1 - \log a_2| + |a\log a_3 - \log a_4| + |a\log a_5 - \log a_6| > Ce^{-(\log k)^2(\log\log k)^{-1}}$$ where a_1, a_2, \ldots, a_6 are multiplicatively independent positive rational numbers with height at most $k^{(\log \log k)^{1/2}}$, a is a positive integer not exceeding $(\log k)^5$ and C is a positive absolute constant. Added in proof. A COROLLARY TO THEOREM 2. Let $k > k_0$ and n_1, n_2, \ldots the sequence of all natural numbers whose largest prime factors exceed k. Then $$n_{i+1}-n_i < \frac{k}{\log k} + \frac{7k}{(\log k)^2}$$ $(i = 1, 2, ...)$ #### References - [1] A. Baker, Linear forms in the logarithms of algebraic numbers I, Mathematika 13 (1966), pp. 204-216, IV, ibid. 15 (1968), pp. 204-216. - [2] P. Erdös, On consecutive integers, Nieuw. Arch. Voor. Wiskunde, 3 (1955), pp. 124-128. - [3] H. Halberstam and K. F. Roth, On the gaps between consecutive k-free integers, Journ. London Math. Soc. (26) (1951), pp. 268-273. - [4] K. Ramachandra, A note on Baker's method, Journ. Austr. Math. Soc. 10 (1969), pp. 197-203. - [5] A note on numbers with a large prime factor I, Journ. London Math. Soc. 2 (1969), pp. 303-306. - [6] A note on numbers with a large prime factor II, Journ. Ind. Math. Soc. (to appear). - [7] A. Schinzel, On two theorems of Gelfond and some of their applications, Acta Arith. 13 (1967), pp. 177-236. TATA INSTITUTE OF FUNDAMENTAL RESEARCH Bombay, India Dichte von A. ## Quotientbasen und (R)-dichte Mengen TOT TIBOR ŠALAT (Bratislava) In der Arbeit [3], an welche die vorliegende Arbeit anknüpft, sind die Quotientmengen R(A) für die Mengen A, $$A \subset \{1, 2, 3, \ldots\} = N$$ so definiert: R(A) bedeutet die Menge aller rationalen Zahlen der Form c/d, wo $c, d \in A$. Diese Definition kann man in folgender natürlicher Weise verallgemeinern. DEFINITION 1. Wenn $A, B \subset N$, dann bedeutet R(A, B) die Menge aller rationalen Zahlen der Form a/b, $a \in A$, $b \in B$. R(A, B) nennt man die Quotientmenge der Mengen A, B. Es gilt im allgemeinen $R(A, B) \neq R(B, A)$. Weiter offensichtlich R(A, A) = R(A). Es sei für die weiteren Bedürfnisse bemerkt, daß für $A \subset N$ das Symbol $\delta_1(A)$ $(\delta_2(A))$ die Zahl $\liminf_{n \to \infty} \frac{A(n)}{n}$ $(\limsup_{n \to \infty} \frac{A(n)}{n})$ bezeichnet, wo $A(n) = \sum_{\alpha \leqslant n, \alpha \in A} 1$ ist. Wenn der Grenzwert $\lim_{n \to \infty} \frac{A(n)}{n}$ existiert, dann setzen wir $\delta(A) = \lim_{n \to \infty} \frac{A(n)}{n}$. Die Zahlen $\delta_1(A)$, $\delta_2(A)$ bzw. $\delta(A)$ nennt man die untere, obere asymptotische Dichte von A bzw. die asymptotische Es bedeute im weiteren R^+ die Menge aller positiven rationalen Zahlen. Es ergibt sich die Frage, unter welchen Voraussetzungen über die Mengen A, B die Gleichheit $R(A, B) = R^+$ gilt. SATZ 1. Die Mengen $A, B \subset N$ sollen wenigstens eine der folgenden Bedingungen erfüllen: (a) $$\delta(A) = 1, \quad \delta_2(B) = 1;$$ (b) $$\delta_2(A) = 1, \quad \delta(B) = 1.$$ Dann existiert zu jedem $r \in \mathbb{R}^+$ eine unendliche Anzahl von Paaren $(a,b) \in A \times B$, so da β r = a/b.