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A note on numbers with a large prime factor I
by '
K. RAMACHANDRA (Bombay)

§ 1. Introduction. Leb us denote by P(u, k) the largest prime factor
of (u-+1)(u~+2)... (u+%k) where » and %k are natural numbers, % <C %. From
the well-known deep results of G. Hoheigel and A. B. Tngham, it follows
that, for » < #** and % large, P(u, k)3 u+1. In other words one at
least of the nwnbers u--1,...,u+ k% is a prime number. In an earlier
paper [5] we considered non-trivial lower bounds for P(u, k) when k ~ »'/2
and in a later paper [6] we considered non-trivial lower bounds for P (10, &)
roughly in the range k¥® < u < Eloglosk,

Next (for fixed % of course) let ¢ (v) = minP(w, k) as % runs over
all numbers > v. In [6] we pointed out, that as a conzequence of our
results and an argument due to P. Erdas follows :

TaEOREM A. We have

liminf(Q (£*?) (klogk)™) = 1.
L—rco )

This was an improvement of an inequality due to Hrdés where in
place of 1 stood 4. In both hiz paper [2] and in a letter to me (dated
6. 10. 1969), Erdos has expressed the opinion that any further hnpro-
vement, however slight, beyond 1, would be considerably difficult. So
far, Thave nob succeeded in gefting an improvement; but T have suceeeded
in proving the following theorem, whose proof is the main object of this
paper (for another result see Theorem 6 and the remark below, of this
paper).

TamorEM B. Lot Q(v) = minP(u, k) as « runs over all numbers = v
with the exception of numbers u in the range

k(lngk](lnmnzﬁ‘)—l U k(mgk)a-i‘ﬁlﬁﬁ‘

S

Then
Lmint(Q, (k) (klogk) ™) = 2.
Fe—ro0
To prove thig theorem we have to uge some results of H. I-Ia;lberstmin
and K. F. Roth on k-free integers [3], to cover the range 1< kloskfoslor®) ™,
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To cover the range u 3 k'o8¥ M, we have to use some f;mnou‘s. resulty
of A. Baker [1] and in this connection I use the presentation ol .Ba.kc?r’,q
theory set forth, in 1y paper [4]. Thave also to 115(:‘: z.n HO;’LL&Whﬂd‘. interesting
lemma (Lemma 5 of this paper) due to me. In addition X 1‘1u,w.a 10 ude some
results of [6], bub this paper is sell contained ws far ag Porsi hle,.'
. In concluding the introduction, 1 record with pleasure my indebed-
pess to Professor Erdos for the enthusiaxm shown, by him in my work
at its varions stages. It iy also a pleasure to thank Professor A, Schingel
for his interest in this work.

§ 2. The following theorem Iy implicitly contained in the work of
Halberstam and Roth [3].

Tasoram 1. Let @, & and 1, be natwral numbers saeh that u pul ]c? 31.?3‘"- 2.
Let ny, ..., 0y (I < k) be any I indegers which are diwisible by the 1i-th fower
of some prime (may be different prime for different aww_wers w"'), g'r'tfatﬂ'
than % and furiher sabigfying o < ny <l ... <%y < k. L@t. U be the
magimum of the numbers d(n;) (i = 1 to I). Then for every fiwed & >0,

PTAPEE I
: = 0| U[-— -1 16" "“"”1)

where the constant implied by O depends only e (Hereafler we anpite O, to
mean this fact.)

To prove this theorem however, we need a simple lemma.

LeMma 1. Lot (L—2)" = P (2)—21Q (2), where 1, 3> 2 5 an integer,
P(z) and @{z) are polynomials of degree.at most T,— L (with integer coeffi-
cients). Then the resultant I, of these polynomials is an integer and

A(|Ry) = 0,40 M),

Proof. Now () is a monic polynomial and B, = [T {a) where a
runs over the zeros of @{2). The defining relation between P and € shows
that Pla) = (L—a) ) Wiite § ~ 1--« so that f is o zero of Q(1—2) =0

1 N
and so B = (@))% (Actually @ (L) = (w--»‘,l,)zl-'z(‘)‘;f_«z), though we do

- : o;m
B = [T+ a2l —0) <@L d(Q W]
1
where in the exponent p rons over the ])]:il)‘[(; divizors of @ (1). Using [¢(1)]
| ; o
< 2™ this is easily seen to be 0,(4!'+94). (For, E 1 HZ: 1 ?% 1

4
< x(L4e)
logx

+ 211110g2 and we need only set @ = & ° to get the result.)
ogw _ |
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Next we state two lemmas confained in their paper {our statement
differs only slightly from theirs). :

LEMMA 2. Let y = 479 yohgre ¢ > 0 is fized, p, py primes, p > k,
Py >k and k= ky{e). Suppose thal

(2) m|p—pol -t < pht
and )
(3) [prm— pitmy! < 9P,

whers m and my are natural numbers. Then

P (pfp,) = mQ(p/py).
LEnMMA 3. The number of pairs (m, p) satisfying (2) and (3) is
O (mypit) 40 +)
Lemmas 2 and 3 follow from their argument. However in pi‘ovi]ig
Lemma 3 we have to nge Lemma 1 above,

The next lemina iy also theirs.

LeMMA 4. Lel ¢ >0 be arvbitravily small and fived, k= Li(e) and
0 <k<u Then

1
M(u, by X) = 2 1= Oﬁ(Uei““)’l (%)?11*1 (iﬂX""lv}‘l+l)),
N,

u<p gk, X<p<ay
where, in the sum prime denotes that we restrict phm (p > k) to some repre-
sentation of each of the numbers ny, ..., 0y (This convention shall be adopled

untill we complete the proof of Theorem 1.) Here w is the number already
introduced in Lemme 2, ond X = 1. o

Proof. Suppose I’ and J are sub-intervals of [#,2u] and [X, 2X]
respectively and that |[I'] < X and
1
‘JI “é ;}:(,N_r—rl Xlzl)ﬁljkl .

It follows as in their paper (if N(I',J) defined below is 0 so that
X < 20th) ' ‘

NI J) = X

woansnet, pl]me} 4

1 = O, (T4l+ahy
and again that

‘ 1
.JM-(’U-, Ib, X) == OS(U{{(H-H)?] (K;_X‘],‘\]*l_%_ 1) ((,“’Xml)lzfl-n-l ‘l‘l))-

Also M (u, k; X) = 0 it X 3 24", This proves the lemmia.
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Proof of Theorem 1. Now if k =k, (e}

[>s]

DEEED)

=

1 {91 on
_ (1-4-8)0 afy e o 2l
—-()(Ul ](A:) 1 (}; { Z 2 ))

o)

M(u, k; 2"5)

o

P
weptlnut b, p>k

This proves the theorem since ' == 40 g the Infinite swn over »
is 0(11) Thua the Lhecnem IH 1)1’med if & I((,( ) But it k v f.‘,( ) HLe UL(‘O-

Theorem 1.

Ag in our paper [6] we define P{u, k) to be the maximupm prime
factor of (w+1)...(u-+4) and Q(X, ¥) = minP(w, &) taken over all u
satigfying X €u< ¥ (we assume ¥ = X- 1 L), and Q(X) = G{X, oo).
We now proceed to prove

THEOREM 2. We have, for any posilive consiant ¢y,

| . Loo ke . o VP
*) 1@)&113{@ (hm L‘p(sm«(u(t}} & )))(MQM)M } o (1 M_) '

Tor proving this theorem ax well ay for further nse, we need a goneral
lerma. Let k2 & which may depend cn finitely many constauts.
LEmma 5. Let < n u-+k (where u and b are netural numbers),
¢ >0 o constant, f (n) (L and n natural numbers) be the number of primes
not exceeding (14 ¢)klog i’c whose 1-th power divides n. Lot fy(n) be the number
of distinet prime factors of n which do wnol ewcesd Exp]ﬂxp(loglog;k-——
— (Yogloglogk)y) (for our applications, (logloglogk)® may alse be replaced
by g{k)ogloglogh, where g(k)— co and there will be o slight change n the
inequality which follows), and f) (n) the number of remaining prime faclors
whieh do not exceed (L--e)klogh. Let & >0 be a small constant, T > By(e),
122, = 3p ' and A and j notural numbers,

2
Then if m runs over K (<
we have

1
5‘ {(fr(ne »k—e]”"“ {fy (n) }5)7 (i {n) -1 r)}

S

% (1 e-eP 4 26

kY of the wembers dn the interval mentioned
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Proof. By using Holder’s inequalities (with amn obvious netation),

T 1 1 11

3 <[ 3o < (ST (S (3 of
(S 3 af (525 (3 0 ( T

where ! * 1 =1 and %0 2 1 L Applyin
— = -——|—~ il ——+»~ — ey
a0 ; T pplying

oIl
-

o
LR

Aj g ] G
thig we see that the swmn in guestion does not cxceed

1 1 l

Anasd 72 g0+ )( v(fk(n 6))E(%E (f¥ (n)—{-a)x)?f %
i
x (3 D (D m+af

S B\La+) . L
< (K (TE)M T2 (14 26) loglog b4 ((1+ 2e) (logloglog T3 x

1
X (L4 oM 4 26)2.

Here we have used the well-known result V_ = logloge+ C+ O(l 1 )

qu 08T

and the final inequality proves the lemma.
We deduce a useful corollary from Lemma 5, which we state as
TomoreM 3. Lel Flu, k)< (1--o)klogk, ¢, a constant salisfy ng
0 <o <1 k2= ke, e), and K = [e,k]. Then there exists & natural number
1 depending only on ¢ and ¢y, and K, = k— K- 1 distinct integors 1., ..
m (%, w-+ k] with the properties

Frlng) < (loglogk)s,

oy Mg,

fi (1) < (logloglogh)*

and
o) <La (401 (G =1,2,..., k).
Here ¢y and ¢, are positive constants depending only on ¢ and ¢y
Conseguently for such n; we have firsily (supposing k = k,)

Gk, log(w4- k) o7 H1+9)
Tin.) < l(loglogh)”a by et - AN
d(ng) < L log2

and secondly, the maxzimum I-th power free foctor of n, does not exceed

- (Bxp Bxp floglog k— (logloglog k)2 + cylogloglog k}} flexios ios LA
' : ‘ < Jltoglog iy V2
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One may also note that ¢f I (n) denotes the mumber of prime factors of n
which exceed Ty then Filng)+ .. + Fp{ng) < (L e+ o(1)) k.
Proof. In Lemma B, choose § = [4,loglogloglogh] where 4, iy
a large constant and 4 = [4,7 *logloglogk] where 4, is alarge constant,
The minimwn term of the smm in Lemma 5 does not exceed
1

I 1
(T;Z) D ((1-+ 2¢)loglog kJ*7 (L +2¢) (logloglog )7} (.1 el 6@ 9402,

It follows that & times (fif (n)-e)'* doos uoL oxceed thoe above
expression and this gives our wweﬂpmn regarding fi¥ (n,). The other asser-
tions follow similarly. The last statement follows from the fact that (he
g.c.d. of any two of the numbers #; cannot excead k.

We are now in a position to prove ’I‘hooxem 2, In view of the regults
of my earlier note [6], we can assume thab w = B¥5 5 'Wo start with
the fundamental formula {Lemma L of [6])

5 .jﬂml gw s w1k e 9((Ib ml 3l flogw
o 3 S ) ) ) - e ol

o=l n<uk—%
log: % J

logw . . , .
& —1if % I8 a power of & and otherwise 7, = l- Tk
O i

logk
logu
We set [y = -
ROk b [9’ logh
We assume that P{u, k) < (L-+0)klogk where 0 <o < L.
tribution from @ =1, is easily seen to be

(6)

fo

22 2

o=Ty nEUk ™ U< nptSudk

where §, ==

] where g i3 a constant satisfying § < ¢ < 1.

The con-

logw -
o 10 l' 1 ( \ .L-
Togh CERfLTO) Y

g 71‘11'72 ek it
) kg (100 e logl
Let K, be the number of integers in {w, u-- 7] divisible by p% for sone p
in the range & < p < (1-+e)klogh. Theu if I iy the number of integers
common o these and also the | = k— K -1 integers of Thoorem 3,
we have Ky (k— K-+ 1)—T1 sk Flonce I i» Ky K4 1. Consider these
common integers J in nuinber. Then by Thﬂorelzu L (talcing 1y for 1)

el 1 1084
log (u-+T)\5 "0 e) e o a)gmg,%
10g2 ’

< k5% E g that

logp < (1—g)

I = Os(l(lnglowf)cﬂ‘|‘f’4. (l L
Let us GOn[llle to w <
I = Os(E‘{p 1001(;g]f)cé)k2g+smoslng(mm )

1
Oﬂ(EXI) 10g10g :"6)06) 29 Fa{log 2)p05-1-2 }
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if we choose 4(log2)ge; < 1. In fach we define o

by 1 4 (log2
& 5&“+"(0a )ges

= 1—3e Uhoosing ¢; thug we have

I=0,0 %,

Thig gives K, < K--T-—-1< ck(L+o(l

a=l, 18

(1)) and thus the contribution from

< (L ghex 0w logar

AL T AR '
But, since the intervals ((7;) , ——ﬂ--w) :i for n<luk™® apre disjoint,

lg—1 lia

D {ﬂ((”‘i;’“)m)-f’((%) )

a=1 w{(1+eq)klogk)~ tenlul

91
<2

If we secure that g{l-;e,)-+({l—g¢gley <1 it follows now from (5) that
with ¢, = min(e, ¢), P(fu. kY > (1) klogk, Obviously ¢, <1 and we
could take ¢ =6 = ;. Now any ¢ < (L—(2¢9)7") (4(log2)g)™" will do.
Here the R. H. 8. increases fromw — oo to 4 in [0, 1] and so we could.
o1
8log2(1+e¢y)’
2 6 b (1)2 2—t6eg
= & 1. — :
) ¥ p 7

(1)) klogk < ({14 ¢ )+ o (1)) klogu.

1
to be a tant < ———.
o be any congtant < 8log3’

1
Then g will be determined by — -~ 4.
g

146,
1

—l————:gu = 0. Now 1l-+¢ = 1+¢, can be chogen to be any constant less
7 1

than 1/g since e, iz arbitrapy. Thig proves Theoremn 2.

cloose ¢; Let us fix ¢ ==

§ 3. Next we shall apply Baker’s method (I follow my paper [4]
which is slightly more convenient for my purposes) to prove

TuporeM 4. We have for every e = 0,

limint{Q (6©¥9* ") (klogk)™) 3 2

ko0

. . . 2 1
In view of Theorem 2, we may now confine to u > lo8R (08l8k)™

For simplicity we shall suppose, in Theorem 3, that 0 < ¢ < 1. We record
a special case of Theorem 3.

LEMMA 6. Let a = etoebomlos )™t pry 1y < (14-¢) klogh for some o
satisfying O < ¢ <L and k2 k(e). Then there ewist o positive constent
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¢y (0 <1 depending only on ¢), and Ky = k—T{e, k] 1 distinel integers
Myyoeey gy W0 (%, 4 Jo] with the properties

. rlog ) 2 ' . g e
where 1y << RSN g d (o amg) o 1 (5= 1,2,

Ny = fm»ipi-(l) o A

Remark 1. Let ¢ be a small pogitive constant and K, = [e, %], Then
by the last statement of Theorem 3, the mininwum of Fy,(n) over K, of
) . L+¢ o :
the integers n,; is < (w <~ (1}], Hence there exisls A , Wy Kgb L
Gy ’ ‘ '
Lo

integers », with the further property that #,(m,) 7 -~ Define ¢ (n)

y

to be the number which results from. » after replacing in ity pritne factor
decomposition all primes exceeding & by 1. Thew by an apguient of Bredis
(private communication, letter dated 18. 11. 69), the minimum of @,(n,)
taken over any K; = [e, k] of the I(, Integers », (¢, mmall pogitive con-
a2, .
stant), does not exceed (k!) ° . So in Lemwa 6 we may replace o, by
a slightly bigger positive constant (but still < 1), and assuine m, <
where ¢ is a positive constant depending only on e

This nnfortunately does not lead to a lowering of 4-- ¢ in, Theoremn 4.

Remark 2. In view of the fact that m; are small, it follows that
the p; are all distinet and we can assume that p, = & for cach 4. Now lot

. . . a . log (2w
the integers I') be all distinet, Then I « 13“’(7:) and gince he maxi-

ogk

mmm of the jntege&‘)s 1M iy a[;t least {e,+o(1))k, u will have to excead o,
We have 1 < mypl < mapl™ < u--% and g0

3(2)

" -k 2
0 < log J%ﬁ<log»j~‘-‘, ie., 0 <|log % +1®1ogp, —1Mog p, {E
Py % Hhy o T

But it is easy to see that ku' < 67 where o = max (I}, %), By Baker's
Tesultl [1, IV] it follows that < (4 2- (log k)%™ and this conteadiots
w>e¢'. It also shows for instance that, whether (Y =~ 1) or not, a
< (log k)",
In view of Remark 2, the proof of Théoren 4 now depends on lower
m
bounds for L = llog T2 glog B
iy Do
N ) 48 ) a3k
range u > 9N, To apply the results of my paper [4], 14 8 necessary

: e m ]
to have the multiplicative independence of --> and 2y This™ is fieivial
"y Pa
130 prove. It is perhaps not wnreasonable (in view of possible improverents
if any on Theorem 4) to prove slightly more, viz, '

T
8o as o contradict f; «< -~ in  the
(22
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Levma 7. Suppose that 1 < pimy << pims < ... < pPm, < 2 -+ &, where
@y Myy ooy Wy 6, b are natural niwanbers, by, ..., p, primes, each of the m,
ave B-free where B is positive integral constant independent of w, k, a, s,
m's,p; does not divide my, k< p; <k and finally w > FOFYEE Then

M. i D, W, o )
ﬁi, 2 Ps LR P y - —— are multiplicatively independent,
Py Py My
Mg 11

1’),. 1 ’”'!'_,- -1
Proof., It suffices to confine our attention to the ratios -
) '”?ri

—
Uy i . . . i
m-_i“p_‘;i (we have written w; for pfm,). Since m, s m, trivially,

Ui Py
r—1 %, p.fn; bl'
the lemma is frue for » == 2. Assuwme now thatb n (—7‘--—‘—_-(;- =1,
=1 \ U Pig
where &, are integers none zero and (b, ..., 0. ;) = 1. .Now b, are
deteymined by (finitely many) linear homogeneous eguations {uniguely
up to a constant multiple; for, uniqueness follows by assuming the truth
of the lemma for r—1 in place of ») with bounded coefficients, and so
bounded. We have
" Uy .
blog— +b,log— 4 ... b, log —2
. Uy g e

bllog% + ... + b, log DPyy

2 r

Here the denominator has absolute value at least A ™1 (4, constant),
and so a = 0 (—71?—) which is a contradiction sinee » = k'°¥¢% and > 1.
Suppose we prove thaf, under the condition @ < {log k)*®
L > O(s)etowi™*

for every fixed e :>0. Then gince I < kfu, Theorem 4 follows. We
concentrate therefore on proving

THEOREM 5. Let o, and oy, be positive mulliplicatively independend
rational waunbers with sizes (i.e. size of a vational number a/b is defined

to be |b]+lafb| provided o and b are integers satisfying (@, b) = 1) not

exceeding S, and f, a rational nusmber whose size does not ewceed (logS, )™
= 8, say. Then far every fimed ¢ > 0,
log &)+

1Bolog oy —logas > A ()6

where A = A(e) is a constant depending only on & and not on @y, ag, o

Remark, Until wo complete the proof of Theorent 5, which shall
be along the lines of my paper [4], 'we shall ignore the other notations
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of the present paper and follow the notation of [4]. It may alko be men-
tioned that T follow my paper instead of Baker's [1, 1] since my naper
is more convenient for my purposes.

Proof. In the notation of my paper # = f == d = [. We can take
=8, 0, =2 (8 will be assumed to exceed an a.bsulum constant
withont loss of generality ; note also that all the constants ¢y, 01, ey Dy
. of my paper may be replaced. alio by bl;_,gel constants), However we mnake
a small change. We write W = [(loga,) Y™ and we see that it caneely out
ultimately. We take instead of our orviginal Oy, (g == (ff and instesd of
the estimate (4) on page 3, we write down. [p ()] < CFAF(S L. Next we
take €, = 3log s, and instead of the estimate poE g (SLYFCE (o page
4 line 9 from the bottom) we write down the estimute

< LA 1)2CH OFF (SLY* O TH0 (G, STYR WO
< 280, Oy (G O (O SLY* W,
Hence we geb
(1) |75 (#)] < B(280, Ca) (G50, SLY* W,
Next we have
(2) max [f(2) < (L 1D20P O (8L CF (0,81 W,
e < (40, G,,)L”ﬂ(OZSL)S’“W .

where C = (1

On, page i, line 9 from the top, we change the estimate to
(3) < ﬁ(L __I“ 1)2 foh Oék (SL)% Gf,hz 7Lkg (()"2 SL)?(’Q
< f(280,0y)*2(0, SL).

We can take for A some integer s Off2 82 where (, = ¢y, and it W(mld.
follow that 8] = A~ and ro we have

(4) W) = O 88— B (280, O™ (0, SLY* .

On page 6, we write down wsing (1) and (2 ) the estimate
' hiy )(i"lm""'ﬂ""lm L

1 zﬁlh) b
e (400, € () LY . W -1
(5) 0] <5 g (400020, (%mﬂ? WA

Ty ky-ley

=PI

P S
. = UB)Lhz (¢ SL)Skz_hlUﬂ}_k“’ Yy A W {1120, Ga)fifﬁ.l (Ui a, SL)M! X
X (2}02)‘,”1(#‘1 m.'.'g,[.,;[].

l W
% ﬁ(280 O )Libl(()ﬂG AS_L)W WS ;; (;) _(2;&2)1!,1(.'.11-"‘!(2‘!“1)
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We now set k, = [%,/2] and so
g Ml=Retl) g bty
< ki f24-1.

We now come to the final step, We have to see that (4) and (5 b} contradict,
i.e,

(6) Gﬂ,-Lh? Sk > (80, Gﬂ)mg( th S_L)ﬁf\‘jg"‘gihlffl_(._ ﬁ(zgo] Ug)l‘hﬂ (0 SL)M:_I_
" /()» (71._‘1‘201 (ja)th ((Te 04 SL)M:‘ (thz)hl(kl,’z-i-ﬂ) .
3log 8.

R R L T

Hel‘e 01 = (j],ﬂ == 0‘1"'3 = (J%/H = ST; (J) B ..J, (J,L =
must have
2k 2 (801, 402 (RS DY - (2240 ()2 (20, SLY (41, ulor+D)

To satisfy (6) we

i.e. we must have something like
21 2 (10000 e (20, ST (L ghiaF),

i.e. something like

ik, e G}R‘Lhrwk10;{(513)(10301}'*I»Fﬂlﬂloi;’loslﬁ'l(lﬂgﬂl) "‘1(14__/36711?:110311-2)

B F
ie,
(7) oy fty > OiaLhZ-]-I'MrIns}(SL)(Ing‘lng.’:fl)(loQ‘Ul)"1(1+ ﬁghlkl]oghz)
where ¢; = 8%
Let 4, be a positive constant (we mean independent of 8, 8,), 7 > 4!

another positive constant, 4 >0 a small constant,

Foo [(1+ 28+ 0)(B— A7) 42, Oy = 0,(log8-+log0y)

where 0, is a large constant, C), = 04, where O is a large constant,
b= [0yl L = W], & = [}p"*]. We also define somewhat (but not
quite) similar to (with a posifive congtant b) my paper [4],
F's
By =Ty By == To; by = [Oghy " W], oy = [-—1-], oes

2
k,

(8}
hy == [Crghp B, Ty = [ﬁz’;ﬁ«]; R . R

We choose (1 and ) to satisfy
(9) ey, = eth,. .1.llqg01-|~laklng(SL)(Ic:glngﬁl)(l+ﬁeh-,.k,.1ngi'p,.+1)
(r=1,%,...,7—1)
ag follows
It § is large we see that all the A, and %. are large, hr ig inereasing,
k, is decreasing and for » < r—1,

b, T, Jogh, ., < C‘l-,.h}_f‘:l B
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where d; > 0 is an arbitrarily small constant and the constant ¢, depends
only on §,, ®, 4., 4. Suppose now that

o 171'11 F ":lfbj 124

(10) <o
Then we have to choose €/ and ¢, such that
(L) Ik, = 200(Lh,, ,log €, - Flog (SI)loglog §,)  (r =1, 2,.,.,F-1).
It is plain now that it suffices to satisfy
(12) e Oy Chg Ll log O
where O/, depends only on 4, §, #. It ix plain that this inegquality can be
secured by fivst fixing ¢/ and then a lavge ¢y (provided that bA - BA, -1 ).
This gives mymediately that (10) is falge (soe the last sontence of this
sechion). If ix plain that fiz_; < (205)" K02 und wo 0 AL 012 oo
not exceed ‘

s {2016}(1rsvrsl;(ﬁw.a)hz $6- 214 (LSO (F 230
and by the definition of % this does not exceed

Oy (log 8, yh@+aratit- o B2t
and this by putting b = #— 4} and making both A, and b small, gives

- y- (log skt e
B8 = Ogee (050 ;

where !y, depends only on e.
We have still to check the inequality

(2h)2Hes

(L1102 < B,
(i(i )1»1 hl '(“(F“.l)[)j

T

This reqguires

i.e. gomething like
‘ 2428 14 {r—1)b,
l.e,
2428 <1+ ([(L4 28 ')('
We are 001111)0110(1 to choose b == B— 4,
This completes the proof of ’l‘hommn By sinee by o (Do
dicts easily the multiplicative indopendence of «, and w,.

A_{l)l.l } “ l) b
1% contra-

§ 4. Thus we have proved Theerem 4. We now resume the notation
of this paper. In view of Theorems 2 and 4 we ean now condine o the
gap

Lxp ((logk)* (logloghy ) « u < < Joxp ((log 1 9))

where ¢ >0 iy an arbitrarily small, but tixed constant, (When % does
not lie in thig gap we know that by Theorems 2 and 4, P{u, .’a) exceeds
(2—&)klogk provided e, =0 is any constant and % I«,(al) = kA In
this gap we prove Theorem 6 (helow) which is noi. quite salt’mllfmtow
The proof of Theorem 6, which i i quite simple, iy based on the following

icm
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TomyMA 8. Lel Ty 3= 2 be o natural number, X =1 and m, n netural

numbers, Then

1
“ § = (X)) = Z‘ 1= 0(X" i Xy,

Iy -
LR T
e

Prooctf. We have easily

1 X ] _ At
Aq T > , (i‘/“m) :!“"' [-ﬂqﬂ;]) 5 ‘ \ FH 1"‘ "‘1 0(1 )

Feean: 'u\) L ;.
and this gives Lomma 8,

SAX

” . . - uwk
We now talke X = o, write s = min (;’c’ﬁ, wt T )rm(l we get § = a( 7 )
[

It follows that there exists o gap of length [A], viz. @ < am’ < a-- b,

with @ in (%, 2u], where 8§, 1 = o(k), provided T, exceeds

a funetion of & wlhich tends to miml’rv with k. As & consequence we have
Lmvma 9. Let 1y owoeed o function of & whieh tends to infindly with
L
g gk b bt amdete fo s
Foout Y. Then theve ewists an @ satisfying 1 < ¢ < o4
sy <y+hksn h, we have

k and Tet h == min (&',
b < Zu such thel jor' all y safisfying v =
(aundformiy),
\"‘ 1 =o(k).
Pl nn's *'-L;-l'-“ﬁ‘,‘ﬁﬂ-:‘-if

We van now use Lemma 6 to prove Theorem 6 (below). Buppose
Ilu, k) (L+e)kloghk for some ¢ saticfying ¢ << ¢ <1, Lemma 6 now
gives ab least K, distinet integors with 19 satistying

F < on,  but w0 R 2pl0g 1y

i.e.
1o < log (2u) bt 10 . logu {loglog Z{i),l,@(’g [
h logﬁ v P ok g ) log (2klog k)

If we take Iy to be the least integer I which. oceurs, we then have

o A A2 1oe 7
H > Hxp logulogh  (loglogk)"(logk)? }
log (2k Iog Ry Tlog (27{10{_; %)

| » loglogk
= Exp {(log u) (1-”" 0 ( logh

4 1“15;"1 ~ [ix ’ }E—gﬁ_
" > mp{(logﬂ) (-1- o (105:%))}

Thus we have (by contradiction to Lemma 9)

~(logk) (loglocrir)l"z))}
logu
and
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TrmorEm 6. Let Bxp{(log k) (loglogh) ) < u
arbitrarily smaoll but fized constant and

10b log 3
100 ho

w < Bxp (log k), 20

f (log B)Joglog k)42
= g 1] -— P AL U P
b= Hxp 1(Iog1f) ( G ( T )
with o cerlain positive constant G,

Then there exists wn @ satisfying v <L @ <

in [, m4-h] we have

% 21 sueh that for every integer n

Pin, k) = (2—ey) klogh

where e, is an arbitrarily smoll positive conslant (the constant & dn b may
depend om &, but certainly doss not depend on &),

Remark. We ean make slight improvements on this theorem and
we do not wish to state them here. We ray also remark that in Thoeorem A
of the introduction we can improve the R.ELS, to 2 if we can prove some-
thing like (fox % = 100)

jalog ay —log a,| + [alog ay—log o, + |alog o,

where a;, ¢y, ..., ¢; are nlultlpllmblvalv independent positive rational
numbers with ]161 ght at moyt KIFEOY 4 ig 8 positive integer not excooding
(logk)® and ¢ is & poxitive absolute (r.OrN.aJut;,

Added in proof.

A COROLLARY TO YHEOREM 2. Let & > Ky and ty ng,
tural numbera whose largest prime faclors emoeed k. Then

. 10g (l(,| = (e '(li}glxﬂ)a(ltlﬂltiﬁlrl"1

oo the sequence of all aoee

’ k Tk .
Mp1— N < s o e (]

Togk | (logk)? L
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ACTA ARTTHMETICA
XIX (1971)

Quotientbasen und (R)-dichte Mengen

von |

Trrok SALAT (Bratislava)

In der Arbeit [31, an welche die vorliegende Arbeit anknilipft, sind

die Quotientmengen JR(A) i die Mengen 4,
Ad<={1,2,3,..} =N

so definiert: R () bedoutet die Menge aller rationalen Zahlen der Form
ejd, wo ¢, ded. Diefe Definition kann man in folgender natiirlicher Weise

verallgemeinern,

DEFINITION 1, Wenn 4, B < N, dann bedeutet R(4, B) die Menge
aller rationalen Zahlen der Form a/b, aed, beB. R{A, B) nennt man die

Quotientimenge der Mengen A, B.

Ts gilt im allgemeinen. R(A B) ;é R(B, A). Weiter offensichtlich

R4, A) = R(A).
Ts sei fiir die weiteren Bedilvinisse bemerkt,

A( n) A(m)
Symbol 8,(A4) (8;(4)) die Zaht liminf —— (lmpup —— -
00 N-+00
| , A
wo A(n) = 3 1igt. Wenn der Grenzwert lim
T ) Br00

A{n)

wir §(d) = lim ——-, Die Zahlen rSi(.AT), 3,(4) bzw. 6{4) nennt man
)

e

die unbere, obere asymptotisehe Dichte von A bzw. die asymptotische

Dichte von 4.

Bs bedeute im weiteren R* die Menge aller positiven rationalen
Zahlen, Bx ergibt sich die Frage, unter welchen Voraussetzungen iiher

die Mengen 4, B die (Hleichheit R{4, B) = B gilt.

Sarz 1. Die Mengen 4, B = N sollen wenigsiens eine der folgenden

Bedingungen erfiillen.:
) M) =1,
(b _ 8,(A) =1,

0o (B) = L3
§(B) = 1.

Dann ewistiert 2u jedem reRT eine unendliche Anzahl von FPaaren

(@, b)eA X B, s0 daf r = afb.

daf fir 4 <« N dag

-) bezeichnet,

* exigtiert, dann setzen
ki3



