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On some special quartic reciprocity laws
by
Byus Lenumr (Berkeley, Calif.)

In memory of Waeclaw Sierpiiski

In a recent paper [6] we gave an elementary proof of a theorem due
to Scholz [9], which can be stated as follows:

Let p =q =1 (mod 4) be two distinet primes which are quadratic
rvesidues of each other and let s, and e, be the fundamental units in the quad-

ratic fidds Q(Vp) and Q(]/g), then

@ (2)- ) -GL6).
q P g/ \Pls
Traditionally, the gquartic character of ¢ with respect to p is expressed
in terms of the guadratic partition p = e+ 4b2 Thus for g = 5 we have
5 i a quarlic residue of p if and only if b divides b.

In a recent paper of Muskat and Whiteman [7] it was shown, using
cyclotomy of order 20, that for p= 1(mod 20) thiz can alse be stated

-~ in terms of the partition p = ¢+ bd* as follows:

b s a quartic residue of p =1 (mod 20} if and only if 4 is even.

Uging (1) this gives at once

About the same tlme Brandler [2], usmg the theory of quartic fields,
showed that if p = - qd, then _

@) 2) = (-1¢ s g=518

and that for ¢ ==17 we have ( 7 ) 41, according ag p or 2p i8 represent—
ed by ¢ 17dz. '
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It is the purpose of this paper to show that. all these results are wpe-

cial cases of a more general theorens, which can be proved by the most
elementary means, and to obtain corresponding theorems for forms of
diseriminant — 8¢ and for indefinite forms of diseriminant ¢ and 2¢. We
also give applications of these theorems to the solvability of the Pell
equation 2—pgu? = —1 and to the divisibility of the class nombor of
n(Y —q) and h(V —2g) by 8.

Tt should be pointed out that these theorems having to do with two

primes p = ¢ =1 (mod 4) such that (g) == 1 have known connberparis
when one of the primes, say ¢ is 2 and ‘the other p = L(mod 8) so that

-

Barrucand and Cohn [1] proved that for p = ¢%--8dtem ¢ — 322

o e

where & = h(V —p) is the clags number of Q (¥ —p).

Similarly Hasse [B] proved that h(l/ﬂzp) =1 0 (mod 8) if and only

—1)* = (=¥ = (*l‘) |

¢

if (;;E) == 1. This can be restated as

2 —2 —_—
5 =) = (=1 = (._“) = { —1)uy =204,
®) : (1’)4 &

It was proved by Epstein [4] that the Pell equation 12— Dy? = —1
has no solutions for D = 2p il p = ¢2-8d* and 4 is odd. Redei [8] gave
another proof of this theorem and showed that the equation has no solu-

tion if (%) = —1. Scholz [9] showed that for D == pg with p == q =21

(mod 4) and (%) =1 the equation has no solutiony if ([q”) s e L
In the present paper we will establish the é'm.a.flogﬁ.e of Hpstoin's
theorem, namely that the Pell equation #2—pqu? == —1 hag no solutions

it = ¢+ ¢d® and d is odd when p = ¢ =1 (mod 4) and (Tf;) = 1L

We will assume throughout the paper that p and ¢ arc prir.ra.taﬁ; with
p=g=1(mod4) and (—E—) =1, that ¢, iz the fundamental unit in
.- the quadratic field Q(l/ﬁ), that all the integers in the representation of p

by binary guadratic forms are positive and prime to each. other and that »
ig odd. . - : ' '
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TuworeM 1. Let

(6) rp' = o + qd?,

Then if r = 8% and v 48 odd

[ ame

—_— ) frem
-G-EE-{,

4 §
L) v a=sess,
while if r == 2, or v =5 1 (mod 4) iz a prime, such that (i) = 1, then
. 2

I

[

.(-—1)‘1('—;") if g =8n+35.

¢g=38n+1,

Proof, Taking (6) modualo ¢ and p we got
()-8 (-
e/i\als Vgl \pl V2 )

(:-3—) - (?_) if =1 (mod 4)
P N p = .

]E[enee_ wa have by (1)

0 (-

Let o be the largest odd factor of ¢ and § of 4, then from (6)

SR RO

where the symbols are Jacobi symbols, We now congider two cases. _

Oase 1, & even. Hence er is odd and 4/2 is odd if and only if rp =5
(mod 8). If » == 5%, then by (8) we have ¢ =¢, § = d/2 il p = b (mod 8),
hence : :

ginece
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Hence by (7) we have

{ fa s) . 1 o B s
A = if  #e=8® and p =0 (mod 8).
(19 ) ( q

If y is an odd prime we can take (6) modulo r and got

(0

while (8) becomes
(_G_) (&) - (E.) (M) - (ﬁf’)
v \p g/ \r] \p)

Substituting this into (7) we obtain by (L) for » a prime

) - (LG - ()

Case 2 d odd. Then ¢ is even if r iy odd, and ¢/2 is odd if and only
it rp st ¢ (mod 8). Hence by (4) if » == % we have

B -
(5)-G5) e

while if r is an odd prime (8) gives

FIE)-G) G-

which together with (9} reduces (7) to

GG o
2= b e s anoodd prime.
P a/\q) I8 an odd prime

Now finally if r =2, then ¢ s 0dd and hence g == 1(mod 8) and (8)

N
- Bl

and hence by (7)

which makes (7)

2
a
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One can easily ascertain by going through the cases module 16 that

-

By a theorem of Barrucand and Cohn [1]

2 3
10 S —1yenn 2]
o ( Q)m( ) ( q )

Hence (
(_,) _ () it o
v q

Combining all the eases, the theorem follows.
Cororvany 1. If

(11) Cp =g

(o= G =6~ L

This is an immediate consequence of the theorem with » =r = 1.

If the class number A VHE = 2, then every prime p under congi-
deration can be represented by (11). Rocently Weinberger [10] showed
that the only such primes arve ¢ = b, 13, and 37. Therefore we can extend
(3} to read:

CororrAry 1.1

then

g =8n+1,
q = 8n-+5b.

If q = B,13, or 37 then p = ¢*-+qd® and

51 8-

Moro gencrally if BV —~¢) = 3%, where % i odd, then we can be
gure that o representation with v odd. oxists, sinee v divides k.

Covorrary 1.2, If h(l/m—:?j) o 4, then

HEAE R

Proof. First of all if b =4, thon ¢ ==1
tement follows from the theorem with v ==
uging (4) the second line follows.

Since J == 4 every p == 1 (mod 4) is represented by one of these two
forms. It has been conjectured by Gauss and others that ¢ = 17,73, 97,

if  p =0l
if  2p = *qd?.

(mod 8) and the first sta-
y = 1, Putting » =2 and
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and 193 are the only values of g for which h(l/"w—gi) = 4, but this hay not
been proved. L
COROTIARY 1.3. If (Y —q) = 8, then

-l 2

otherwise.
Proof. In this case (%—) =2 1 hy (4), 30 that r = 1. or 2 lead tio (ﬂ ) w1,

== g% 4 (Ima

The known primes for which k(lfx ¢ =8 are
g = 41, 113, 137, 813, 337, 467, BY7.
It ig again not known whether the list is complete or not. In order to find

. . &g .
a value of r, which gives (»‘*1 = ~1, we can choose either a square
»

: 7
of a non-residue of g, like 9 for ¢ = 41, or a prime (-;l-) = 1 guch that

(%) = —1, like r =5 for g == 41 = 6215, sinee by Corollary 1 it is
a suitable multiplier. In this case we cannot be sure that an odd power
of p will be represented when p itself i¥ not, since % has no odd divisors.
More generally, using (4) we obtain with » = 2

CororLary 1.4, If g = 8n--1 and if there exisls o representation
2p = ®*+qd® then :

(f'i) = (— LMV =ja,
P

Similatly using the theorem of Scholz [9] that the Pell equation
#—pgu? = —1 has no solutiony if (%’—) = ~1, we have

COROLLARY 1.5, If p" = c®4-4d?, where ¢ =20 (mod 8) and 4 is
odd, then the Pell equation 1*—pqu® = —1 has no solutions in integers,
For ¢ =5,
and Corollary 1.5 is applicable with » = 1. Tt ean be usod to explain
the unsolvability of equations like w2 —221y% = 1 cited by Harvey
Cobn [3] as illustrating the “unpredictability of algebraic number theory.”
For in thig cagse 221 = 13-17 and 17 = 22--13-12, Tipstein's [4] theorem
mentloned in the introduction similarly disposes of Cohn’s example with
= 2p = 34 gince 17 = 32-8.12 The least value of D not eovered
by known theorems is D =506 = 5-101 gince 101 = 92+ 5-23, bub
the equation -is not golvable. For D = 2p the corresponding example

18D = 514 = 2-257. Here d is obviously aven, but there iz no solution. -

13, and 37 the representation p == ¢*<-gd* always exisls '
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In case ¢ = 8n4-1 we have the following:
COROLLARY 1.6. If rp” —= c*+ qd?, where ¢ = 1 (mod 8) and if v = g?
8
with (“é“) = —1, or if r=1(mod 4) is « prime such that (E—) = —1
q

then %~ pgu® = —1 has no integer solution, if d is odd.
By Corollary 1.2 there will be no solution with ¢ = 17, 73, 97, and

193 for all p =1 {mod 4), for which 2p = ¢+ ¢d?, such as p = 89. Thus
2-89 =178 == 5*4-17-3% henee 12 —1513%4* = -1 hag no solubion.
On the other hand if #* —pru? = —1 is solvable so that N/ Egp) = —1

then if ¥ == 2 ox if » == 1 (mnod 4) is a prime

) - ()
a/\q q
This regult has been communicated to the anthor ini a letter by Pierre

Barrucand and can be made to follow from equation (30) of [8]. Applying
it to Theorem 1 we obtain

CorROTLARY 1.7. If r = 2 or if v =1 (mod4) is a prime such that
(%) =1, N{sp) = —1 wn,d’rjp” = ¢®+ qd? then
Epp 1 if.
g ) =i (1) if
TeporeM 2. Let :
(12) P = 4 8qd;

" (z1=Efe) - ()

Proof. First of all ¢; must be odd and p =1 (mod 8). Then

(13) (2) = (=00 (aome e,

g =8n+1,
g == 8n+b.

1

d
If § i the laxgest odd factor of d, then (5) = 1 and hence

Bs = -6
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so that by (10) and (13}

3)-(E-BLE) -f)
P gla\P /s \Pla\Cs »
A more general theorem. for multiplies of p, paralleling Theorem 1,

can also be derived along the same lines, Since there is always « ropresen-

tation (12) for all primes p under consideration in cage 1/ —2q) = 2,
i.e. only for ¢ =5 and ¢ = 29, as proved by Weinberger [10], wo can
state

CoroLLARY 2.1. Tet p = 8n-1 be o prime and let g == B or 29, then

= A-8gd:  and (fi@-)w -1 dl(fia),
P =¢84 P (—1) 7

‘Combining this with Corollary 1.1 we obtain.
COROLLARY 2.2, Let p = 40n+1,9 be a prime, then

P = Bt o= & 40d]

B\ 1y = (— 1) 22)
[) =y = o ()

Henee we get an unexpected dividend in the form
) d-d
2} = (—p¥a
)

to add to the criteria obtained by Barrucand and Cobn [1].
Taeoney 3. Lel p =¢ =1 (mod 8) and let

and

4y - P = 8k gl

Then
-l o
P giapls AP\ ¢
even,.hence

(15) : (dﬁ_) — ( . 1)(13(1m1)18( . 1)02 )

%

Taking (14} modulo p and ¢ we get

G-l -G
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If y is the larg:ést o0dd tactor of Cq, then (_p_) = (2) and
yiooo\y

-6 -G
)G~k

by (10) and (15).

Using (5) and moting that if l/ 2q) = 4, then p itgelf must be
represented by cither (12) or. (14), we can state

CoroLrarY 3.1. Let p = 1 (mod 8) and let ¢ =17, 41, or any other
prime ¢ (if it ewists) with h(V —2g) = 4, then

o G
( ) 1“(3)4(2) if  p—8ditqd.

q
D/e\ by

Hence

if p= c?+8gd§,

“We next turn to indefinite forms and obtain analogous theorems.
THEOREM 4. Lel

(16) P =et—dgqf

then
3)- =
g Ve )
Proof. Taking (16) modulo p and ¢ we have
)= G
q arnp

(mod 8) if f is even. Hence

I chl e o O

52

For real fields #{Vq) = 1 is a common oceurrence in which case P
itselt has the representation (16). Since A is odd the representation (16)

always exists with » some divisor of h(Vg).

Since ¢ ig odd, p =



376 Emma Lehmer

Combining Corollary 1 with Theorem 4, we have
COROLLARY 4.1. Let p = c®+qd? = 62__4qu’ then

3)-6

THROREM 5. Leb
(18) P = & —8gfi

-6

Proof. Ag before ¢, 13 odd and p = 1 (mod 8) and we geb
3= GLEIE)
q Ph\ P g
F)=600) G-

= — — ey
p 61 q p
- GLE)
b Dha\ & ‘

Combining this with (5) we have
COROLLARY B.1. If 9" = &l —8¢f} then

N

g = &n--1,

l(““] 7f g = Bn-+b

while

and. hence

In particalar for g = 17 and 41, when h(V —2g) = 4 we have

()=

Combining Theorems 4 and B we get one more expression for the:

quartie character of 2, namely
COROLLARY B.2. If p* = o3 —dgf* = & —8qf then

.- 6

Hence

23—

For example for ¢ =5 and P =4l =192—20-42 = 92— 40 1%

icm
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