Замечание. Пусть p>n — простое. Выбирая в теореме З k=n и $q_{\nu}=p^{\nu}$ ($\nu=1,2,\ldots,n$) для числа решений системы

$$\begin{cases} x_1 + \ldots + x_n \equiv \lambda_1 \pmod{p} \\ \vdots \\ x_1^n + \ldots + x_n^n \equiv \lambda_n \pmod{p^n} \end{cases}; \quad (x_1, \ldots, x_n)_n \pmod{p^n}$$

получим оценки из работ [3] и [1]:

$$T_n = p^{n(n-1)/2} T_n(\lambda_1, \ldots, \lambda_n; p) \leqslant n! p^{n(n-1)/2}.$$

Аналогично этому, (ср. [2]) выбирая k = n и

при $1 \leqslant r \leqslant n$ для числа решений системы

$$x_1 + \ldots + x_n \equiv \lambda_1 \pmod{p}$$
 $x_1^r + \ldots + x_n^r \equiv \lambda_r \pmod{p^r}$
 $x_1^n + \ldots + x_n^n \equiv \lambda_n \pmod{p^r}$
 $x_1^n + \ldots + x_n^n \equiv \lambda_n \pmod{p^r}$

получим

$$T_n^{(r)} = p^{r(r-1)/2} T_n(\lambda_1, \ldots, \lambda_n; p) \leqslant n! p^{r(r-1)/2}$$

Цитированная литература

- [1] А. А. Карацуба, Н. М. Коробов, О теореме о среднем, ДАН СССР 149, 2 (1963), стр. 245-248.
- [2] А. А. Карацуба, О системах сравнений, Изв. АН СССР, сер. матем., 29 (1965), стр. 959-968.
- [3] Ю. В. Линник, О суммах Weyl'я, ДАН СССР 34, 7 (1942), стр. 201-203.

математический институт им в. а. стеклова ан ссср

ACTA ARITHMETICA XXI (1972)

On some special quartic reciprocity laws

by

EMMA LEHMER (Berkeley, Calif.)

In memory of Waclaw Sierpiński

In a recent paper [6] we gave an elementary proof of a theorem due to Scholz [9], which can be stated as follows:

Let $p \equiv q \equiv 1 \pmod{4}$ be two distinct primes which are quadratic residues of each other and let ε_p and ε_q be the fundamental units in the quadratic fields $Q(\sqrt{p})$ and $Q(\sqrt{q})$, then

Traditionally, the quartic character of q with respect to p is expressed in terms of the quadratic partition $p = a^2 + 4b^2$. Thus for q = 5 we have

5 is a quartic residue of p if and only if 5 divides b.

In a recent paper of Muskat and Whiteman [7] it was shown, using cyclotomy of order 20, that for $p \equiv 1 \pmod{20}$ this can also be stated in terms of the partition $p = c^2 + 5d^2$ as follows:

5 is a quartic residue of $p \equiv 1 \pmod{20}$ if and only if d is even.

Using (1) this gives at once

(2)
$$\left(\frac{\varepsilon_5}{p}\right) = \left(\frac{(1+\sqrt{5})/2}{p}\right) = (-1)^d.$$

About the same time Brandler [2], using the theory of quartic fields, showed that if $p = c^2 + qd^2$, then

(3)
$$\left(\frac{\varepsilon_q}{p}\right) = (-1)^d \quad \text{for} \quad q = 5, 13$$

and that for q=17 we have $\left(\frac{\varepsilon_{17}}{p}\right)=\pm 1$, according as p or 2p is represented by e^2+17d^2 .

It is the purpose of this paper to show that all these results are special cases of a more general theorem, which can be proved by the most elementary means, and to obtain corresponding theorems for forms of discriminant -8q and for indefinite forms of discriminant q and 2q. We also give applications of these theorems to the solvability of the Pell equation $t^2 - pqu^2 = -1$ and to the divisibility of the class number of $h(\sqrt{-q})$ and $h(\sqrt{-2q})$ by 8.

It should be pointed out that these theorems having to do with two primes $p \equiv q \equiv 1 \pmod 4$ such that $\left(\frac{p}{q}\right) = 1$ have known counterparts when one of the primes, say q is 2 and the other $p \equiv 1 \pmod 8$ so that $\left(\frac{2}{p}\right) = 1$.

Barrucand and Cohn [1] proved that for $p = c^2 + 8d^2 = c^2 - 32f^2$

(4)
$$\left(\frac{\varepsilon_2}{p}\right) = \left(\frac{1+\sqrt{2}}{p}\right) = (-1)^d = (-1)^{h/4} = \left(\frac{-1}{e}\right)^{h/4}$$

where $h = h(\sqrt{-p})$ is the class number of $Q(\sqrt{-p})$.

Similarly Hasse [5] proved that $h(\sqrt{-2p}) \equiv 0 \pmod{8}$ if and only if $\left(\frac{-2}{e}\right) = 1$. This can be restated as

(5)
$$\left(\frac{2}{p}\right)_4 = (-1)^{h/4} = \left(\frac{-2}{e}\right) = (-1)^{h(\sqrt{-2p})/4}.$$

It was proved by Epstein [4] that the Pell equation $t^2 - Du^2 = -1$ has no solutions for D = 2p if $p = c^2 + 8d^2$ and d is odd. Redei [8] gave another proof of this theorem and showed that the equation has no solution if $\left(\frac{\varepsilon_2}{p}\right) = -1$. Scholz [9] showed that for D = pq with p = q = 1 (mod 4) and $\left(\frac{p}{q}\right) = 1$ the equation has no solutions if $\left(\frac{\varepsilon_p}{q}\right) = -1$.

In the present paper we will establish the analogue of Epstein's theorem, namely that the Pell equation $t^2 - pqu^2 = -1$ has no solutions if $p = c^2 + qd^2$ and d is odd when $p = q = 1 \pmod{4}$ and $\left(\frac{p}{q}\right) = 1$.

We will assume throughout the paper that p and q are primes with $p \equiv q \equiv 1 \pmod{4}$ and $\left(\frac{p}{q}\right) = 1$, that ε_n is the fundamental unit in the quadratic field $Q(\sqrt{n})$, that all the integers in the representation of p by binary quadratic forms are positive and prime to each other and that r is odd.

 $rp^{\nu}=c^2+qd^2.$

Then if $r = s^2$ and r is odd

THEOREM 1. Let

$$\left(\frac{s_p}{q}\right) = \left(\frac{s_q}{p}\right) = \left(\frac{p}{q}\right)_4 \left(\frac{q}{p}\right)_4 = \begin{cases} \left(\frac{s}{q}\right) & \text{if } q = 8n+1, \\ (-1)^d \left(\frac{s}{q}\right) & \text{if } q = 8n+5, \end{cases}$$

while if r = 2, or $r = 1 \pmod{4}$ is a prime, such that $\left(\frac{r}{q}\right) = 1$, then

$$\left(rac{arepsilon_p}{q}
ight) = \left(rac{arepsilon_q}{p}
ight) = \left(rac{p}{q}
ight)_4 \left(rac{q}{p}
ight)_4 = egin{cases} \left(rac{arepsilon_r}{q}
ight) & if & q=8n+1, \ (-1)^d \left(rac{arepsilon_r}{q}
ight) & if & q=8n+5. \end{cases}$$

Proof. Taking (6) modulo q and p we get

$$\left(\frac{r}{q}\right)_{A}\left(\frac{p}{q}\right)_{A} = \left(\frac{c}{q}\right), \quad \left(\frac{q}{p}\right)_{A} = \left(\frac{2cd}{p}\right),$$

 $_{
m since}$

$$\left(\frac{-1}{p}\right)_A = \left(\frac{2}{p}\right)$$
 if $p \equiv 1 \pmod{4}$.

Hence we have by (1)

Let γ be the largest odd factor of e and δ of d, then from (6)

(8)
$$\left(\frac{r}{\gamma}\right)\left(\frac{p}{\gamma}\right) = \left(\frac{q}{\gamma}\right), \quad \left(\frac{r}{\delta}\right)\left(\frac{p}{\delta}\right) = 1,$$

where the symbols are Jacobi symbols. We now consider two cases.

Case 1, d even. Hence cr is odd and d/2 is odd if and only if $rp \equiv 5 \pmod{8}$. If $r = s^2$, then by (8) we have $\gamma = c$, $\delta = d/2$ if $p \equiv 5 \pmod{8}$, hence

$$\left(\frac{c}{p}\right) = \left(\frac{c}{q}\right)$$
 and $\left(\frac{d}{p}\right) = \left(\frac{2}{p}\right)$.

Hence by (7) we have

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{s}{q}\right)$$
 if $r = s^2$ and $p \equiv 5 \pmod{8}$.

If r is an odd prime we can take (6) modulo r and get

(9)
$$\left(\frac{c}{r}\right) = \left(\frac{q}{r}\right)_4 \left(\frac{2d}{r}\right)$$

while (8) becomes

$$\left(\frac{c}{r}\right)\left(\frac{c}{p}\right) = \left(\frac{c}{q}\right), \quad \left(\frac{2d}{r}\right) = \left(\frac{2d}{p}\right).$$

Substituting this into (7) we obtain by (1) for r a prime

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{r}{q}\right)_4 \left(\frac{q}{r}\right)_4 = \left(\frac{\varepsilon_r}{q}\right).$$

Case 2, d odd. Then c is even if r is odd, and c/2 is odd if and only if $rp \not\equiv q \pmod{8}$. Hence by (4) if $r = s^2$ we have

$$\left(\frac{2c}{p}\right)\left(\frac{2c}{q}\right) = 1, \quad \left(\frac{d}{p}\right) = 1$$

and hence by (7)

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{2s}{q}\right)$$
 if $r = s^2$

while if r is an odd prime (8) gives

$$\left(\frac{2c}{r}\right)\left(\frac{2c}{p}\right) = \left(\frac{2c}{q}\right), \quad \left(\frac{d}{r}\right) = \left(\frac{d}{p}\right)$$

which together with (9) reduces (7) to

$$\left(rac{arepsilon_q}{p}
ight) = \left(rac{2}{q}
ight) \left(rac{arepsilon_r}{q}
ight) \quad ext{if} \quad r ext{ is an odd prime.}$$

Now finally if r=2, then e is odd and hence $q=1 \pmod 8$ and (8) becomes

$$\left(\frac{c}{p}\right)\left(\frac{c}{q}\right) = \left(\frac{2}{c}\right), \quad \left(\frac{d}{p}\right) = \left(\frac{2}{d}\right)$$

which makes (7)

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{2}{q}\right)_4 \left(\frac{2}{c}\right) \left(\frac{2}{d}\right) \left(\frac{2}{p}\right).$$

One can easily ascertain by going through the cases modulo 16 that

$$\left(\frac{2}{c}\right)\left(\frac{2}{d}\right) = (-1)^{(q-1)/8} \left(\frac{2}{p}\right).$$

By a theorem of Barrucand and Cohn [1]

(10)
$$\left(\frac{2}{q}\right)_{A} (-1)^{(q-1)/8} = \left(\frac{s_2}{q}\right).$$

Hence

$$\left(rac{arepsilon_q}{p}
ight) = \left(rac{arepsilon_2}{q}
ight) \quad ext{if} \quad r=2\,.$$

Combining all the cases, the theorem follows.

COROLLARY 1. If

$$(11) p = c^2 + qd^2$$

then

$$\left(rac{arepsilon_p}{q}
ight) = \left(rac{arepsilon_q}{p}
ight) = \left(rac{p}{q}
ight)_4 \left(rac{q}{p}
ight)_4 = \left\{egin{matrix} 1 & if & q=8n+1, \ (-1)^d & if & q=8n+5. \end{matrix}
ight.$$

This is an immediate consequence of the theorem with v=r=1. If the class number $h(\sqrt{-q})=2$, then every prime p under consideration can be represented by (11). Recently Weinberger [10] showed that the only such primes are q=5, 13, and 37. Therefore we can extend (3) to read:

COROLLARY 1.1. If q = 5, 13, or 37 then $p = e^2 + qd^2$ and

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{p}{q}\right)_4 \left(\frac{q}{p}\right)_4 = (-1)^d.$$

More generally if $h(\sqrt{-q}) = 2k$, where k is odd, then we can be sure that a representation with ν odd exists, since ν divides k.

Corollary 1.2. If $h(\sqrt{-q}) = 4$, then

$$\left(rac{arepsilon_q}{p}
ight) = \left(rac{p}{q}
ight)_4 \left(rac{q}{p}
ight)_4 = \left\{egin{array}{ll} 1 & if & p = c^2 + qd^2, \ -1 & if & 2p = c^2 + qd^2. \end{array}
ight.$$

Proof. First of all if h=4, then $q\equiv 1\ (\text{mod }8)$ and the first statement follows from the theorem with $\nu=r=1$. Putting r=2 and using (4) the second line follows.

Since h=4 every $p=1 \pmod 4$ is represented by one of these two forms. It has been conjectured by Gauss and others that q=17,73,97,

and 193 are the only values of q for which $h(\sqrt{-q}) = 4$, but this has not been proved.

COROLLARY 1.3. If $h(\sqrt{-q}) = 8$, then

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{p}{q}\right)_4 \left(\frac{q}{p}\right)_4 = \begin{cases} 1 & \text{if } p \text{ or } 2p = e^2 + qd^2, \\ -1 & \text{otherwise.} \end{cases}$$

Proof. In this case $\left(\frac{\varepsilon_2}{q}\right) = 1$ by (4), so that r = 1 or 2 lead to $\left(\frac{\varepsilon_q}{p}\right) = 1$. The known primes for which $h(\sqrt{-q}) = 8$ are

$$q = 41, 113, 137, 313, 337, 457, 577.$$

It is again not known whether the list is complete or not. In order to find a value of r, which gives $\left(\frac{\varepsilon_q}{p}\right) = -1$, we can choose either a square of a non-residue of q, like 9 for q=41, or a prime $\left(\frac{r}{q}\right)=1$ such that $\left(\frac{\varepsilon_r}{q}\right)=-1$, like r=5 for $q=41=6^2+5$, since by Corollary 1 it is a suitable multiplier. In this case we cannot be sure that an odd power of p will be represented when p itself is not, since h has no odd divisors. More generally, using (4) we obtain with r=2

Corollary 1.4. If q=8n+1 and if there exists a representation $2p=c^2+q\tilde{d}^2$ then

$$\left(\frac{\varepsilon_q}{p}\right) = (-1)^{h(\sqrt{-q})/4}.$$

Similarly using the theorem of Scholz [9] that the Pell equation $t^2 - pqu^2 = -1$ has no solutions if $\left(\frac{\varepsilon_p}{q}\right) = -1$, we have

COROLLARY 1.5. If $p' = c^2 + qd^2$, where $q \equiv 5 \pmod{8}$ and d is odd, then the Pell equation $t^2 - pqu^2 = -1$ has no solutions in integers.

For q=5, 13, and 37 the representation $p=c^2+qd^2$ always exists and Corollary 1.5 is applicable with v=1. It can be used to explain the unsolvability of equations like $x^2-221y^2=-1$ cited by Harvey Cohn [3] as illustrating the "unpredictability of algebraic number theory." For in this case $221=13\cdot17$ and $17=2^2+13\cdot1^2$. Epstein's [4] theorem mentioned in the introduction similarly disposes of Cohn's example with D=2p=34 since $17=3^2+8\cdot1^2$. The least value of D not covered by known theorems is $D=505=5\cdot101$ since $101=9^2+5\cdot2^2$, but the equation is not solvable. For D=2p the corresponding example is $D=514=2\cdot257$. Here d is obviously even, but there is no solution.

In case q = 8n + 1 we have the following:

COROLLARY 1.6. If $rp^r = c^2 + qd^2$, where $q \equiv 1 \pmod 8$ and if $r = s^2$ with $\left(\frac{s}{q}\right) = -1$, or if $r \equiv 1 \pmod 4$ is a prime such that $\left(\frac{s_r}{q}\right) = -1$ then $t^2 - pqu^2 = -1$ has no integer solution, if d is odd.

By Corollary 1.2 there will be no solution with q=17,73,97, and 193 for all $p\equiv 1\pmod 4$, for which $2p=c^2+qd^2$, such as p=89. Thus $2\cdot 89=178=5^2+17\cdot 3^2$, hence $t^2-1513u^2=-1$ has no solution.

On the other hand if $t^2-pru^2=-1$ is solvable so that $N(\varepsilon_{pr})=-1$ then if r=2 or if $r\equiv 1\ ({\rm mod}\ 4)$ is a prime

$$\left(\frac{\varepsilon_p}{q}\right)\left(\frac{\varepsilon_r}{q}\right) = \left(\frac{\varepsilon_{pr}}{q}\right).$$

This result has been communicated to the author in a letter by Pierre Barrucand and can be made to follow from equation (30) of [8]. Applying it to Theorem 1 we obtain

COROLLARY 1.7. If r=2 or if $r\equiv 1\ ({
m mod}\ 4)$ is a prime such that $\left(\frac{r}{q}\right)=1,\ N(\varepsilon_{pr})=-1$ and $rp^{\nu}=c^2+qd^2$ then

$$\left(\frac{\varepsilon_{pr}}{q}\right) = \begin{cases} 1 & if \quad q = 8n+1, \\ (-1)^d & if \quad q = 8n+5. \end{cases}$$

THEOREM 2. Let

(12)
$$p' = c_1^2 + 8qd_1^2$$

then

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{p}{q}\right)_4 \left(\frac{q}{p}\right)_4 = (-1)^{d_1} \left(\frac{\varepsilon_2}{p}\right).$$

Proof. First of all c_1 must be odd and $p \equiv 1 \pmod{8}$. Then

(13)
$$\left(\frac{2}{c_1}\right) = (-1)^{(c^2-1)/8} = (-1)^{(p-1)/8}(-1)^{d_1}.$$

Taking (12) modulo q and p gives

$$\left(\frac{p}{q}\right)_4 = \left(\frac{c_1}{q}\right), \quad \left(\frac{q}{p}\right)_4 = \left(\frac{2}{p}\right)_4 \left(\frac{c_1 d_1}{p}\right).$$

If δ is the largest odd factor of d, then $\left(\frac{\delta}{p}\right) = 1$ and hence

$$\left(\frac{d_1}{p}\right) = 1$$
 and $\left(\frac{c_1}{p}\right) = \left(\frac{2}{c_1}\right)\left(\frac{c_1}{q}\right)$

so that by (10) and (13)

$$\left(\frac{e_q}{p}\right) = \left(\frac{p}{q}\right)_4 \left(\frac{q}{p}\right)_4 = \left(\frac{2}{p}\right)_4 \left(\frac{2}{e_1}\right) = (-1)^{d_1} \left(\frac{e_2}{p}\right).$$

A more general theorem for multiplies of p, paralleling Theorem 1, can also be derived along the same lines. Since there is always a representation (12) for all primes p under consideration in case $h(\sqrt{-2q}) = 2$, i.e. only for q = 5 and q = 29, as proved by Weinberger [10], we can state

COROLLARY 2.1. Let p = 8n+1 be a prime and let q = 5 or 29, then

$$p = c_1^2 + 8qd_1^2$$
 and $\left(\frac{\varepsilon_q}{p}\right) = (-1)^{d_1} \left(\frac{\varepsilon_2}{p}\right)$.

Combining this with Corollary 1.1 we obtain

COROLLARY 2.2. Let p = 40n + 1, 9 be a prime, then

$$p = c^2 + 5d^2 = c_1^2 + 40d_1^2$$

and

$$\left(\frac{\varepsilon_5}{p}\right) = (-1)^d = (-1)^{d_1} \left(\frac{\varepsilon_2}{p}\right).$$

Hence we get an unexpected dividend in the form

$$\left(\frac{\varepsilon_2}{p}\right) = (-1)^{d+d_1}$$

to add to the criteria obtained by Barrucand and Cohn [1].

Theorem 3. Let $p \equiv q \equiv 1 \pmod{8}$ and let

$$(14) p^{\nu} = 8c_2^2 + qd_2^2.$$

Then

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{p}{q}\right)_4 \left(\frac{q}{p}\right)_4 = \left(\frac{\varepsilon_2}{p}\right) \left(\frac{\varepsilon_2}{q}\right) (-1)^{\mathfrak{o}_2}.$$

Proof. Since d_2 must be odd, $p = qd_2^2 \pmod{16}$ if and only if c_2 is even, hence

(15)
$$\left(\frac{2}{d_2}\right) = (-1)^{(pq-1)/8} (-1)^{c_2}.$$

Taking (14) modulo p and q we get

$$\left(\frac{p}{q}\right)_4 = \left(\frac{2}{q}\right)_4 \left(\frac{c_2}{p}\right), \quad \left(\frac{q}{p}\right)_4 = \left(\frac{2}{p}\right)_4 \left(\frac{c_2 d_2}{p}\right).$$

If γ is the largest odd factor of c_2 , then $\left(\frac{p}{\gamma}\right) = \left(\frac{q}{\gamma}\right)$ and

$$\left(\frac{c_2}{p}\right) = \left(\frac{c_2}{q}\right), \quad \left(\frac{d_2}{p}\right) = \left(\frac{2}{d_2}\right).$$

Hence

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{2}{p}\right)_4 \left(\frac{2}{q}\right)_4 \left(\frac{2}{d_2}\right) = \left(\frac{\varepsilon_2}{p}\right) \left(\frac{\varepsilon_2}{q}\right) (-1)^{c_2}$$

by (10) and (15).

Using (5) and noting that if $h(\sqrt{-2q}) = 4$, then p itself must be represented by either (12) or (14), we can state

COROLLARY 3.1. Let $p \equiv 1 \pmod{8}$ and let q = 17, 41, or any other prime q (if it exists) with $h(\sqrt{-2q}) = 4$, then

$$\left(rac{e_p}{q}
ight) = egin{dcases} \left(rac{2}{p}
ight)_4\!\!\left(rac{2}{c_1}
ight) & if & p = c_1^2 \!+\! 8qd_1^2, \ -\left(rac{2}{p}
ight)_4\!\!\left(rac{2}{d_2}
ight) & if & p = 8c_2^2 \!+\! qd_2^2. \end{cases}$$

We next turn to indefinite forms and obtain analogous theorems.

Theorem 4. Let

$$(16) p'' = e^2 - 4qf^2$$

then

$$\left(\frac{\varepsilon_p}{q}\right) = \left(\frac{-1}{e}\right)$$
.

Proof. Taking (16) modulo p and q we have

$$\left(\frac{e_p}{q}\right) = \left(\frac{e}{q}\right)\left(\frac{2ef}{p}\right).$$

Since e is odd, $p \equiv 1 \pmod{8}$ if f is even. Hence

$$\left(\frac{p}{e}\right) = \left(\frac{-1}{e}\right)\left(\frac{q}{e}\right), \quad \left(\frac{f}{p}\right) = 1$$

and therefore

For real fields $h(\sqrt{q}) = 1$ is a common occurrence in which case p itself has the representation (16). Since h is odd the representation (16) always exists with r some divisor of $h(\sqrt{q})$.

Combining Corollary 1 with Theorem 4, we have Corollary 4.1. Let $p = e^2 + qd^2 = e^2 - 4qf^2$, then

$$\left(rac{arepsilon_q}{p}
ight) = \left(rac{-1}{e}
ight) = \left\{egin{array}{lll} 1 & if & q=8n+1, \ (-1)^d & if & q=8n+5. \end{array}
ight.$$

THEOREM 5. Let

$$p^{\nu} = e_1^2 - 8qf_1^2$$

then

$$\left(\frac{e_q}{p}\right) = \left(\frac{2}{p}\right)_4 \left(\frac{-2}{e_1}\right).$$

Proof. As before e_1 is odd and $p \equiv 1 \pmod{8}$ and we get

$$\left(\frac{\varepsilon_p}{q}\right) = \left(\frac{2}{p}\right)_4 \left(\frac{e_1 f_1}{p}\right) \left(\frac{e_1}{q}\right)$$

while

$$\left(\frac{e_1}{p}\right) = \left(\frac{-2}{e_1}\right)\left(\frac{e_1}{q}\right), \quad \left(\frac{f_1}{p}\right) = 1$$

and hence

$$\left(\frac{s_q}{p}\right) = \left(\frac{2}{p}\right)_4 \left(\frac{-2}{e_1}\right).$$

Combining this with (5) we have

COROLLARY 5.1. If $p^{r} = e_{1}^{2} - 8qf_{1}^{2}$ then

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{-2}{e_1}\right) (-1)^{h(\sqrt{-2q})/4}.$$

In particular for q = 17 and 41, when $h(\sqrt{-2q}) = 4$ we have

$$\left(\frac{\varepsilon_q}{p}\right) = -\left(\frac{-2}{e_1}\right).$$

Combining Theorems 4 and 5 we get one more expression for the quartic character of 2, namely

Corollary 5.2. If $p^{\nu} = e^2 - 4qf^2 = e_1^2 - 8qf_1^2$ then

$$\left(\frac{2}{p}\right)_4 = \left(\frac{2}{ee_1}\right).$$

For example for q=5 and $p=41=19^2-20\cdot 4^2=9^2-40\cdot 1^2$. Hence

$$\left(\frac{2}{p}\right)_4 = \left(\frac{2}{19}\right) = -1.$$

References

- [1] P. Barrucand and H. Cohn, Note on primes of the type $x^2 + 32y^2$, J. Reine Angew. Math. 238 (1969), pp. 67-70.
- [2] Jacob Brandler, Residuacity properties of real quadratic units, Thesis, University of Arizona, Tucson, Arizona, 1970.
- [3] Harvey Cohn, A Second Course in Number Theory, New York 1962, p. 187.
- [4] P. Epstein, Zur Auflösbarkeit der Gleichung $x^2 Dy^2 = -1$, J. Reine Angew. Math. 171 (1934), pp. 243-252.
- [5] H. Hasse, Über die Klassensahl des Korpers $P(\sqrt{-2p})$ mit einer Primzahl $p \neq 2$, Jurnal Number Theory, 1 (1969), pp. 231-234.
- [6] Emma Lehmer, On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), pp. 42-48.
- [7] J. Muskat and A. L. Whiteman, The cyclotomic numbers of order twenty, Acta Arith. 17 (1970), pp. 185-216.
- [8] L. Redei, Über die Pellsche Gleichung $t^2 du^2 = -1$, J. Reine Angew. Math. 173 (1935), pp. 193-221.
- [9] A. Scholz, Über die Lösbarkeit der Gleichung $t^2 Du^2 = -4$, Math. Zeitschr. 39 (1934), p. 97.
- [10] P. Weinberger, Proof of a conjecture of Gauss on class number two, Thesis, University of California, Berkeley, 1969.

Received on 17. 8. 1971 (207)