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Brun’s method and the Fundamental Lemma
by
H. HALBERIEAM (Nottinghmn) and H.-E. Riopert (Ulm)

Dedicated to C. L. Siegel

1. Introduction. Let. ./ be a finite sequence of (nmot necessarily
distinet nor necessarily positive) integers, and let 2 be a set of primes.
“Let # denote the complement of £ with respect to the set &, of all primes,
and let (d, Py =1 signify that 4 has no prime factors in #. For any real
number 2z = 2 we shall write

=[]»-

Dty
peF

To ‘sift’ ¢ by the primes of & less than ¢ is to eliminate from & all those
elements a of o that are divisible by a prime p < &, pe#, and many
arithiietical questions depend on being able to count the number of
elemoents of & that survive this ‘sieve’ process. Accordingly, we shall
coneern ourselves with the ‘sifting” function
B(ot; P,2): =|[ar ae o, (a, P(2)) =1},

where {...}| denotes the cardinality of the set {...}. There are no (signi-
ficant) estimates of 8(w; 2, #) that are valid for all sequences & and all
sifting sets @, and we shall now. introduce some bagic restrictions on the
nature of o and #. To this end we postulate the existence of a real aumber
A > 1 and a non-negative multiplicative arithmetic function w(d) on the
sequence of squarefree integers d such that

o(p)=0 if pe,

and .
' w(p) +
for some constant A4; > 1; ' C
. z . '
(@0 2 P oo < Sulog—+4y, 2<w<e,

WEP<E



114 H. Halberstam and H.-E. Richexrt

for some pair of constants » > 0 and A2 1; and such thaﬂ. Lhe rem&mdus

Ry given by
B = 2 1— e (d) ¥
“ desd d
. a=0 mod
satisfy
®) o RI<Ew(d . i (@) %0, (d,P) =1

for gome Teal number K > 1 (3). Thus the remainders B, with 4 squavefree
and satisfying (d,#) = 1 are, in a certain sense, small; in particular,

IRy = || o~ X|< K,

so that X is some convenient approximation to the cardinaliby of ».
All our main results should he viewed against the background of fthe
parameter X (and also of z) tending to infinity.

Let _
w(p))
V{z): = 1— 2L
=[] (-2

P

On probabilistic grounds one expects S(«; 2, z) to be roughly equal
to XV (z); but, taking « to be the set {n: 1<n{ X}, P =2, and
z = X¥, one can check easily that this cannot be true in general. On the
other hand,.such a result iz certainly valid, indeed quite generally, if 2
is congtant, or very small compared with X (see Theorem 1 below); and
there is therefore the natural problem of determmmg the most extensive
regmn in the X-z plane Wltlun which

(1.1) B P, 2)~ XV (2)  am

A FPundamental Lemma, in the context of sieve theory, is any resulf
which establishes (1.1) for some region of the X-z plane. The quality
of a Fandamental Lemma depends chiefly on two factors: (i} the exten-
siveness of the assoeciated region, and (ii) on fthe preclslon with w]rnch the
remainder

X > o0, 2 c0.

S(&l P, 2) 1
TXV(2)
can be estimated.
Our object in this paper is to prove a Fundamental Lemma of high
quality (see Theorem 4 below), and to give some applications. Our main
tool ig Brun’s sieve method ‘We present in Section 3 a new and simple

(). AlL O-constants and B, By, o

, By depend at _most-un Ay, Ay and ;. they
do not depend on K {or on X and 2), . :
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account of this method (cf. Levin [7]), and we use it fo establish a general
gieve result in Theorem 3 below. A somewhat wealer version of Theorem
3 appeared recently in our note [1], where we also indieated briefly how to
derive from it a good Fundamental Lemma. Unfortunately, [1] was fail
of misprints and minor errors (%), and we shall therefore make no reference
here to any of the caleulations or arguments contained in [l}- A note-
worthy feature of Theorem 4 is that a result of this quality cannot be
obtained by Selberg’s method, at any rate not without the use of some
additional new idea.

2. Two simple Fundamental Lemmas. We begin with an auxiliary
result. :

LEMMA 1 (Qy(%)) (). If 2 < w < 2, then
: ' w(p) logz A
(2.1) 51 L Hlog 2 2y
it P logw ~ logw

< A(2lie+3), A: = max(x,d,),

@2)  Dlo@<

n<s

(2~ A )iz |- 245
: log2
and, if also (0y) s satisfied, then

y A,
(2.3) < xloglogz 4 x1 2 { _ 2
| p{%g(ﬂ glogz+ xlog o2z T Ton? 1 A=+ Tozg |’

§(p): =

V (w logz \* 2R ' A, A
2.4 xp{——r P = 2 2
( ) , V(g \(logw)exp(logw), B' 2 {1+A1(x+ 10g2 )}?

and, in particular,

AN

(2.5)

Proof. .Here (2.1) and (2.3) are the right hand inequalities in (2.4)
d (2.5} (with w = 2) of [2], respectively; (2.4) follows from (2.9) and
(2.5) of [2], and (2.5) follows from (2.4) on putting w = 2. Tt is important

) (*) Notwithstanding these errors, all the main results of [1] are true; this refers
in particular to all the applications of Brun’s 8ieve in [1]. Apartfrom the Fundamental
Lemma itself, we shall therefore not deal with these applications again here.

(3 ‘Lemma I (£, (x)):..." signifies that the conclusions of Lemma 1 have hoen '
proved under the e_ondition {4 (x)). We shall use this notation throughount the paper.
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0 note that all the upper inequalities cited from [2] depend only on ( (22(x)).
It remains to prove (2.2). We have, using (2.1),

PR SRS

P p(z WL I &

lobﬁ 24, 10 g A,
2xlog + f v o ) dw
log2 10g2 10gw logw

24,
log2

+{xAp)liz,

whenee the resalt., .
' We have obviously that

(2.6) Sst3 2,8 = D dal@ = D uld) >
- aesd d! a|rP(z) aesd
@|P(2) a=:0 aod d
Y uld)o(d
=X Z EL_)_CU_(_._)_ + wd By
() : | P{z)
= XV(+0 D) IR, 1<
d\P(E)

and we' deduee a;t once ‘that -
THROREM 1{ o7 %)), (R). We hwue R

8(et; P, 7) = ()+6K64(2nz+3) e <

We may regard Theorem 1 'ng resting on the original sieve idea of
Eratosthenes, as formalized by Legendre (also by Meissel and others).
Theorem. 1 ylelds a Fundamental Lemma of rather poor guality. For
" if we agsume dlso that (O ¥is satistied, then 1/V'(e) is of ortler of magnitude
log*z {cf. (2.5)) and therefore, even it K is bounded, Theorem 1 implies
(1.1) only when # is not much Jarger than logX (fo be precise, 2 ¢ would
have to be less than some small constant multiple of log Xloglog X).

The weakness of Theorem 1 derives from the fact that the pummation
in the remainder term on the right of (2.6) has too many terms. We shall
obtain a significant improvement (Theorem 2 below) of Theorem 1 by
using the following simple idea with which: Vzggo Brun began hig fammm
work on sieve methods. _ . :

Levwa 2. Por cmy natural number n cmd Jor any no'nnmgatw& integer s,

we have e ‘ .
| '}j @< Su@< S uld),
dlre Cdln . d|n
v(ri)§2.9+1 . v(d)<2s

where » (d) denotes the number of distinet prime factors of d.

icm
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Proof, If # = 1 the three sums are obviously equal, so that we may
guppose that #» > 1, when the middle sum is zero. Writing »(n) = ¢ (= 1),

we have b
\ ! : @
3 wld) = (-1"(7},
din ' T
#(d)=m ’

a statement that is consistent with the convention (:1) =0 for v < m.

Hence, for any non-negative integer F,
k

S @y = 3 ().

it m=0
s(d)=<k

c®r ) =

Sinee obviously .
a . Y i -
o) = (=1 (D )+ o )

v =y el
-1 Tk w-(Ic+1)"
it follows by induction on % that - -
(2.7) o) = 1)"(”*1),

and this is more than is reéquired to prove the Temma.
COROLIARY (*). If n and r are positive iniegers,

and

@8y Dul@ = X w@+s D ud), 0<s<L.
- dln ﬂ(d)(ilg?:—l ’,(ggnzr T . :

Proof. For n =1, (2.8) is obviously true; for n > 1, (2.8) can be
written . . ] ’
0 = o {n)+ 0 (a" D {n) — o™ (n)},
‘which iz obviously true for a suitable & by (2. 7)-

Using Lemm.m 2, we ghall obtain :

)5 (), (R). We have, a;s ‘X o0,

THBOREM 2
8ot ; 2,2) = XV (L + 0 VBN L 0(KXY), loge< ViogX.
The rest of Section 2 is devoted to the proof of Theorem 2. We write -
(2.9) - a(n) = 3 u(d)y(d), |
. ) dln '
where -

: 1
(2'10) x(r) (d) _ H ‘L'(d) ¥r— 1
. : 0 otherwise;

(* The Corollary is given for cnmpletendss. Although it is sometimes usefnl
(sce 1. e. [31), we ghall not make direct application of it here.
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then, by Mobiug inversion S ' where ‘

- a ” | | 7o)
(2.11) w(d) y(d) = Zﬂ (m)ﬁ‘”(ﬁ)- - : : g8y = ]] : , m(d) #0

: T 8 p-o(p) ’
By Lemma 2 we have, for ‘any non-negative integers s, s, that 50 that ¢(d) it a non-negative, multiplicative function on the sequence
hich is well defined b vzrt of {Q
2 Z‘ ‘u (@ < B P, 2) Z Z (@) 7=+ of squarefree numbers, whic v ue of {Q,).
aexd  dla aesy  dle NeXt by (Z 7)3

diP) d|P(z)

: r _ izl -1 v(n) e
was T = (5 <(0) e
.y d 80 that
@12 x Nu@ a2 (0B < 51et3 2, -
) Z . Z o < (1’ ) )
dPE) diB(z) ] 1<‘Zﬁ§; ot {8)g(9) 1(%2) . 9(0)
<X Z‘u(d) y O gy A Zx(ﬂﬂ'w(d) IRyl - P o
d m o my 1 N ™
BRI AL}
Letting r be any positive integer, we have, by (R) and (2.2), that Lere o mer | wes
213) D M@BI<E Y o@<E(t+ o) < K = (D) exp( > g(p)).
©AlP(e) diP(5) p<z !\l L
ﬂ(d)<r— L : o s ez ‘
provided that we assume, as we shall do from now on, that ‘Hence, by (2.12), (2.13) and (2.15), we have for any positive integer 7,
: ' - that
(2.14) . ¢ By,
. r—1
where B, = By(», 4.} is a sufficiently large constant; the assuraption . (2.16) S(o;2,2) = XV (2 ){1+Bﬁ( Z q(p )) exp ( Z 7(p) )}-{—8 K
18 justified since Theorem 2 would follow easily from Theorem 1 if 2 were pes
" bounded. : ' ol <t, 1011
: Inequahty (2.13) disposes of the remainder terms on either side of o
By {2.3) we have . _
(2.12), subject o a suitable choice of ¢ and s'. It remains to deal with the
leading terms. We have, by (2.11), that ' ' : ZQ‘(P) < #loglogz+ B,
) . n<E
(235) > u(@)"d old) 3 w(d) Zy(v_‘i) o () © where |
Fre) : d dPE) TP 0 ‘ ' ‘ 1 A, : A,
- B, = xlog + 1+ Ay s+ =13
w'(z) t\ P(z) We now choose r to be given by ‘
. : S i ‘
_ m’cr(")(&) (4) (.L-~ w(p)_) r = [-E(xloglogzkaz)] ~+1
8P 8 Ple) b . : ; .
: _;[7—— ~ ‘Where 1 i3 a parameter satisfying
=V@E) DOy (2.17) | 0< 2 <L,
4P (=) i Hence .
=V D w0}, | - Sew< i

1<31P(e) - ' : ' : Pz
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Using the well-known estimate

1 ey
JR— \<.,_ _
! r
which holds for any natural mamber #, we obbain

“;“L? (2 4 (p))r LXP (Zg(p)) < (;-)r(m*gh - ( AR

Pz p<z
substituting in (2.16) we arrive at

1

B(et; Pye) = XV (2){14 9(161“)“

1
(#loplag#-+7s) . s {xloglog ey Ng)
K

b€

oo
R

Finally, we choose

1 1 log X
A 2 logz(xloglogz+ B,)’

then (2.17) is satisfied provided that logz < Vleg X and X is large cnongh.
Indeed, in these cireumstances we have even that 26" <l ¢™%, and since

1 ‘ llegX 1 ——=
— 1 1 4 T e m—— > - ‘_LY
A (x.og 0gz+.8,) 2 logz © 2 Vieg X,

we have, as X — co, that
S(at;@,2) = XV{){L+ 06" L g X, (6 < 1, (00|<1,
- which completes the proof of Theorem 2, o ‘

3. Brum’s sieve. We saw in the proof of Theorem 2 that the parameter »
has to be taken rather large in order to obtain an cffective result, but that
this compels us (cf. (2.13)) to take # smaller than we might wish. So far
as the exror term is'concerned, we can see how to overcome this diffi-
culty. Let us decide that the prime divisors of 4 in (2.9) should, apart
from being at most #—1 in number (ef. (2.10)), also be restricted in
size 10 the extent that at most Dy, say, of them ean come from an interval
7y < p <2z We should then have at once the superior estimate

2 R (ih Mom) 1+ Y om)

2Pz iy peny

and if this did not suffice we conld introduce a further parameter 2,, 2, < 2,
and require not more than D, prime divisors of 4 tio come from the interval
#p < p < 2y and so forth. Of course, such additional constraints on the
nurmbers d introduce new difficulties so far as the determination of the
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leading terms are concerned; Brun showed us how to overcome these,
but the expositions of Brun’s method in the literature have seemed to
most students of the subjeet to be exceedingly involved. However, a recent
suggestion in Levin [7] has enabled us to formalize Brun’s technique
in a very simple way so that his method can be seen, almost for the first
time, to be both exeeptionally elegant and unexpectadly powerful,

Lot z; and g, be arithntetical functions, taking the values ¢ and 1
only, on the set of positive divisors of P(z), such that for » = 1 and 2

(3.1)  wl) =1,
(8.2) 5{d) =1 implies ,(t) =1 for all #|d,
(3:3) ) =1, p(t) = (=1y imply x (p)=1

- for all p < q(t), p1P(2),
where if # > 1, g(n) is the least prime factor of #, and ¢(1) = co. Taking
t =1 in (3.3) (and therefore » = 2) shows that (3.3) incorporates the
gpecial condition

R z2(p) =1 for all p|P(2).

It is clear that we may think of ¥, and y, as characteristic functions
of two gets D and D, of divisors of P(z), but it turns out to be more
efficient to worl directly with y, and x, rather-than through the structures
of D, and D;. It is easy to verify that x®7V and ¥ for any non-negative

integer s are realizations of y, and y, respectively. .
Next, wedefine (ef. (2.9)), for each »|P(2),

G, (n): = Y pld)g(@), v=1,2;
|t :

and we introduce for convenience algo the further notations p* for the
suceessor of » in & (in the sense of increasing magnitude), and

Pu,v: = ] E P IP(?))/-P(Q'!’)
UL p e
B
We now make several almost obvious remarks.

LeMya 3. If pe @ and 1P+ , then
(34) | n®=n(e) = (~1"Tu@ @Ot - ), »=1,2;
and if @|P(2), then _ '
(3.5) wld) =1— Y {n((@, P, ) — (@ P,

nld .
Proof. Both sides of (3.4) vanish if y,(pt) = 2.(f), and by (3.2) this
is always the cagze if y,(pt) = 1. Hence we may suppose that y,(pt) = 0,
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7{(1) = 1. Then, by (3.3),
" equal to 1. This proves (3.4).
Relation (3.5) is trivial if d = 1. 1t d> 1, say d =p,...
Pr < aee < Byy Pie P, the sum on the right of (3.5) equals

Z{X:’(pzll v(

Levma 4. We have o,(1) = L = 0,(1), and

s ()< ) uld) < oy ()

dain

p-r} Fl—')’.’u(p?) = 1 X (d)

Jor all n|P(z).

. Proof, For # = 1 the result is obvious from (3.1). Suppose then that

# > 1. Here we have to show that

(3.6) (—1Va (<0, £ a1, a|PE);»=1,2.

But then if g{n) = p and n = pm, so that | P, , for every ¢|m, we have

o) = D {ull) 0+ p(pt) (00} = 3 u() {50 — z.(p0)}

Lt ir

= (=17 X 0Lz (o0}
] tm
by (34); and (3.6) now follows immediately.

Lemma 4 is obviously a generalization of Lemma 2 to all funection
pairs gz, ya satisfying the basic eonditions (3.1}, (3.2) and (3.3). Just as
we derived (2.12) from Lemma 2, we now deduce casily from Lemma 4
that

B5) (R (—US(52,9 5 (1P XTE-F 3 ndold,
a2 (z)
y= 1,5,
where
(3.8) 7, @) S"‘ .2l)

d
fTIP(ﬂ)
W shall now derive for . U, (=) & result that is in so1me respects analogous
0 (2.15); but first we introduce, as was foreshadowed at the boeginning
of Section 3, a partition : '
(3.9) 2= < <.

~—

S

of the interval [2, #].

u(ty == (-—1)';*1 and so both sides of (3.4) are’

P, With'

icm
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Lemma 5 (Q,). If

Viw,2):

w2,

©(p )= Vi)V (w) for 2<

W\pf-.ﬂ
pe?

then

== 1 Py g HEPy
where » =1 or 2 and |6|s._:1. ‘ ‘
Proof. By (3.8) and (3.5) we have ‘
o (d) 1
O, = D w@ 2 (1= 3 (0l Py ) — 50, By,
| F{z) pld
w{d) [ d
= > 2D wi@= X u (Sl Py )=l 20,
dlP(z) a4
and if we now write d = Jdpt where 5[P( hr E| Pyt oy We obtain
_ (U Al xv(t) - X (pt) '
U,(%) = Z Z ; )..J wit) BB o
p<z ~ BlP(p) fle+,g :
_ w1 N\ @(p m(t)) ‘
- ()(1+( Sy e 7, #O0 kot

3 ’z

by (3.4). Note that the reciprocals of V(p,2) are in order because (L)
ensures that the numbers o(p)/p are bounded away from 1. Since ob-
viously

Vip,2) 2 Viz,2) il

the result of the Lemma mow follows at once on grouping the primes
of # legs than z inte sab- sets eo1respond1ng to the intervals [y 2,1 )
(n =1,...,7h

There 1.5, as Levin pointed-out, considerable lattitude in the choice
of the functions g, (or, what amounts te the same thing, the sets D,);
indeed, there is a choice wiiich would lead to the powerful Rosser—Selberg
sieve (see Selberg [10] or Iwaniec [4]). However, for our purpose Bran’'s
choice suffices.

z‘ﬂ g .p < zﬂ--l’

Let & be a 1ms113wo integer. For » =1 or 2, and each n = 1 ) 1
put( ) . 3
' 1 i v{(d _P . g2b—w- om—1 for m =1,...,7
10) gy = |t B @B =B e
0 if. d|P{z) otherwise.

() It is here that the major migprint occurs in [13.
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Then 7, x obviously satisfy (3.1) and (3.2). To check (3.3), suppose
that y,(¢) = 1, p < () and 2, < p < #,,_;, 82y ; then we need check (3.10)
(with d = pt) only for # = m, that i3, we have only fo confirm that
y(pt) < 2b—» +2m~1. But »(t) <26 —»-+2m—1; I also u{t) = (—1y®
== (--1Y, then #(f) == 2b —»-}-2m —1 is impossible. Hence »(t) < 2b—»
1 2m—1, and so p(pt) < 20—+ 2m—1. It then follows that x,(pt) = 1,
g0 that x,, y. satisfy (3.3) too.

Let us now interpret the innermost sum (over ) on the right of Lemnma
5 in the light of the choice (3.10). Here f makes a contribution to the
sum only i z,(t) =1, x.(pt) = 0. Binee both ¢ and pt divide P, . it fol-
lows that »(t) =< 2b—»+20 -1

ditions on the prime decomposition of ¢ arising fr01n.(3.10), we have,
therefore, by Lemma 5 that :

. w(d '
U.e) = Vs (1—1—62 V(L,;,z) d]; w;—l), B]<1 (v =1,2).

L]
w(@)=2h— yh 20

We observe that the sum over d is the (2b~v+2@-r,)th elenmntary.

qymmefiic function of the arguments w(p)/p, =, <P <32 and so, by
a We]l known elementary inequality for &,uch functions we arrive atb

e Te |
— - 1 1 ~ g)(p) 3 -t 20,
= V(Z) (].—E—en? V(2,, z) (26 —» + 2a)! { 2.! P } ):

app<E

0] <1 (v =1,2).

So much for the leading terms in (3.7). As for the remainder tefms,
we have, by a simple combinatorial argument, that by virtue of {2.2)

(3.12) (ﬂm): N n(@e(d)
. Pz
(1 -+ 2 e ( ) + ( Z W p))
p=<s . =l peay,

=1

< (1A (2liz4 ) ﬂ(, +A(2h~n+3))2 (v =1,2).

RSN E

{8} X theke other conditions arc retained, some form of combinatorial argnment -

is required $o take advantage of them. For b = 1 H. W. Hagedorn, of the University
of :Ulm, has suceeeded in this by proving that if the j°s are mon-negative integers
gatisfylng 4, ... 4fp < 261 (k=1,...,n—1), jy+...+4p = 2r—1, then

g bl T (@a—1)t (n=1,2..).

and »(pt) > 9b~—v-{—.4n—~1, 80’ that »(t)
= 2b—» 4201, Writing pt = d and disvegarding (*) all the other con-.

icm
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To summarize the argument so far, we derive from (3.7), (3.11) and
(3.12) that ‘

(313) (), (), B):  (—1Y8(H;2,0)
V{2, 9) w(p) |
v 31| 3 o)
-.K(1+A(21iz+3))2b"”+_1‘n(1+A(2_lizn—§—3))2,
. : n=1

Bl <1 (» =1, 2).
To take matbers further, one has to select a eonvenient partition (3.9).
We ghall see that a suitable choice leads to the following general result.
TEROREM 3 (Qy), (Qu(#)), (R). Let b be a positive integer, and let A

be a real number salisfying _

(3.14) 0< Aot < 1.
Then o
(3.15)  S{;2,7)
2b+1 521 - B S o 2OL
- 2 3 : 3 FETPARY
XV(Z){:L"F? - ?., ST oxp(( b+ )Mogz)} —.!—O(Kz ethher )
and A ' . )
2 16) S(a;2, 'z) o |
W ’ B -1
‘= XV e 2h+2 - B
xv (z){l S exp((' - )Mogz)} ol DX

where

: A, : Ay
B = ?{1+A1(%+ log?2 )}
The constants implied by. the wse of the O-notation do not depend on b and 1.
Proof. As in the proof of Theorem 2, we may suppose that 2 is large;
otherwise we could apply Tiweorem 1. Acc,orchngly we impoke again the
condition (2.14), with some suitably large constant B,.
Let 2 be a real number satisfying (3.14), and. let us suppose that

1, :
(3.17) V(z 5 < glAnta) for mo=1,...y7,
ny~
where
_— . B T
- logz’
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the inequalitics (3.17) have yet to be verified for some suitable choice
of the nmambers 2, in (3.9).

Then
Z ( m(p)) _ 100 1_
w5 P = Vi, #)

1’01' #o=1,...,7

2(in - a)

% FLpLE

and it follows that

V(g 2) { 51 ffm}zn—wzn.g 26”“"'”" (2/’{%--|—2a,)2!t--v-l-2n
(Zb —vt-2n)! ﬂ@:’:z P s {2b —» - 2n)!
2a 2H—» 1—1 (2??’6-—1)2?' . o 144420
e 14— (4
< ¢(A+a) % G —) (1)
(ne™ )™

sinee (2b—w»--n)! = (2n)1{(2n)". We observe that il iy decreasmg

. a 2n . ) . .
and that (1+T) < ¢*?, Henee the sum under consideration is at
n

most

5]

2a(;{+a)2b v26-—2 2a,‘12 (lgl-l-l):m-

=1

22b~w+2621 LI/EY (l“l : ) Rﬂ)wi’-}ﬂeﬂ (2b—v-4) _t_;_
-2 (147) o -

This, in view of (3.13), establishes the leading terms in (3.15) and (3.16);
but a choice of the partition (3.9) justifying (3.17) has yet to be made.

‘We shall now choose (3.9). Let 4 be a positive real number and then
define z, by

(3.18} logz, = ¢ ™logz for nm=1,...,7—1, 2, = 2;
here, in order to satisty (3.9}, r is chogen so that
logs,_, = e~ " Vlogz > log2;
log2, so that
: ~ logs
(3.19) gr-va o %87
log2 o
We shall now justify (3;17) subjeet to o suitable choice of A. Taking
w = 2, in (2.4) we dedunce from (3.18) that

2 Be n.d ’ nd
) o 2%

but ¢ “‘Iogz

g 67‘/1‘

V{2 2)

= exp (mlx 4+ gz

mo=11,...,%

icm
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{originally for n =1, ..., * =1 only, but, in view of (3.19), also for n = r).
Since .1 > 0, we have '
6?4{ '*—1

< ;
i r

&t —1

and the latter expression is by (3.19) at most

rd 4

e e logz
A—x - )
rsl log2 1o loge
& log2 /[
Henee we ohtain
1 2 2 Be" 1
T 1{[ 1 — PR .
Vie,,2) <e GXP{% o B xlog2 Io logz l’ =Ly
& log2

and in view of (2.14) we meet the reguirement (3.17) it we simply put
2 1 ! |
% 14e’ 2007

(note that A<} by (3.14)).

Having. established (3.17), we take the remainder terms in (3.13)
one step further. With a suitable constant B, we have that

(3.20) A=

r—1

(1+A4(2liz+3)) "“”“”(14—:1 (2liz, + 3))"

op—wrl TTE S
=< =
( i logz) ] ( logz ) v=1,2.

But by (3.19), (3.20) and (2.14),

ﬁ(B an/l) 2 e r—1< Bsefll.[ﬂ V—E—g? r—1 1
L L\ loge) 3"1_5%;) \“( logz ¥ 10g2) <3

and, by (3.18),

-1

n 2L = exp {21002 Z e“’“‘} < 22D,

uwl
Hence
r—1
(3.21)  (1-+.4(2liz 3P H {1 A(2liz, - 3))°
n=1 )

= Oty Ty o,
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Finally, we shall deal with the exponent 2/(¢* —1) that occurs on the
right of (3.21). B

We have
ezi.lx_edg (E_{ __A) 2ﬂ/x< EAGU”,
x
" so that, using ' —1 3 4,
g sdet™ 2.01
AL 1+ AT L1 = R
Thus
2 2.01

e!l_l = '82}‘/“""1 91

-and if we ingert thig in (3.21), we see that the proof of Theorem 3 is now
complete. ‘
4. The principal Fundamental Lemma. We shall now deduce from

Theorem 3 a Fundamental 'Lemm_a of high quality, which yields the asym-
ptotic relation (1.1) subject only to the condition
log X
il ag X ~»00,
logz . : o _
and which iz also Vefy precise in the sense explained in Secetion 1.
TueorEM 4 (Q;), (Qu(#)), (R). Let X =2 and write

logX
B 1ogz '
Then ‘ o _
S(‘W ? ﬁ) . XV(z) {1 ‘I'O mu(logu.—-loglogau—lqzx-f2)),+ O( G—VM)},

where t}w O-constants depend ai mosﬁ on: % Al and A,
Proof. Suppose first that . g

Uz B, = B,(x, 4, 4,},
where B, iz o sufflclently large com’oant In view of Tht,orem 2 and (2. 5)
We may assume that - ‘
'logz‘> %,
NGW apply Theorem 3 with

v w1 o "~ exlogu
b = 1= .
[2' 210gfw] and :

icm
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inequalities (3.15) and (3.16) together yield, in view of (2.5)

(4.1) S(@f;?’,z):XV(z){1+O(exp{—‘)b10gi+2b 5 })+
. A Alogz])/

+0 (Kexp { ~—logz (u —2b — %) -+ mloglogz})] .

Using that loge > w, the error terms are.

R b %
0 I 1 1) e
(GXP{ (% logw ) g ( exlogu ) +0 (log % )}) _!

+ xloglogz}) o

f %
. Hexpy—1
I—O( Cexpy—logz STogn
= O fexp{—u(logu—loglogu —Iogs: — 23+ 0 (Ke~V 18Xy

and our theorem follows at once from (4.1) if %> B,.
It <u< B, we have, by virtue of the definition of the siffing

function §, that sinee z = XM*
S{st; P, 2} < Sty P, XHB,

We now apply the preceding redult (with « =
the right, and oblain

8(t; P, 2) < XV(XVB)[0(1)+ O (HeV 08Ty,
Henée, nsing (2.4) {(note that we may assume X > 254), we arvive at

< XV (2){0(1)+ O(Ke "0},

B,) to the expression on

S{ef; &, 2) <<

-Binee, trivially, § 2 0, this completes the proof of the Theorem. for w5 1.

Condition % 2= 1 is equivalent to X 2= #; it is clear from the last stage
of the foregoing proof that this condition may be ‘wes dcened or ftga,m
that it could be replaced by a stronger eondition.

For » bounded (and XK < ¢'°5%), the theorem tells us that
St 2, 2) = 0(XV(2)},

which ig often useful in situations where the sieve is used in an auxiliary
capacity; indeed, this is just the result that is nsually required when one
encounters the phrase “by Brun’s sieve ...”? in the liferature.

5. Applications of Theorem 4. The Fundamental Lemima has important

_ applications in those problems where one needs precise information about. -

the distribution of numbers (belonging to some arvithmetical sequence)
which have no small prime factors. For example, such problems arise

2 — Acta Arithmetica XXIv.2
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'in the study of additive arithmetic functions (see Kubilius [5], especially
the Fundamental Lemmas given in Chapter 1; sce also W. Philipp [9],
Lemma 5.1.1 and a forthcoming improvement). .

We ghall illustrate the effectiveness of Theorem 4 by proving, in con-
clusion, the following general result.

THEOREM 5. Let fi(n),...,f,(n) be distinct drreducible polynomials
with integer coefficients, and write

F(n) = fu(m) .. fyln).
Let o(p) denote the number of solutions of the congruence
F(n) = 0modp,
and assume thol _ ' o
(5.1 o(py<<p  for all primes p.

Let o and & be real numbers such that w = 1 and ' 2 2; and let g = q(@, u)
(with' or without suffices) denole a number having no prime divisors less
than &', Then
(5.2)  Hn: 1<a<e, f;(n) = g3 for i =1,..., g}
= ” 1— Q(p)) {l+011(e—u(logu——!ogmgSummgg—-z))._J[_ OF(G-—I/HQ_.’D)}.
1/t p . .
s

Moreover, we have also that

(8.83) ln: l=<xa<x#, filn) =g for i =1, ,‘g}|
— 1—‘) —1 ) (1“ i)—b’+1
o[ i ST

“ —u(log w—10g Log 3u—1og g=-2hy U l
{ +0x(e _ )+0F(10gm [’

xlg"m

where ol the OF -constants may depmd on the coefficients and degrees of

Jiseenr o S

Although we have not explicitly required the polynemials f; to have
positive degrees, the theorem is, in fact, of interest when this is the case;
for it one of the f;’s had zero degree, then, by (5.1), it would have to. be
equal to 1. ' :

Proof. We take as the sequence to be sifted
={F(n): 1<mn < @},

and as 9" the set #, of all prunes Denote by o(d) = gp(d) the number
of solumons of the congruence

F(n) = 0modd-
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18 well-known that ¢ is a multiplicative function, so that

=[[etr) it w@ =0,

prla

We find that

B4) D 1=l l<a<a, Fln) =
azg::nﬂo,drl

=0modd} = o d)( )

Bl <1;

[}

~aceordingly, and with a view to applying Theorem 4, we choose

X =2, o{d) = g(d)

(note that 2 i empty), and it then follows from (5.4) that

| Byl < 0(d).

Henee condition (R) is satisfied with K = 1. The arithmetic function p
is, except in special circumstances, non-elementary in the sense thatb
individual numbers g(d) are hard, or even impossible to determine. How-
ever, we know from Lagrange’s theorem that o(p) =p or p(p) < @;

hence, if ¥ has no fixed prime divisors — W}nch is equivalent to saying,
if P satisfics (5.1) — we have

(5.5) o(p) < min(p—1,6), & = degP.

It follows by distinguishing between primes
condition (Q,) iz satisfied with A, = G+1.

Next, let o/ (p) denote the number of solutions of f;(n) = Omodp,
for ¢ =1,...,g; then

< @ and primes > @, that

51 o™ (p)

)
D

—logp = logw-Ox(1)

(cf. Nagell [8]) and for all but at most Op(1) ‘primes we have

or(P) = o™ (D) +... 09 (p).

Hence
er (D) #
> logp —glog— = 0z (1),
80 that (Q, () is satistied with » = g and 4, = Ox(1). We may now apply

Theorem 4 with z = :r,”“, and we obtain (5.2) at once.
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Next, it follows from [2] (Lemma 2, (2.12); see condition (£,) on p.

244), that
] (=<2~ [ (- -3 o)

where the infinite product is convergent. Finally, the identity

e

P _ et
1 p—1
P

1-—

eompletes the proof of (B.3).
It is worth remarking that Lhe condition

(Q0) o(p) < 4,21,

implies (Qy(x)) With » = 4, = A,. In particulay, in the case of Theorem

5, we infer from (5.5) that () bolds with 4, = (. Henece (5.2} is alse

frue if, in the first O-term g is replaced by &; and then, because we may
now take A, = & both the O-constants in (5.2) depend at most on &
A similar remark applies in (5.3), but only to the first O-term.

An interesting special case of this general Tesult corresponds tio the
choice of the f, as linear polynomials whose product has no fixed prime
divisors. Such results are sometimes interpreted, somewhat optimistically,
in terms of so called ‘quasi-primes’ (cf. e.g. Lavrik [6]) and the reader
who wishes to follow up This connection should have little difficulty in
deriving from Theorem 4 and B, for ingtance the quasi-prime analogues
of the Goldbach and prime-twin problems. '

The result ecorresponding to Theorem 5 for & = {(F(p): p<a}
cannot be derived from Theorem 4; thereagon is that Brun’s smvc ag given
in Theorem 3 uses an inadequate (f01 this prurpose) form (R) of & remainder
condition. We shall return to an even more comprehensive Brun's sieve
in another paper.
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