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gecondly (Lemma 10)

. ) N _i[ : loglog N 1
L) [ ((l.ogN)”“’)l '

Here o is defined by the relation z = ¥ ag in (4.13). Choose v in the
range 1 < # < 6/5 permitted in Lemma 10 80 as to maximise

w0k ]/" Y
=l Ak

this maximum value & is positive because for v > 1

(v) = 2Vo— L4 Of(v—1)"%).
This gives the theorem stated in the Introduction, with
G . A = DBGIT, V2.

Here B is as in (4.13) and D is given by (2.4). The product IJ, was defined
in (4.11). Because of (4.12) we have A > 0 as required.

It ig possible to replace the constant 4 of our theoreny Ly a larger
number, for example by following up the consequences of the remark
made at the end of Section 3. '
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XXIX (1976)

Lower bounds for discriminants of number fields
by
A, M. Opnryzxo (Cambridge, Mass.)

1. Introduction. Let K be an algebraic number field of degree n = #y,
with r; real conjugate fields and 27, complex conjugate fields, and let
D = Dy be the absolute value of the discriminant of K. In 1882 Kronecker
[6] conjectured that

(1.1) . D=1 for w>1.

Thig very important result was first proved in 1891 by Minkowski [10]
as one of the earliest applieations of geometry of numbers. Subsequently,
by refining his methods, Minkowski [11] showed that in fact

2rg 0 2\ Mol
(1_2) Dlha = (_}) ,nz(m)-zm " (ez)rﬂn (%) +0(1)

= {7.380...)" (5.803..."2"" 4 6(1)

© a8 #-+ oo, which it the estimate nsually presented in books [8], [13]. Due
- to the efforts of many mathematicians, today there exists an extensive
. literature devoted to lower bounds for direriminants (for complete ref-

erences, see [13], pp. 80-81 and [16]). Of those papers which do not uge

* geomatry of numbers methods, most prove only (1.1). Of the few which

obtain lower bounds for I which are exponential in n, the best until very
recently was Siegoel’s emtimate [18], which states that for K totally real
(Lo, 7y ==m, ry=0), _

DV 7,402 ... Fe(l)

&% 7-~00, which is glightly better than (1.2). Considerably better esti-
mates bave obtained through geometry of numbeyrs. The Dest publishefl
bound for totally real K is due to Rogers [16], who showed that in this
case

" pins 282 ) = 39561 .. o()

il
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as #-»cc, Mulholland [12] later generalized this to prove that for any K

168 rifn med\2am
) (m—) +o(1)

(L.3) o

= (32.561...)"" (1B.7TT5...)%2" L (1}
as n-soc0. Furthermore, Mulholland indicated how one can show
DMz 15,887 ... 0{1)

2

Dl/ﬂ 9 (

(1.4)

Qg B—+00,
Ow purpose will be to develop a new analytical method of obtaining
lower bounds for dizcriminants. We will prove
THEOREM 1.

(1.5} D (55)?11':1. (21)21'2!n

Jfor n sufficiently large.

Our method is baged on a result of Stark [19] (our Lemma 1) which
gives a relation between the dizcriminant of K and the zeros of the Dede-
kind zeta function (g of K. Since our method depends on the zerog of ¢y,
about which relatively little is known, it should not be surprising that
additional information about their location leads to Improved estimates.
Now if the Generalized Riemann Iypothesis is true, any zero §-+iy
of {x with 0 << § < 1 satisfies § = 1/2. We will work with o weaker con-
dition, which we will call Hypothesis R": _ |

HyroTHESIS R': If f iy s a zero of the 2eta function of an algebraic
number field and § > 1/2, then either |y| < 31 —B) or || = 10.

‘We will also say that a particular field X satisfies Hypothesis R/
if. the zeros of i satisfy the condition above. Hypothesis R’ is clearly
iraplied by the Generalized Riemann Hypothesis, and it is known to be
true for several number fields. We will prove

TurorEM 2. Hypothesis R’ implies that

(1:6) DR (136)W0 (34.5)ain

Jor w sufficiently lavge. :

In fact, an examination of the proof of Theorem 2 shows the exist-
ence of constants ¢>> 0 and n, such that if there is a sequence of fields X
for, which D' violates (1.6) (note that n—+oo for any such sequence),
then for n > ny, i has > on zeros f+4y with f > 1/2, §(1 —8) < |y| < 10.

The bounds of Theorems 1 and 2 ean be improved further by our
method. However, to avoid complicating the proofs. unduly, we present

. only the estimates (1.5). and (1.6). Algo, the conclugion of Theorem 2 can

. be obtained with a hypothesis somewhat weaker than Hypothesis R/,

&
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as will be indicated at the end of the proof of Theorem 2. The Teason for
selecting Hypothesis R’ rather than another one ig that it appears to
exploit our method to the fullest. To be precise, with the present method
evep an assumption of the Generalized Riemann Hypothesis does nob
seem to lead to results significantly better than those implied by Hypoth-
esis R'. One can obtain better results by assuming, in addition to Hypoth-
exis 1Y, that for fields with small discriminants there are no zeros 41y
with § < |y] << 2, say, but such an assumption would be extremely implaus-
ible (ef. [9]). On the other hand, a variety of hypothetical improvements
on Theoren 1 ¢an be obtained by assuming zero-free regions smaller than

those of Xypothesis R

In general we will be concerned only with estimates of DY as 5 co.
However, this is done only to simplify the proofs. The “sufficiently large”™
#’s of Theorems 1 and 2 ave effectively computable, although very large.
To obtain good estimates for # of moderate size, one has to modify our
method slightly, as will be indicated in Section 3. In that section we will
algo give a new proof of Minkowski’s basie result (1.1). -

" 2. Applications. In this section we will discuss some applications
of our estimates to the problem of infinite class field towers and to 2 con-
jecture of Herre. References to other applications may be found in [13].

Tor a long time it had been thought that '

DM s ag  f—so00,

However, in 1964 Golod and Shafarevich [4] (see also [17]) proved the
existence of infinite class field towers, for which D'™ is constant. The
smallest known values for DY corvesponding to infinite class field towers
come from quadratic extensions of the rationals. If ¢ denotes the 2-rank
of the class group of a guadratic field &, and X has & finite class field
tower, then ([17], p. 233, Remark 4) o

(2.1)
(2.2)

Thus if ¢ 2= 6 (K veal) or ¢35 (K complex), K has an infinite class field
tower and so there exists o sequence of fields K, with “degrees oy~ 0o, TOT
which '

i 6 i K is real,

t< 4 If K ig complex.

102
D = D

Momovei’, if I is rveal, all the fields &; are totally real, and if X ig complex,
all the K; are totally complex. :
The 2-rank of the class group of a quadratic field is easy to calcu-

late; if v iy the number of finite ramified primes in K, then ¢ = r—1 or

r—2 ([2], p. 225). In Tables 1 and 2 we give, separately for the real and
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complex cases, the smallest D for which the corresponding quadratic
field has 2-raxk 1. The last column in each table states whether the given
tield has a finitie or an infinite class tield tower.

Thus we see that there exigt totally real fields (v, = n,r, = 0) of
arbitrarily high degrees with
(2.3} DUm = 5123.1 ...,
and similarly there exish fotally complex fields (r, = 0, 2ry == n) ol arbi-
trarily high degrees with
(2.4) DM = 206.2 ...

This gives s upper bounds on how far the estimates of Theorems 1 and. 2 ‘

can be improved. On the other hand, lower estimates on diseriminants
also give us bounds on how far the Golod-Shatarevich result can be impro-
ved, since they enable us to deduce that many fields have finite class
field towers. For example, the Mulholland-Rogers estimate (1.3) shows
that Q(Vd) has a finite clags field tower for d = —4-3-7and d = 4-3-5-13,
Theorem 1 shows that this also holds for 4 = —4+3-5-7, while by The-
orem 2, Hypothesis R’ implies thisford = 4-3-5-7-11. Thed = —4-3-5-7
result is especially interesfing, since Koch [5] has shown thaf there exist
complex quadratic fields with only 4 ramified primes (¢ = 3) which hawve
infinite clasy field towers(').

The gap between {2.3) and (2.4) and the estimates of Theorem. 1. (ox
“-even Theorem 2) is very wide. However, it may De possible to marrow
this gap either by obtaining better lower bounds for discriminants or
by showing that some fields with small diseriminants have infinite class
field towers. (This might be possible, for example, by applying existing
estimates of the Golod—Shafarevich type to class fields or subfields of
class fields of quadratic fields.) I would be particularly interesting to
see whether Q(Vd) with 4 = —4:3.5-7+13 = — 5460 has an infinite
“class field tower (class number is 16, and this is the last nown complex
quadratic field with one clags per genns).

Our second. application is to a conjecture of J.-P. Serre [20]. This
conjecture implies that for every prime p, there exist only finitely maiy
finite Galois extensiong K of @ which are ramified only at p, and whose

 Galois groups G have faithful representations g: G—GL(2, F), ¥ any
finite field of characteristic p, for which determinant (¢ (complex conju-
gation)) = —1. In his proof of Serre’s conmjecture for p = 2, Tate [20]
used clags field theory to reduce to the case of ¢ nor-solvable with

D <2®, o= [K:Q)

() Added in proof. D: Shanks and R. Seratin (Math. Comp. 27 (1973}, pp.

183-187) have recontly constructed a complex quadratio fiold with an iufinite class.

field fower which has only two ramified primes.

icm
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This led to a contradietion via Minkowski’s estimate (1.2). For a few ather
small primes, Tate’s method apparently can again be used to redmee to
the problem of determining all X with non-solvable groups @ for which

-D}%n < pz-Fljp_

For p = 3, the bound above is 12.980 ... and Mualholland’s estimate (1.3)
shows that there are only finitely many such fields. For p = 5, the bound
is 34.493 ..., and unfortunately Theorem 1 it too weak. If Hypothesis B’
is frue, however, then Theorem 2 impliex that there exist only finitely
many such fields.

3. Basic method. Since precise numerical factors will be very import-
ant in our work, we will use the following refinement of the O-notation:
for two funclions, f and g, we will write

f=10(g)

to mean that _
Ift<g

in the indicated range. We will continue to use the notation of Séetion 1.
The non-trivial zerog g = f-+-iy of Zz(s) will be those zeros for which
0 << § < 1. We recall that if ¢ is & non-trivial zero for {z(s), then so are 3,
L~ p, and 1 —g. For this and other basic facts we refer to [7] or [13].
We begin our work by essentially reproving Stark’s lemma (18],
p. 137). ‘ ' '
Leyma 1. Let

(3.1) A =VDo T g,
Then | ‘ |
r, I |8 I 1 1 i 1
3.2 Jood = — 2| —ry—(§) ——_— .
(3.2) 0g p) 11(2.) 7'21-,(3) s s—1 g (3)_[—&28-—9’

tdentically in the complen variable s, where o runs through the non-trivial
zeros of Lye(s), amd D) indicotes that the o and g terms are to be summed

together,

DProof. Let
(3.3) £(s) == -S’(S——:1-)“‘4‘31-'(m;")rl‘l'?(s)r2 {xe ().

Then £(s) is an entire function and

E(1—s) = £(s).
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Rince £(s) is of order 1, Hadamard’s

expansion
E(s) = e““’“” (1-—~§~)e*’/°
L 0

for some @ and b, where o rans through, a,ll.the zerog of £(s), which are
exactly the non-trivial zeros of y(s). Differentiating this produet log-
arithmically gives us

factorization theorem gives ug the

g 1 1
(3.5) —E—(s)—b+§(sme+g),
where the surm converges absolutely. But by_ (3.4},
¢ 3
F @ = =1,
and so

. 1 1 1/ 1 1
b+;(s—e+3) -t ;((1—@)?'—"%"*?)'

Since 1 —p is a zero whenever g i3, we obtain

b= —Z'%,

g vl
—(8) = | .
P
- Combining this with the definition (3.3) of £(s), we obtain (3.2).
As was noticed by Stark ([19], p. 140), identity (3.2) of Lemma 1

immediately yields a good lower bound for the discriminant, since for
§=0>1,

_CL ‘ ' 1‘ _\Lf1 1Y Y o—f
£ 70 20—@“ 2 2(0*"-9"%6—@)“ .

—pl2 !
n lo— gl

and so .

(5.6) logd > — 1L (") L t_ 2

2 T'\2/
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', say, and using the definition of .4, we obtain

1 ry I (1N o r
= logD 2 o (Iog T — - (—2~)) -+ %2 (100‘27: —7 (1)) 4-0(1),
DYz (2238 ...1(11.19 . )i 4 o (1)

ag n-—»+oo, Inequality (3.6) can also be used to give & new proof of Min-

kowski’s basic result (1. 1}, Letting o = 3 in (3.6) and uging the definifion
of 4, we obtain

1. 7 I' e I 1 1
=Jog B} > {logn— (=]} +» -~ =~
5 log I} = 5 (logn T (2)) +- 7, (log27r 7 (a)) - T

Taking ¢ = L-4-n~

ry 5
— 11475091 — —.
. > 5 e 0.91 8
But if # = »,+2r, = 2, then either »,
$log D = 0, which gives (1.1).
All our further work will be based on identity (3.2) of Lemma 1. In
obtaining the estimates above we were content with observing that

e v

Our goal in the rest of this paper will be to show that the quantity above
is in fact quite large. Also, while before we utilized (3.2) only fors = ¢ > 1,
we will now use it for other valnes of s as well. In fact, we will use (3.2)
to derive a system of imequalities which will allow us to show that the
expression in (3.7) cannot be small, '

To start with, let us define

=2 or vy 21, and in either case

(3.7) for o>

(3.8) . Z(o) = — ?’*( ).
K
Since for o = Re(s) > 1
gy o S o (p)
La N(Py~1

where 22 runs through the prime ideals of &, we have

y
(3.9) 5 ()<~ 5 (o) = 5(0).
. C;;, _ {x
‘Algo, since N(P) > 2 for all £ and
1 e 1 for w>22,1<0,<a,
w”ﬂ_———l 2"0--1 ¥ —1
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we have -
. 2“—1 .
(.10} Z{ap) 2% 1 Z{ia)y for 1<og<ea

W s I
(3.11) Q. (8) il (s) = “-'12——17;(‘;;‘) 2“}:(9):
3.12) B (s, o) +iH(s, g) = ‘“]‘ & e . o -
GAB B Qs & = T T T i T

As 'we remarked eariier, if ¢ it o nopn-trivial zero of (p(8), then 8o are

g, 1—g, and 1. Hence

P

2

42{13 5, o) +iBi(s, o),

where the second sumn now comrerges absolutely. Henee if o = Re(s) > 1,

by taking the real and imaginary parts of (3.2) we obtain

(3.13) 0 = @ys )+9(~——-—) +0 Z” 5 0);
log A = G()+0( ) 8(Z () + 211 (s, o),
amd : _ .
2 1
(8.14)  logA = G,(a)w(w) +2(0)+ “IZ B,(s, o).

We next &hmrmte log.A from these equations by subtiracting the third
from the gecomd to obtain

(3.15)

4 , 1 ,
0 = 6(0)=6(c) +0 (T’i") ~Z(n) L+ 0(L}+ 1‘2{”’-“"9) By @)}

Define now, with ¢ = Re(s) (as always),
B (s, ¢) = By(s, o) —By(v, @),
Gr(8) = Gr(8) =Gy(0);

: and'také any o, > 1 (to be speecified later). Rewritiﬁg (3.13) and (3.1b)
a8 o system of inequalities using (3.10), (3.16), and (3.17), we find that

(3.16)
(3.17)
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for all § with ¢ > o,

1 . 4
(3-180) T B 0z -6 - ——,
- g—1
2% .1 a
(3.180) 25 T A{a)+ 42 ~ (3, 0) > GF(s) — —
, 270 2
(3.18¢) "‘:;";j"“ 2 Bi(s, 0) 2 —G{8) — ——s
“ O'——l
2 ],

) . L v A
(5.180) Zlo)+5 Y —Bils, o) >

Mv?:_T 4 G‘i ( S) -
a

o—1

Let us now define e, =B, ¢ = ~E, 0, = 8,6, = —B;, g, = — G,

Ja =67y g5 = ~ G, g, = Gy, and
) 291 .
dils) = 0, Cy(8) = 2“5;:1" Uy (s) = Oy(s) = §03(s)

Then we can rewrite (3.18) more compactly as

I 4
(3.19) Cu($)Z () -%TL% (s, €) = guls) = —

valid for 1 <% < 4 and all complex s with ¢ 2= ¢4.

Sinee we are interested in lower bounds for logd and ¢,.(s,) is easy
to caleulate, (3.14) shows that it will suffice fio obtain lower bounds for

o |
Z(og+ 7 ) Brlon, 0)-

We will show thit such bounds are implied by the system of inequalities
(8.19). Mo aecomplish this, we utilize the duality principle of linear pro-
gratmning [3]. Suppose that we can choose some finite collections (the
finttencis condition is not essential, but this is all we will need) of numbers
Yigy Spyy Ll dy Jf==1,2,..,, with ¥;;>0 and the 8y complex
nannbrs 'W‘ll]l oy = Ro (b”) > oy, such that -

(3.20):

(8.21) D OulB1y) Yig < 1
exd
and : :
{3.22) Zﬁfc(&m 0) Yy < By{0o; 0)

Ieyd
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for every non-trivial zero p. Then for each pair (k, ;) we take the in-
equality in (3.19) corresponding o our % and to s = &, and multiply it by
¥, thus preserving the sign of the inequality. Summing the resulting in-
equalities yields '

T 4
023 a8 Ty = 3 —— Ty
Tl e, ks

_ 1\, X7
i Z Cu(Syy) Yy () -I'ZZ Yy _2_, en(Syy; @)

R Iesd [

< Z{og) + “1[: 22 8 Spyy @) Yiy < Z (00) -+ =z by B, (g, 0),
kLl | e AQ-J
which is the desired hound.

We have shown above that we can give a lower bound for (3.20)
whenever we can satisfy (3.21) and (3.22). For a given choice of the ¥ &
and the §; it is trivial to check whether (3.21) is true. To check (3.22),
however, 13 harder. One observation we can make is that since (8, @)
and (s, ¢) are invariant under ¢9-»g, 1—p, or L —g, it suffices to check
(8.22) for p in the region '

(3.24) By ={g =041y; <o <1, 0y},

Unfortunately, the known zero-free regioms are too small for us to Ry
that any single point of K, cannot be & zero of some ;.. Therefore o verify
(3.22) in the general cage we will show that it is satistied for all points
gely. However, if we assume Hypothesis R’, then we see that (3.22)
will be sabisfied if it is satistied by all points ¢ of the region

(8.25) R = By—{e =a+iy; ${l—a) <y<10,} <o <1}

Thug our method obtaing a lower bound for (3.20), where now "Z (o) |

‘can be any non-negative number and the g any poinis of R, (or Ry), subject
only to the conditions (3.19),

It we use the definition y(s) = I"(s)/I'(s) of the digamme. funetion
{14] and algo let '

S -
then :
3.27) - —GT{GHLT)_mGt(rf)'T2+0(T“%)

a8 T»+0,. uniformly for 1< o< B, say. Also, if we define, for o3 1 smd.
e = f+ivel,, . ‘ _
By o) = SETBP 20— pP  6lo—14f)y —2(e=14g)
((0'*—5)2‘;‘9!2)3 ((0"‘“1"1‘}3)2“1"')’2)3 ’
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then as T'-0 and for all ¢ with 1 < ¢, < ¢ < 5, and all geR,,
(328) ]ﬂ:(a‘—}-'f;fl’, o) =1T"Ho, 9)+O(T4E:(Goa Q))!

where the implied constant depends only on o,.
It i8 now easy to obtain our basie tool for proving Theorems 1 and 2.
Tomoram 3. Let oy and oy satisfy 1< oy oy <3 Suppose Yy
andd Tyy Lo =4y § = 1,..., ave finite collections of real numbers, with
Yyg 3 0, and let Y be a non-negative mumber. Let Sy = oy+iTy. Tet
B = By be a set suoh that all the zeros of {x(s) lying in R, Ve in B. Finally
suppose that :

(3.29) D8 Ty <1
. [
and
(3.50) YBy(or, 2+ Y ex(Sir ) Ty < By (0, 2)
ka:’ ) ' .

Jor all z<R. Then

1 ¥ .
(331) Zlo+ Y Brlow, 0) 3 Y-Gulon)+ D gulSig) Ty 0 (w),

Q I':rj

where the implied comstant is independent of the field K, but may depend
on oy, 01, X, the Xy and the Ty, ‘

Proof. Hxeept for the appearance of ¥ and the restriction Re(Sy)
= gy, thip is essentially what we obtained before. To introduce ¥ into
our scheme, define Y' e= ¥Y-n'? T zn"?f", § = ¢,+iT. Then (3.30)
and (3.28) yield ‘

Yfel(sa z) + Zek(gkﬂ :z:) ka < (1 ".i‘ O(Ynnm))Er(UO: z)
o, . ’

for ull zell, Uombined with (3.29) and our earlier discussion this shows
that

‘ 1
(07 ) (20 O o)

4
2 Y g, (8)+ ngc(shj)ykj'— o1 (Y + Z ch})f
g ki

which together with (8.27) proves the theorem. _ ‘
In looking at the above theorem we see that we have at our disposal

- all of the parameters oy, 03, ¥, ¥y, and T)y. Finding good choices for
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them is in fact the greatest difficulty in applying our method. (The simplex
method [3] is very useful in this situation.) Tn the next two sections we
will present choices of these parameters which will yield Theorems 1 and 2.
In other applieations other choices would be better. For example, if we
wanted fo obtain bounds for D for relatively small n, we would chooge
and o, much larger (and we would be much more caveful about the crror
terms). _

The next two sections are devoted mostly to verifying (3.30) for the
appropriate choices of gy, 0y, ¥, ¥y, and Ty, and are quite involved.
We ghould stress, however, that somewhat wealer resulty can be obtained
much more easily. For example, if we assure the Generalized Riemgnn
Hypothesis and take o) = oy very close to 1, and ¥y = 0 for all (%, j),
then by making simple approximations we are essentially reduced to
checking that '

Y1, 3-+i) < B, (1, +1y)

for all y > 0. But the functions appearing above are very simple and one
readily finds that the largest value of ¥ satisfying the above is 4/9, which
already gives a better bound than (1.8) (although it depends on an unpro-
ved hypothesis, unlike (1.3)).

One noteworthy feature of our method is that all of the inequalities
(8.19) we used were derived in a straightforward manmer from {3.2).
However, other inequalities involving the non-trivial zeros can he readily
incorporated into our scheme. In fact, there are some inequalities which
seem $0 lead to substantially improved estimates for diseriminanmts, as
we hope. to show in the future.

4. Proof of Theorem 2. Before proceeding with the proof, let us
- mention that the few values of the digamma and the tetragamma functions
we will use in this and the next section were derived from [15], p. 111, Hq.
(34). Differentiation of that identity gave exact expressions for the digamma
and tetragamma functions. The integrals were then estimated and the
resulting approximate expressions were used to evaluate these functions
at the arguments increased by 10. To get the neoded values, recurgion
formulas derived from I'(z+1) = al'(s) ‘were then applied. Whenaever
possible, the resulting values were verified by cormparison ‘with the twbles
in [14]. :
To prove Theorem 2, we apply Theorem 8 with oy == gy == 16
(e very small, to be chosen more exactly later) and with

1 295 92 1B 035 .
¥ zﬁ; Yz,l == “ﬂ‘: Y3,1 = ':Z'E‘r fo,z """"‘ﬁ““;‘ Y&,l == “j’i‘*!
Ty =125, Ty, =75, Ty, =125, 1I,, =175,

icm
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and M = 1.667. Thiy choice clearly satisfies (3.29). Therefore if (3.30)
is gatigtied for all 2¢ By, then

l.
(4.1) Z(%)%—ZZET(%@)

1 208 . .02 L 115 :
o G+ g G0 ) — S 6 (LHD) — - G4+
+ J%S—Gi(l +38)+ 0 (ne) — 1"

> ;T (L.5OT87,40.9482 (21y)} -+ O (me) — C,n 2,
for some constant ¢, depending only on & Bubt by (3.14)
1
log A = G.(1) +0(ne+ ™)+ Z(og)+ 7 Z' {0y, o).
’ 4

Combining this with (4.1) and the definition (3.1) of A yields
' ' DMP > (136.6)17 (84.9)™ — Cln Y2 4 O (s).
This clearly implies Theorem 2, provided we can prove (3.30) for all suf-
o ficiently small e v

We are left with the task of proving (3.80), which in this ease reduces
to showing :
(4.2)  Byoy, 2) ~— 295 F; (64 +54, &)+ .92 H,(0p+5, 2) -+

4 118 By {0y -+ 34, 2) — 085 By 0y -+11, 2) < 1.66T H, (0, 2)
for all zef,. Firgt of all, if ' .
Ry = By —{e: jg—11 << 4},
then for zel,
E:(G’o’[“;ir 7) = Iy (1434, z)+.O(EEr(1: z))!
and similar estimates hold for the other functions appearing in (4.2).
Since we are interested only in very small e, to prove (4.2} for zeR, it
will soffice to prove
(4.3) M1, )~ 208 1% (1450, 2) . 92 By {131, &) +
| 4 AAB (154, 2) ~ 038 By(L -+ 14, 2) < S, (1, 2).

Let us $irgt prove (4.3) for @ = §, y > 0. Writing out the individual

“torms, subgtituting ¥ = w/4 and simplifying we see that we have to prove
160 12u4 —116 46  24ur—312

44) "1%'"(;3'1:" 4) + 69 (WA (w420~ 841) 26 w'—10u"-169
16 u%—29 98 u? — B3 _ 1536u—2048
T w4284l T 9 W 90wk - 2809 (Wt 4)?
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is = 0 for w = 0. Bubstituting %* == »-}10 and wdqu.g, 0 the lewst common,
denominator yields

4 P(v)

B Q)

whers {#) iz a monic polynomial of degree 9, and
P(v) = 730"~ 20,214 0" 4 2,094,217 v — 02,766,496 v° -|-
 41,410,515,855 0" 3,533,810,602¢° -
w,837,192,781w49,267,901,573w-+~&37,342,960,316.
Since the denominators in (4.4) ave all positive, @(v) is positive, and so

it suffices to show that P(v) = 0 for = -10. First consider the cage

—10 << v < 0. Let
Py(v) = P(—0) = Y an’,
where the a; are, tic within sign, the coefficients of P (v}, and only a, and by
are < 0. Bince |a, < 104,
mu+aut =z 0 for 0L w10,

Also, |ag] < 74(2.6)"

Gyt a0 for 0w 9.6, . &

On the other hand, a, > 2.6 |a,), 50
et tagu® 2 0 for 2.6 w10,

We conclude that Py(u) 2 0 for 0 << % << 10, and so P'('u) 20for ~10gw
< 0. Now for » 2 0, we have P(10v) > 78-10".P, (), where

Py(v) = 100°—2770" +2,8680° — 12,7086 + 19,4450% - &,8400° —
‘ — 38902 — 4010+ 325,
and so it suffices to prove Py(v) is = 0 for » = 0. For 0 < < 4
3890+ 401w < 325,  12,7T080° < 19,4450, 27707 < H,sasv“,
and go P;(w) > 0 in this case. On the other ha.nd, for d<e <,
401y < 325--4400%, 3897 < 4,400,
12,7080° < 19,4450%, 27707 < 2,868,

and 8o P, (v) > 0 is this case alse. Next we expand P, (v) around 2 snd 5;
if w =2—2 ¥ =105, and Pyv)=P,(w) = P 4 (1), then

Folw) = 100" — 1772 4- 11005 + 2,9200° —- 1,91 5" - 26,2400° —
—1,213u2 -+ 98,528w + 91,807,
Pt ) = 105“+1237:7 1-173;5—2 0938 + 2,8708* - 77,3651 -
' +188,3364% 4 96,8341 - 112,345 .
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It is now easy to show, using ernde estimates of the coefficients similar
to those we used above, that Py(w) > 0 for —1 << w < 1.5 0, and P, (t) =0
fortz —1.5. Combining these results we see that P, {v} = 0 for » > 0, which
finishes the proof of (4.3) for # = %

It remaing to prove (4.3) for y = 10 and (4.2) for 0 < y < 31— ).
We will use the following lemma, which will also be utllmed in the next
section.

Lewnvs. 2. Suppose o1, 120, i<oe<l
and & == o-il. Then

y=0. Let 2 =gty

1
(4.5) Blo,2) <0 for y<-——=(o—a),
V3
6(20—1
(4.6) Bufo, s < 20,
(4‘-7) E,;(S,z)-.‘(‘(} fO?" ﬂ~<.ﬁ,
48) Bs, 2) P
" 18, %) 5 - —
%8) ’ y—t " ly+el’
41 3ot ty* + P10 - o't
(4.9) 0> F,(s, ﬂ)m-wélw_ntg —2 O Cfor oy =,
(4.10} By (s, 2) = —B,(v,2),
(4.11) Bl (s, 0 for 423 d(o*+1),
_ 6% (20—-1)
(4.12} By (s, 2) = W:
(4.13) (s, 2)<0  for g '/3 (o —w),
- . 201
(’11’]) ]"J?.(G', 2) P W?;‘;,
[ R
(4.15) oy ) St
Proof. (4.5): We have _
6(o—-2)y*—2{c—u)®* 6{o—1+a)y*—2(c—1+m)°
C Bi(o, 2) = ’

(io o) +oF (o=t Far+g

and both the numerators are < 0 in the indicated range.
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{4.6): From the expression above, we see that

6o—m)y?  OBlo—LlLa)y®  6(2r—1)

Flo s = y Ty
(4.7): t
y- gt
By(s, 8) = - S
PR NN i R P oy
gt -yl
+,v,., e v V. S
(o=t ap+(y St T (oL afie (g g

and all the numerators are = 0 for y < L.
(4.8): The- expansion above gives

=il iyt 2 + 2
(y—9* (y-+o? ly—1 = ly-+1]
_' (4.9): If we let ¢ denote either o—# or o—1-@, then
y—t oyt % — 24(3a Y2+ 012 - a)
@+y—1 @ty - (P—®) (et (g (et (oY

Now the numerator on the right side is < 0, and is also

IEi(‘g: z)‘ Q 2

— 230"y - P+ oy,

which gives the desired result.
(4.10): E,(5,%) =0, 80

T (s, %) = B,(s,2)— (0, %) > —T,(s,7).
(£11)~(4.13): These follow from the identity
1 n 1 2
@Y @yt ety

I it NS
(@92 (@t (g~ %) (0 - (g 1))

(4:-14:):
B (o,e) 22 R R = oy
(a—w)2+y2 (o'ml-[".m)ﬂ_,l_,ya‘
a—a e ey Ly 95 —1
ol y* . o2 |- g2 - 0‘2+y2.

(4. 1o) Similar to the proof of (4.14), except that wao. disregard the
eontribution of y
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We now prove (£.3) for y = 10. Applying (4.6) to Hy(1,2), (4.11)
to E {1 —[—"’0, 2), (4.9) to the B, terms, &]1(1 (4.14) to B,.(1, 2), we see that
it suffices to show )

10 1 6 3 5
e S e 09 T _
ity g T T 0% vt
o aiE
' (42 —R)
But for w2 10, we have 1
YR ‘1!) - 1 Y2 4 25 - 1 o P
g YT Te? Y w et

?/2-_.,. MQ/R 1+y2£1.0142,

and s0 it Iy eanily scen that the inequality above is in fact satisfied.

Finally we prove (4.2) for 0 <y < $(1 —a) and all sufficiently small e.
We apply (4 5) to By(sy, ), (4.10) to D*(a0+ 30, 2), (4.7) to By(o,+34, 2)
and H, (o5, 2), and (4.8) to Bi(oy+3i,2). We find that it snffices
to show

, ) 9
1.372 5, (0g, 2) = .035(-———+—w«m—).
ree R l—I " g

Butifor 05y =5 (L —a) and 5w 1,
' 1 1 7/2 7
T - =0 TS T
—yl © +yl -y 6
and so, applying (4.14) to B,{oy) 2}, it will suffice to show
2.7
EE
which iy clenrly true in owr range if o, < 2, say.

The final parts of our proof of Theorem 2 used very crude estmmtcs
sinee the main point was to show that zeros far from the real axis as
well ag roal zoros do not affect our vegult, With additional work one can
show that if & is sufticiently sroaldl, (‘l 2) is in fact satizfied by all @ -1y e 1,
for which o= A5 implies either 23 or 0Ly =5 (L ~@). This wonld

= 082,

~ then show thati the estiviate (1.6) tollows-also from

Fypormmsrs W Lf g = B-4-iy is a zero of the zela ﬁemctwn of some
wumber fleld and § = B0, then eithor /] =3 or |yl < Fl—a)

We should also mention that (4.2) can be proved with 1.667 replaced,
by o somewhat smaller number, thus leading to o slight improvement
of Theoram 2. Bubstanbinlly hetter results, however, require more elab-
oratie choices of the Y, and the Ty

6 Acty Arithnietlen X¥TX.3
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2. Proof of Thcorem L. We again apply Theorem 3, but this time
with g, == 1.01, & == 1.25, and
Yeel[M, Yy=58, ¥,=.5, Ty,=.05, T,,=4,
Ty, =15, I,=1, Loy =85, Iy, =.75,
where M = 6.65. Since

20‘0___1 21.01 __1 .
290 ohE

= T35 ...,

this choice satisties (3.29). Therefore if (3.30) ix satistied for all zely,
then

1 1
Z(L01)+ §’E,.(1.01, o) =
e

b
= G (1.25) = —=GF (.26 +0.51) -
MG;(lZa) MG‘, (1.26 40.54) ~

3 . 1 , 4 .
+ G (125 44) —ﬁai(l.zqfo.m) — 7 G125 +0.75) -+ O (w?)

" _
>F (3.1088r, +2.1691 - (2r,)) + O (n 1),
But then (3.14) and (3.1) yield '
DM > (BB.6)(21.1)70 . O (1),

which proves Theorem 1.
To prove (3.30), we see that we have to show

(5 i 8 (B N L[5
53) Flowy) = 5 B4 e)+ 8 (T, -5 B ge)-

[ 3
— 48, (-"4_4- 21, z) _E‘(uz., z) + 6,658, (1.01, 2)

' 1
B> 0foralle =wtiyeR,. The cases y = 10.and y < 17?- (G—-m) will e

disposed of at the end, by simple estimates of the kind used in the preced-
ing section. The intermediate range of ¥, on the other hand, will be checked
numerically, necessitating the use of a computer or a programmable
caleulator. This computation is not strictly necessary, since the proof
could be carried out by bounding the summands in (5.1) somewhat simi-

1 . _ .
laxly to the case y =10 or S 7 (} — o). However, such s proof would

be extremely inveolved, and 8o it seems rmuch simpler coneeptually to
- use a computer. In what follows, we use very crude bounds, the ohjec-
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tive being not ko much to cut down on the number of caleulations, as to
simplify the task of programming.

It B ={x,y): {<o<1,y20)}, then Flm,y) is a 0 function
on an open seb containing &, and so whenever (x, y)e R and (@ gy 4 +hy)
<R, we have ([1], p. 124)

o \ F 9
(5:3)  Flarthay ythy) = (@, y)+ b= Flo, y)+ b, oy T )+

+o{n+ i3 o),

where ¢ is the maximum of the absolute values of all the second order
partial derivatives of 7 on the line segroent from (2, ¥) to (@b, Y+ By).
Suppose now that all the second partials of F in the rectangle

R* = ([mmax!m"}'ax]x [y"‘éwy"*_ay]) nk

are < ¢ in. absolute value. Xt (w+hy, - ;) e RY,

P
%F(w: 1,)""}%_55‘-5’(“33 g ) = ]L::Q:

and

: 0
%-I?T(w, :’/)""hi:"é&'"ﬁ(m:")) 7%2,9.’,

then by (5.2)
B2+ by § 4 Py} 2 B+ 35 @ 3[Ryl -+ By ])2g = 0.

In practice, evaluating F(v,y) and its first partials is straight-
forward. The second partials we bound by the_ gum. of the hounds for the
second partials of the summands in (5.1). Since (for 2 = 5 +iy)

_ [ 1 1 1 1 }

B (s, 2) =Rels-z + §—% T .s!—~1+z_}w s—1+z)’
e 2 2 2 2 }
T e 87 = “@{(s--z)s T T T T iy

2 2 .2 2 )
= u(|s wzl"+ l¢ —2}* * is-~1+z|*‘+ s —~14z2 ) _
and the same ostimate holds for the other second partials of B, and also
for those of ;. Similarly
' 1
(o0—1+2)]

+

E! (0', z) = —2Re { (av..‘...,.zg)s
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implies:
2 : )= 6 24 " 24

_ Gor o ) = lo—2® " |o~L4gf)’
and the same estimate holds for the other second partials. An estimate
for the maximum abzolute value of the second partial derivatives on
a rectangle ig now obtained by noling that for

(w,’ y’)éR* = ([m"" 6:51 2+ 6.0-] X [y -
and 8 = ¢+t ‘with ¢ > 1 we have

I8 — (&' -y )2 2 (max (o Ly 0@~ &) )2 +{max (0, iy ~ 8,2,

8 — 1+ (2 +iy") 22> {max(0, o —1 4o — 8,)) -+ (max((), 97— 0,))2,
and gimilarly for the other terms.

To illustrate the uge of these bounds, consider z =1, y == 0.3,
8, = 0.07, and d, = 0.03. We find

Spy-+81) nE

Fiw,y) = 025286 ..., ——F(s,y)= —276.24...,

a 1
=@, y) = —0.26377 ..., —‘—-r_/ = 1967.7 ..,

Oy
Applying our earlier discussion we conclude that F 20 om [.93,1] %
x [.845, .3507]. Another example (somewhat move typical) iy obiained
by considering # = 0.57, y = 1.5, 8, = Oy = 015 Then

Fla,y) = 1 836 .

d
"5;1‘?(50, @{) = ——1.09.2,

1
F(w,y):wﬁ.ﬂ&’ﬁ..., and g =48.54...

In this case we conclude that ¥ >0 on [.5,.66] x [1.38, 1.67].
~ To conclude that F(z, ¥} > 0 for all (2, y) with

_ - 1
S €<, ﬁ%'—w)éy%lo,
the above method was applied at the followmo points (it - :m- == 4 iR

a positive infeger, _'af( )o denotes the finite BOqUENes &, b, a--2h, ...
vy dobmb =)

¥ =57, y=.5(2)L5(15)2.4,2.5(.125)10

¥ =.7, y=.35(15)2.45,2.5(125)10,

2 =.83, y=.2(1)2 (125)10

@ =95, y=.17,2.5(.125)10,

rx =1, ¥ = 17,- 21, .24, .26, .28(.01).5(.025).6(. 5)

0
8{.026).9(.02).96(.025)1.1(.08)2(.1) 2.

x";l:
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Proceeding with a little more care, one cun obtain the same 1esu1t by con-
sidering considerably fewer points,

To conclude the proof, we have to consider 0 <y .g*]?l_: (3—2z) and
y 2= 10, Firgt let s consider the fo1me1 situat]'on. In the definition (5.1}

of F(w,y) we apply (4.13) to F”‘( > 5;, z) (4.10) and then (4.15) to

B
]&,( A, M), (4.7) 1o the JJT; terme, and (4.5) ¥ t(%, 2), and digeover

3( 1 1

i 36
P, y) m 6.65 1,(1.01, 2) —{- | = 6.65 8, (1. -
P(atry ) = 6.05.4,(1.01, 2) 2(i_m+§+w)>bﬁo}j’,(101,z) 5
Bub by (4.14) .

B.(1.0L,8) 3 —oe e
sinee-y < 1/2, and so

y 1
Ma,y) =0 for Ogygu{/g(g.mm)'

Tt only remaing to show (o, y) > 0 for + < 2 <1, ¥ > 10. This time

. wfDd .
in (5.1) woe apply (4.12) to E;‘(Z wt- %, z), (4¢.11) to By (I +-£, z), (4.9) to
the F; termy, (4.6) to B{1.25, 2), and (4.14) to B,(1.01, 2} to obtain

13.566 9 12 1 12 -
Flwy y) 2o = — T T — ;
(LOLE+y? ' =L w1 (3B
— 13.56 13 21 < b6y* —22 21
TOR03-RyR e (R—d)T (LO3LuN(—F)  (yP—1F
which is clearly > 0 for y = 10, thus completing the pfoof.
Tuble 1. K roal, X = QWD)
1 h D2
0 5 o 2.93.., finite
1 85 8.32... finite
2 8:5:13 22.80... finite
3 . 4350711 67.97... *
4 4-8-5-7-11+13 245.07. .. 1
i 4oB-57- 111817 1010.4. .. 7
6 4357141319423 5123.1... infinite

* finite if Hypothesis R is true.
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Table 2. K complex, K = @¢(V — D)

t D Dk

0 3 1.73... finite
I 3.5 3.87... finite
2 4:3-7 9.16... finite
3 4-3-5-7 20.49... finite
4 4-3-5-7-13 73.89... ?

5 4-3-5-7-11-19 296.2... infinite
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Added in proof, For further results, see also the following papers by thig
author:

1. Some analytic esimales of class numbers and discriminents, Invent. Math.
. 29 (1975), pp: 275286,

2. Lower bounds for diseriminants of number fields. II, to appear in Téhokn
Math. J.

3. On conductors and discriminants, to appear in the Proceedings of the Durham
“Bymposium on Algebraic Number Theory. '
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