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Dedicated with deepest reyards fo the memory of Prof. Paul Turdn

1. Introduction and statements of results. A few years ago Pro-
fessor A, E, Ingham explained to me the proof of theorems like

1) w(@ 4 8°) — w{z) ~2°(logm)™"  with @ =]
and. ’
(2) = f ( m(@ -+ ) ~~c(m)—~1—a§w) dz = Oi(hz(logX)“‘+X’°°)

uniformly for 1< b < X(logX)™. (Here 2> 2, X > 2 and z(2) denobes
the number of prime numbers not exceeding »; A >0. are
arbitrary constants and ¢’ = %.) The pioneering work in this direction
was the proof, due to G. Hoheisel {for references see [4]), of (1) with
some positive constant p less than 1. The two results mentioned above
are due to A. E. Tngham and A. Selberg respectively. In fact the special
case F(s) — —[C’(aa)),(zi'(s))“1 of the theorem to be stated below, is due
to them.

In a recent paper [6] Motohashi raises the following quesfion. Let
N,o(@) denote the number of numbers which are either sguares of in-
tegers or sums of two squares of two integers, not exceeding #. Then is
it true that there exists a positive constant ¢ less than 1 such that if
h = o then

(3) No(@-+h)—No() ~ Ch(loga) =",

where ¢ =27 [] (1—p* "% More recently this problem was solved

p=1(4) :
independently by mysel (who proved this with a = 33/53+¢) and by
Huxley and Hooley (who proved this with ¢ = 7/12 +¢,note 7 112 < 33/53).
T also considered the amalogue of Selberg s result for W, ,,(m) and I proved
it with. ¢’ = 9/2%9 4.
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The result of Huxley and Hooley is stated without proof in Hooley’s
paper [1]. Their proof is not likely to be published. They have educated
. me on their method and allowed me make some comments about their
proof. The main difference between my proof and theirs iz that they
use instead of my contour (used by me in an earlier draft of this paper)
an ingeneous contour which I will call the Huxley-Iooley contour (or
Dbriefly the H~H contour) which I will explain in Section 4.

The main purpose of writing this nofie is fo modify the H-H con-
tour so as to prove for instance results like

) Z ;“(n) = O,,A (h (loga}) —A, +{U7"12+3)

wan<eth
and
- 1 = -l
(5) ¥ f \ ﬂ(n)] da = O, 4 (h(log X)~4 + X146+
w<n<z+h

The results (4) and (5) seem to be new. The new contour enables also
to prove the results of Ingham and Selberg without the aid of explicit
formulae for n{x) and related functions. Thus it not only solves all the
questions raigsed above, but also provides an alternative approach which
is perhaps simpler.

We will state our regult in a gomewhat general form. Let L(s, x)
be the Dirichlet L-geries (for the principal character we take {{s) when
the modulus of definition iz 1) where y is a character mod ¢ (g = 1),
and let s be a complex variable. Let 0 < o<1, T>3 and let N, (a, T)
denote the number of zeros of L{s, y) with real part > o and imaginary
part not execeeding T in absolute value. Let

(8) | Fye, T) = 0T log T)7),

where B and D are absolute numerical constants and the O-constant
iz independent of T and o« but may depend on y and g. The constant B
- is extremely important in analytie number theory. The smallest value
of B known today is 12/5. This is the famons work of Montgomery and
Huxley see-[4] and [2]. Huxley proves his results for the zets function.
But it ig not difficult to extend it for the IL-series. Tt is clear that B has

to be greater than or equal to 2. The assertion of (6) with B = 2 (or 2 +£.

and D =D,) is & famous hypothesis called density hypothesis.
Consider the set §; of all L-series. Now we ean define logli(s, x)
in the half-plane Re ¢ > 1 by the series

33

where the sum over m is over all positive integers and p runs over all

icm

Some problems of analylic number theory 315

primes. More generally we can {by analytic confinnation) define log L(s, )
in any simply connected domain containing Res > 1 and not containing
any zaro or pole of L(s, x). For any eomplex constant z we can define
(L(s, n)f as exp(#logL(s, 8, x)). Tiet 8, consist of the set of all derivatives
of L{s, %) for all L-series and let §; denote the set of logarithms as defined
above for all L-series.

Let P,(5) be any finite power produet {with complex exponents}
of functions of 8,. Let Py(s) be any finite power product (with non-nega-
tive integral exponents) of functions of 8;. Also let Py(s) denote any finite
power produet (With non-negative integral exponents) of funections of 8.
Let &, (»n =1,2,...) be compléx numbers which are 0.(n%) for every

positive constant & and suppose that Fyis) = Zb n~% ig absclutely con-

" vergent in Res > 1. Finally put

o

(8) P(s) = Py()Py(8)Pa(s) Fofs) = ) apn™
n=1
and
N@) = Da, for @20

n=g

Then we have the following

Matn TEEOREM., Let @ ond X be sufficiently lorge ond L<<h <.
Consider a circle of positive radius (a constant depending only on F(s))
with 1 as centre which has no singularities of F(8) (emeept possibly s =1)
in its interior and on the boundery. From this circle vemove the point of
intersection with the real awis which lies fo the left of 1. Let Cy denote the
contour got by traversing the remaining portion of the circle in the anti_—ciockwfise
direction. Let

(9) I(w, k) 'xg%fh(fp(s)(wm)s-lds)dv.
- T ) .

1 2
Then we have with ¢ =1m§ +e and ¢' :lm—ﬁ e

(10) N(z-4+-h) —N (@) = Iz, k) +0,(he 0o 1. g%)

and
1 = ) 1.5
(11) ¥ f ¥ (2-+h) —N{x) 1=, Wide = Oa(hze“(l"gml +X%7,
X ' :

Here B is the constant ocourring in (6) and ¢ is an arbitmry small positive
constanl such that ¢ end ¢’ are less tham 1.
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Bemark 1. The result (10), is due to Huxley and Hooley, in the
special case F(s) = ({(s)L(s, 1))'"Fy(s). Their result is unpublished. For
a guitable L-series and a suitable F,(s) this answers the question raised
by Motohashi, Motohashi’s question concerns Ny(#), the number of in-
tegers, represented by the simplest binary quadratic form X7-+X3, not
exceeding #. This function N,(») was first studied by B. Landau and
Iater by 8. Ramannjan. The function F(s) connected with this problem
has heen generalized by Luthar [3] so as to include the integers represented
by norm forms in any imaginary quadratic field. These results combined
with the above theorem enable us to answer Motohashi’s question for these
more general binary quadratic forms.

Remark 2, It is not hard to get an asymptotic series expansmn as
#~->o0o for the Integral

(12} [F(s)u"ds.
€

Because- this reduces to the asymptotic evaluation with a good erroy
term in

(13) f u‘*‘l(s_l)s(log(s—-l))“ds
C

where z 13 a complex constant and # is a non-negative integer. This.can
be done by first treating the case # == 0 and then we can differentiate
the resulting formula (witk respect to 2) n times.

Remark 3. The result (10), say, with F(s) a negative power of Z(s)
seems to be new, althongh the methods of the present paper are not very
different from the method of Huxley and Hooley. The result (11) needs
some further modifications in proof.

Remark 4. The quantities e~(oe=® gpg ooz 0 appearmg in (10)
and (11) can be improved. o

o) e ol
-l n ex —gl—

7 loglogx L loglog X )
respectively, using the latest zero :Eree regions for L-series. Here g denotes
@ positive congtant.

Remark 5. The resu_lt B =12/5 due to Montgomery and Huxley
gives ¢ = 7/12-+s and ¢ = 1/6+¢ These seem to be the best known
results in this direction.

. We next make some remarks on the deep results used in the proof.
‘We owe very much to the deep results and methods of I, M. Vinogradov

{see the reieva,nt chapters of {7], [8] and also the book of A ‘Walfisz, -
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for reference see [5]). Due to his methods it wag possible for H. E. Richert
to obtain the estimate

(14) &(s) = 0T~ (1og 7))

uniformly in ¢ and T (0 < o<1, 2 < [f| < T, T > 3). Similar results are
also true of L-series. A new method of proving zero-free regions (for
L-geries) of the type (starting from {14)),

(15) o= 1—g,(log Ty~ (loglog T)

in fMl<T, Tz=3 (g, i a positive constant), was discovered by Montgo-
mery (see p. 87, cor. 11.4 of [5]). We have also to use the resulis of HAlasz,
Tuorén and Montgomery (see p. 102, cor. 12.5 of [5]) in the form

(16) : N, (o, T) = O[T~ 100 T))]

uniformly with respect to ¢ and T in 0 o<1 and T>3.

Some of the more elementary but very important results used in
our proof are the Borel-Carathéodory theorem (see Titchmarsh’s book:
Theory of functions, Oxford 1939, p. 174), and maximum modulus prin-
ciple, Cauchy’s theorem and so on. : '

Acknowledgement. T am thankful to Professors M. N. Huxley
and O. Hooley for explaining their method to me.

2. Notation. If g, oy, a5, a; Satisfy o < oy, a3 <o, we denote by
R{ay, a,, a3, a,) the rectangle a, < Res < a,, o3 < Ims < a,. The positive
constants @, b, 8 and ¢ will be chosen in that order in the end. T' will ulti-
mately be a fixed positive power of # {resp. X) and # (resp. X) will
be arbitrarily large.

3. Some preparations

Lmvma 1. Let F(s) = Za, n=s. Then a, = O(n®) for every positive s

{our O-constants hereafter depmd on & though we do not siate this emplmﬂ/y)
Then for T =2, o =1 and ¢>1 we have

. 1 e+iT ms mc-]-a
an N =Da, = [ 7o ?ds+oc,,(..._f_ +we).

2md
c—iT

nET

Proof. The agsertion a, = O(n®) is trivial. For the prdof of the next
assertion see Liemma: 3.12, page 53 of Titchmarsh’s book [8]. Here a slight
change is necessary. We have to use (for positive ¥) :

[ 1 e+iT ys

c
T s ]
omi J )< T[logy|’
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where E{y) =1, 1/2 or 0 according as y exceeds 1, equal to 1 or is less
than 1. Actually the result O,(y°logT) in place of 2y° is sufficient for our
purpose.

TevuA 2. We have with ¢ =1 +eand 1 <A<
c+iT
(@-+h) —at 1428
— N —_—— . __wd 28 R
(18) N(m+h) No) =5 JT #(s) K s+0| " +a )

Proof follows from Lemma 1.

4. The Husley-Hooley contour and its modification. The Huxley
~Hooley contour that will work for the problem of Motchashi is as follows.
We take the rectangle 1/2 o<1, [f{< T+2000(logl)? and divide it
into equal rectangles of height 40(logT)? (the smaller rectangles at the
ends we ignore} seeing that the real line cuts into two equal portigns
oné of these rectangles B,. Let B® (n = —#,, ..., ;) be these rectangles.
In a typical rectangle B (with |n| < n,) we f1x 2 new right side and
obtsin a new rectangle R™® as follows. Take E™', B", R"*' whenever
all are defined and in the nnion of these rectangles, plck out & zero g,
with the greatest real part B, of all the L-series involved in ¥ (s) (*). Con-
sider only the right edges of these rectangles and join the ends of these
edges by horizontal lines. These form the ‘contour with the change that
the econtour shall nofi cross the real line but shall traverse from g, below
the real axis and then makes a circular detour round the point 1 and
comes back to f§, from above the real axis. :

We now make the following changes. Let e, b and & be positive
constants to be chosen later, satisfying for the present 8 < 1, a ghall be
small and b ghall be close o 1 but less than 1. If 8, < 6 then in place of
B, we shall take 8, = 8,-+3a(1—8,). If 8, > 0 then in place of 5, we
shall take f, = f,+b(1—p,). This contour will work from the proof
of the main theorem. It is clear that if ¢, denotes the contour from f§,
below the real line making & cireular detour round the point 1 and coming
back to g, from above the real axis then

f F(s)

is the same as , replaced by O, with an ‘error O(hexp(—(logw)”z)), Ppro-
vided T is chosen te be a positive constant power of @. This follows from
Cauchy’s theorem and the fact that 1—B, = O((loglogT)"m) Thus we
get the main term I(a, )

ds fdu ( fl?' e +u)5’1ds)

(Y} On R" we shall fix the new right side o = f, instead of o= 1.
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5. The main part of the proof. We will now join the points ¢-1iT
to the modified contour by horizontal lines H,, H, of shortest distance.

. We assume that T < & and that T iz bounded below by a positive con-

stant power of @. We also assume that x is sutficiently large. We will
denote the modified contour by M. It consists of , and the portion M,
which lies strictly above the real axis and the portion A, which lies strictly
below the real axis. On H,, H, we prove that

F(s) = O(T%).
We divide the contour M, into 3 parts M, M,, and M, ; according as
<, < o< 64b1—0) or o> 0+b(1—06). Similarly we divide M,
into 3 parts M,,, M,, and M,; We prove that on My, Mo, M,,
and M, ,,

Fis) = O0(T").
We also prove on _'MLS and - M, ,,

F(s) = Oexp ((togT)2-2)).

All these will be shown to follows from elementary eonsiderations in
SBection 6.

Proof of the first part. We have from these remarks and Lemma:z
the following

Levwa 3. If T s boundad both sbove and below by positive conslant
powers of @, then

(19)  N(e+h)—N(@) = I, )+0(hexp( log:r;)””])

1 ' (@ +1)® —a®
tom | PO

M—-C

1-4+2&

T

ds+0( +m2').

Proof. On the contours H, and H,, F(s) —= O{T®) and this com-
pletes the proof. '
LEMYA 4. We have if I h <@

ok

(20) f 7(s) (‘”h) > i =fc4(m+u)du
M-—c’n _ 1
where
(21) Hoy= [ F(s)v'ds.
M-0

Proof. Trivial. )
Tt now suffices to prove that G(u) for u lying between o and @+ his

0 (h exp {—(logz)" %)

e
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provided T is a suitable power of @. For this purpose it suffices to treat
the portion M,, and M, requires only a similar treatment. We divide
the smallest vertical strip containing M, into vertical strips of width
1flogT. Consider the bits of M, say M, (o’), in the vertical strip about
the abscissa ¢'. Then if N,(c,T) denotes the sum YN (e, T) over all
L-series we have

{22) [ lds| = O(¥o(o, T)(logT)")
- Uy(o)

where ¢’ is 6+430(1—0) or ¢--b(L—o) according as o’ <0 or o' > 6
Tsing the estimates stated for F({s) already we have

pB-38)~ \1-0 T157(1_e)1!2(1_b)-3.'2 (1_6)(1‘_0)
@8 6w = oz ) J

i
Tlﬁ?(l»ﬂ)lﬁ(l—b)—3f2 agflog T — 45
+exp ((log I'y°¢—Y) (—-—————) )

&

by wusing the faet that the zeta and JIL-functions have no zero in
a;'1w2a0(10g1’)‘4’5 where ¢, iz a positive constant (this is a deep
Theorem of T. M. Vinogodov, see p. 114 of Titchmarsh’s hook [8F and
p. 205 of Prachar’s book [7]) provided for some positive constant 4

(24) T = mIfB-wr.) and T4ﬂﬂ(1—ﬂ)1:'2(1—b)—3i2 < X.

We first choose & such that B(1/B—8)(1—3a) <1, 0 < a< 1/100, b
such that 3(1—b) < 1/100 and then a # such that the second inequality

in (24) holds. We choose then a small s and this proves the first part of
the theorem.

Proof of the second part. We have

‘1. 2X L . 1 X h
(25) E.f UG(w+u)du| dm.gjff hf]G‘(w-}-u)izdudw
a i)

<—fduf 16 (@)} s % }X 16 ()2 da
X

and it suffices to prove that the expression in (25) is small. It suffices
to consider the portion M, of the contour in & {u) and procedding as before
we break up M, and observe that it suffices. to prove that

(26) _’ _}f] fzﬂ{g)ms lds'dw

X M)
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is small, But (26) is less than

J— = . gerti-l
(27) f (o) Flo) TS sy,
81,55 onM7(c"} 5 B

Thigs is less than a constant multiple of
as+h-1_ 1

— | |ds, d5
5 FR—1 |ds, A3,

(28) T [ (B s+ Flsa)l)

the line (or rather bits of lines) of integration is the same as before. As
hetore this iz

pBa—say-1 y1-0 T]G?(l—&)llﬁ(lwb)":’!ﬂ (1—b){1~—8)

(29) O(T ( bE e
T167(1—6)1/2(1-»b)—3n"2 ay(logTy—4
~+exp ((log T)** ") (—’“__‘xz _ )

provided for some positive constant &

(30) o B and Tmu(a—e)iﬁ(x_b)—-'i!ﬂ < X,

We choose @ guch that B(2/B—38){1—38a)"' < 2, 0 <a<1/100, b such
that 6(%—5b) < 1/100 and then § such that the second inequality in (30}
holds. We then choose a small ¢ and this proves the second part.

Note that we have used in our proof something like this: For every
constant 4y, 0 << §; < %, R(3— 61, o0, U, U+(log U)*?) contains a zero of
I-geries for all large I7. This fo]lows from the method of my paper On
the frequency of Titchmarsh’s phenomenon for £(s), Journ. London Math.
Soc. (2) 8 (1974), pp. 653-690.

6. Some elementary Jemmas. The main lemma Whmh we wish to

_prove in this section is

Lewmwma 5. Let @ and b be constants and 4 o variable satisfying 0 < 2a
< @ < b < 1. Denote by I,(s) an L-series which could be the z¢la funclion.
Congider a fized U with U = 0, +40{logT)?, +80(logT)?% -£120(logT)?...,
0] < T+2000(logT)?. Suppose o is such that the rectangle R{o, oo,
U —60(logT)®, U+ 60(10gT)2) contains a zero on the left edge but is other-
wise zero free..Then in the rettangle R(o+d(1— o), oo, U—20(logT)?
u—{—20(10g1’)) with the disc |8 —1] < (loglogT)~? ewcluded in the case of
L{s) and L-series mth principal 6hamcte'r, we have

log L{s) = of logT)(l d)““’“)_l]oglogl*)

uniformly in d.
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Remarlk. Putting 4 = 3¢ and @ = & we get what was required for
our proof. N
Proof of Lemma, 5. The case U = 0 requires a separate discussion
for {(s) and L-series with principal character. We prove it for {(s) and
leave the L-series with principal character as an exercite. Obviously we
hawve '
1—o = 0((loglogT)™").

I |# < (loglogT)? then in the rectangle

R{o+a(l—o), oo, U—20(logT)% U+20(log T} §
we have

Relog(Z(s)(s—1)) < (loglog T)®

and so hy Borel-Corathéodory theorem (ref. page 2852 of Titchmarsh’s
book [8]) we have in [t < 1(loglogT) and Res > o+ 2a(1 __o-) the esfi-
mation '

log{Z{s}(s—1)) = O{(loglogT)*}.

Now when we continue log{s—1) except in |s—1]{<
do not go round the point 1 we have

log{s —1) = O((loglog T)?)

(loglog I)~* but we

and so
logZ(s) = O ((loglogT¥.

This proves the result if |t} < $(loglogT)2 If
1(loglog T')® < {8} < 20 (logT)®

it sutfices to consider Relog{{s) <
we have

and Reszota(l—o)

(loglogT}? and so in Res = a+2a(1 o)

log&(s) = O{(loglogT)3).

This proves the result.

We now consider the remaining cases together. In these cases we
need only the estimate 1—-o = O{(logZ)™'}. We have in Res> o+
+a{l —g) the estimate :

Relog L(s) << B (1— o)logT + ¥, loglogT |

where B, and ¥, are constants. This with Borel-Carathéodory theorem
gives in Reszo +2a(1—0), Ims—T| < 30(logT)e,

" loglog®
log L{s) = (10gT+ _ﬁ"ig) = O(log TloglogT).
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In the next lemmna we prove that log L (s) = O(logiogT) oh theline Res =1,
If ¢ is 2 point with real part ¢+d{1—¢) and Tms— U] < 20(log "2,
then we apply maximum modolus principle to the funetion

(W) = (logL(W))_G(W_S)zzm"'s) (Z a positive real number)

to the rectangle o +2a(1 ~ o) < ReW <
choose Z suitably. We obtain

< 1 and Ims—T7| < 30{log T2 and

#(s) = logL(s) = 0{{(logTloglog T)*~*(loglog T)3-2|i—2a"")

and this proves the lemma. -
Levva 6. If 2 < T and T = 30 then

log L{L -}-dt) = O(loglogT).
Proof. We have with s, =1+, and a positive number ¥V > 2,

’{ —JJ nyp— _ 1.
24 2 mpmﬂ T 2mi (tog Lisa

Relf=2

+ W) (WY VAW,

where the sums over m and p are clear. Tt is well-known that L(s) £ 0

in Resz 1—(ogZ)™" (Jt| < T and T sufficiently large) and there except

in s|<2, L'(s)/L(s) = O(logT) and so logZL(s) = O(logT). We first

assume that ¥ < (logZ)%¢™* and break off the integral at Im T

= +(logT)*. We then shift the line of integration such that Re(s,--W)
—(logT) ™ Choosing ¥V such that

ploen ™ — (logT)*
we see that
P
log L(s,) = 0(2 ZWM +1) — O(loglogT).
m=l .

This ean be seen by breaking off the series at p™ =

V(log¥)® and then
using Y p7! = O(logloga) . ~
> 2

References

{11 €. Hooley, On.intervals between numbers that are stims of fwo squares III, Journ.
Reine Angew. Math. 267 (1974), pp. 207-218.

[2] M.N. Huxley, On the: difference between consecuiive primes, Invent. Math.
15 (1972), pp. 164-170.

- [3] Indar S. Luthar, 4. generalization of a theorem of Ltmdau, Acta. - Arith, 12

(1966-67), pp. 223-228.

{4¢] H.L. Montgomery, Zeros ofoumte-ms, Invent. Math. 8 (1969 1} 3406-354.

2 - Acta Arithmetica XXXI.4



394 ' K. Ramachandra

¥y

5] H.. L. Montgofnery, Topics in muliiplicative. nwmber theory, Lecture Notes
in Mathemsabios, Vol. 227, Springer-Verlag, Berlin 1971.

[6] TYoichi Motohashi, On the number of integers which are sums of two sguares,
Acta. Arith. 23 (1873), pp. 401-412. _

{71 K. Prachar, Primschiverleilung, Springer-Verlag, Berlin _1957.

{8] E.C. Titchmarsh, The theory of the Riemann zeta-function, Clarenden, Prens,

Oxford 1951.

SCHOOT, OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
Colaba, Bombay &, India

 Received on 9. 1. 1074 (624)
and in revised form on 26. 5. 1975 .

icm

AQTA ARITHMETICA
XXX (1976)

Some non-linear diophantine approximations
_ oy
R. C. BakEr and J. GasrAr (London)

Totroduction. Throughout the paper, k denotes a positive integer,
¢ an arbitrary positive number, and C(k, &) & positive number depending
at most on k and &, not necessarily the same at each occurrence, similarly
for O(k), C(e). |la|| denotes the distance between o and the nearest integer.
We write K = 257,

In 1948 Heilbronn proved the following deep and important theorem
[11]. |

TEEOREM 1. For any N = 1 and any rsal 8 there is an integer @ satis-

Jying

1<as< N and o) < G(s) N7+,

Heilbronn’s result is analogous to Dirichlet’s theorem (Lemma 3,
below) in that the degree of approximation and the constant are inde-
pendent of 8, ¥. We can rephrase it as

min |6z < G(s) N71**e.
Il N
The method of [117 has been applied by several authors. Thus Danicic
[6] and Davenport [10] proved independently:
THEOREM 2. :

min [je¥] < Ok, &) N-VE+® (N >1,0 real);
LN . )

(N=1, 6 real).

and Davenport [10] proved _ :
THROREM 3. For any polynomial f of degree & without constant term,

min {f(@)] < Ok, o) N-VEE-DT (¥ >1).
1<

Davenport’s paper forme a very good introduction to Heilbronn’s
method and to this paper in particular. _

Simnltaneons diophantine approximations of this kind have also
been studied. In [18], [16] Liu (improving a result of Danicie [6], [7])
proved the following '



