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1. Tntroduction and statement of results. The classical zero-density
estimates of Ingham for the zeta-funciion, ax well as their more recent
analogues for L-functions, can be significantly improved in the region
o > 3/4 by using the Haldsz—Montgomery method ([4], [12], [13]), which
yields sharp estimates, better than what one can deduce from known
mean-value results, for the frequency of large values of Dirichlet poly-
nomials . -

: aN
(L.1) Fs,0) = > agg(m)n™
N1

Recent developments of this method ave based on the “reflection argun-
ment” of Huxley [6]-{8] which leads to the problem how often ftwo

.different Dirichlet polynomials can be simultaneously large. In [117].we

gave 3 simple variant of Iuxley’s method with an application to the
seta-zeros. In this paper we consider another variant which makes use
of the mean fourth power estimates for L-functions on the critical Line.
Let a Dirichlet polynomial of the type (1.1) with variable Dirichlet
character y and variable complex number ¢ be given, and write

aN
G = 2 [
ATt

Buppose we arve given a set of pabs (s, ), 7 =1,..., I, where the
points s, = a1, satisfy o, 2 0, |, —%| < T, and for v == § either g, 5 2,
or [t.—t%,) > 1. Further, suppose that [f(s,, x.}l= V>0 for all r. We
shall estimate the number B in three cases: (i) all ¥, belong o the same
modulus g; (i) all gz, are primitive characters of conductor at most ;
(iil) y, is the principal character y,(mod 1) for all ». Let B, B, and E,
stand for the respective Bmumbers. In the following, the constants
implied by the symbols < and $ will be absolute unless otherwise indi-
cated - by notation (e.g. <,). Our main resulf is the following
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TIII:OR,EM Let & be any fized positive number and b any fived positive
mtege# Then in the notation above (with T = 2), we hawve

(1.2) By <, OGNV 2+ qT (P NV + (qTG V) (¢T)°,
(1.3) By <op(GNV QT (G NV + (@2 TGV 4" (QTY,
(1.4) By < ée,;c(GNV‘“—}—TG3“1”5N1‘1”°V‘G“”“—I—T(G‘*Nz‘lf"")’”‘) e,

Thiz implies new zero-density estimates which are formulated in
the corollaxy below. Let ¥N(a,T, y) stand for the number of zeros of
L(s, y)intherectangle e < o < 1, ft| < T, and write N (a, ') = N(a, T, z,). -
Let Y denote a sum over primitive characters.

COROLLARY. Let ¢ and & be as in the theorem. I’hm for 314 < oL 1,
T=2, we have

(1.5) D) Nia, T, 1) <ulgDy @i,
: xmod_q
(1.6) 2; 2* N(ay T, q) <€ p(QUT) 100 —0bte,
xmodg )
(1.7) 2 Z*N(a, T, X) <Earﬂ(@zma),fi;{(u)(l—a}vl-a,
g=) yxmodg ]
(1.8) N(a, T) <,,TN-a+e

mdA( Bk ;
(8% — 3a+3 6k’ (4k—38)a-+8—2k )

5k
( (16k —5 a+5 —12%’ (skm5)a+5—4k)’
3 3%
(8% ~8)a +3 —6k’ (3k-2)a+2_k)

In particular, choosing k = 2 in (1.5) and (1.6), k == 4 in (L.7) and & = 3
i (1.8), we have A (a) =2 for az21/26 = 0.8076..., dy(a) =2 for

> 7/9, Ay{a) =2 for a>11/14 == 0.7857..

Remar k.s 1) In the following dlscu%mn we omit factors like (¢,
(@), I°. It in (1.2) or (1.3) the number ¥ exceeds respectively 611"°(QT)”’4
or G”ﬂ (@TY, and N < ¢T or < @7, then the limiting case Fk-»oo
gives the estimate GNV 7, obmmed by Montéomery in [I"J Recently
Huxley [8] proved the estimate .

(1.9) | By < GNV~2 L qTGNV~6

if V= 2N (and an analogous result for &,). Neither of the ostimates
(1.2) and (1.9) containg tha‘other; roughly speaking, (1.2) is sharper than

Aa(a) == max (2,
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(1.9) if V is large. Accordingly (1.2) leads to new density estimates near
4/5, while (1.9} iz better near 3/4.
©2) A3 koo in (1.4) and V> G*NU4 we get the case ¢ =1 of
Huxley’s estimate (1.9) (this special case was ueated already m [5]).
A method of Ramachandra [15] gives

(1 10) Ri <& GNV-—2 +Tga 1MNI ]/Iqu—ﬁ+21k+l1( V-»&)R:;
in [11] we proved the estimate
(1.]1} -RB £ G,Nv—z ~{-—TGa 1/FGN1-—1;‘.'5“[7'—-6+2M:__I_TG7m3/kN3—1}kV-—]du+6/k_
Both (1.10) and (1.11) are contained in (1.4) if V> GY¥2NYA

3) The results listed in the end of the corollary are new. The density
hypothesis asserts that 4;(a) =2 for 1/2<<a<1l Let a, be such
that the density hypothesis for £(s) holds for a > ¢,. The following resulty
have been obtained: e, < 9/10 (Montgomery [13]), a, < 5/6 (Huxley [5]),

dp X 21/26 (Ramachandra [15]), o, < 0.8059... (Forti and Viola [3]),
ay 5 415 (Buxley [8]; weaker results in [8], [71), o < 43/564 (Jutila [117).

- In the cases (1.5)—(1.6) the corresponding density hypotheses were known

for ¢ > 5/6 (Balasubramanian and Ramachandra [1], Huxley [6], Jutila
[10]), and in the case (1.7) for az11/14 (Huxley [9]).

In conclusion, I wish to express my gratitude to Prof. M. Huxley
and K. Ramachandra for kindly informing me on their unpublizhed
results. :

2. Lemmas. The proof of the theorem will be based, beside the

" Haldsz—Montgomery inequality (3.1), on three avxiliary lemmas. Lemma 1

is a straightforward generalization of the basic lemma of [11]; Lemma 2

is an elementary inequality which plays an important role in our argu-

ment since it enables us to make uge of the mean value estimates for
partial sums of L-series, stated in Lemma 3.

To formulate onyr first lemina, let & be a positive number to be speci-

fled Delow, and detine

: b(n) = Q—Wzm’”_(,-—cwﬂ*!

H(s, %) yb x(nyn™

Twmma 1. Let y bé a aha.matw (mod gy ex>0, =22, N < ql,
fo =log2qT, ¢ = a-++it, 0o, U <T; also suppose that [f) == b &f
y o= xy. Lot g{t] + h3)(7cN)"1 L M < (g2 Then we hove

WM
(2.1) H(s, 1) <4 N¢° f 1 n)nb””““ﬂ!dr—kl
— R 1

the factor g° can be omitied if y i primitive. (If M < 1; then the sum means
2ero.) :
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Proof. The proof is essentially the same as in [T17] {in the case y = x,).
We gketch it for the sake of eompleteness.

We may suppose that g7 is sufficiently large. Suppose Livst thatb Z
Iy primitive. Starting from the identity [12]

w w
His, ) =r | Ifs+u, x)f(1+wh-1)(—(—2~zﬁ = )dw,
2 : W
+ Retw=2

we move the integration to the line Re(s4w) = —I1 /2 (ot w=1-—g
we get o residue <€ 1 if y == y;), use the Eunetmnal equation for L{s, x),
split up the series of L(1—s—w, ¥) into two parts: the partial sum of
length M and the remainder, ecrrespondingly getting two integrals I,
and 7,. In I, and T, we move the integration respectively fo the lines
Re(s+w) ==1/2 and Rew = —~hf2. Then I, gives the main term in (2.1)
(without the factor ¢°, obviously the integral can be cub at Imw = LAt
with small error) and I, becomes an error term, in view of our.choices
for A and A,

If y is imprimitive, then we first @xple'm L(s 1w, x) by Lisw, %)
with * primitive, and again L(1l —s—w,%*) by L{1l—s—w,¥). This
TeaNs mseltmg certain factors to the' mtegl a,nd, and this may give the
factor ¢* in (2.1).

LEMMA 2. Let a,, n =1, ..., N, be complex numbers of absolute value
at most 4, let &, be a real number and v, « Dirichlet ahcwactm', forv =1,..., R
Then we hcw.o

R N
5’ ’ a, T () g {m) 1) E |2 P2 2_
P 8= ] ne=1 r8a=l f=1

Proof. In fact the assertion is the case z, = 7,{n}n~"4+% of the
general inequality

N
2
2 ? & zmzsn {\‘:'A Z ’2 RynPan ] +
#,8=1 n A=l ==l
Tor the proof of this note that the left-hand side is
N i
& = - |2 . 12 ‘1 o |2
‘,§_. “ana’nfgzrmzm’ < 4® E l \ | 3 B By | -
my=1 Pl e, =l r8—=1 naal

. LemMA 8. Let for each v =1,..., R a real nwmber &, with 1| = T
(I'=2) and a character y, be given. b’uppoae that for v £ ¢ elther y, 5 g,
or |[h—it| = 1. Let N be any positive integer.

() If all the y, belong to the same modulus g, then
5 N ;
(2.2 2'2 y(n)yn B o (N - (RT'q)) 1og™ (¢T).

F=1 fe==]
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(il) If all the x, wve primilive characters of conductor of most Q and y
is any eharacter of modulus at most Q, then

i

(2.3) 2 ]E () g (mym 2

r=]1 mn=l

<7+ (RT)Q)(QTY.

T'roof. If x ix a character (mod ¢) and [{| < T, then for Nz g1™®

N

‘T x(n)’i’b"‘m'm = g (y) m F (12 —it x) ;[_()(1(){;«(2@)
£ A WO ’ ’

where &(y) = plg)/¢ or 0 according to whether y = g, or y # z,. Hence
in this case the estimate (2.2) Is an easy consequence of the discrele ana-
logue of the estimate :

7
(2.4) : D (a2, pltd < gTlog”(gT)
xmodg ~T
({147, Th. 10.1 and 10.3; in these theorems the sum is actually over primi-
tive characters only, bmt this restriction is easy o remove). In the
case N < g7 we may apply (2.4) or its discrete analogue in the integral
representation

N
2 5 (m)m ek
1

N] fa it 1

=g T o

a—igl"

b tadl! :
L2 —it 4w, ) NP dw +0 (loggT),

where ¢ = 1/log(¢T). _
Similarly, for the proof of (2.3) we use the estimg.te

T .
5) 33T [ B, i<, (@)

o< 2 modg —T

ov its discrete analogue. This can also be proved in the way explained
in [14]. Alternatively, a nice and simple way for proving (2.4}, (2.5) and
similar estimates has recently been deviced by Ramachandra [167; his
method avoids the difficulties connected with the approximate functional
equation for L(s, x).

3. Proof of the theorem. Lot us fivst consider the proof of the esti-
mate (1.2). Tt suffices to prove it for systems satisfying

= lgl = W= 10‘5@(‘11]) forr s = g



60 ’ M. Jutila

Also we may suppose that
0o, 1/2 and N=gl.
The HMaldsz—Montgomery inequality [12] implies that
(3.1) RV < GRN+6 D H (5,45, 1:7%)]-
1558

By Lemma 1, we have

nt A
IH’( B, 7)€, N]/-q f vx; ‘H) L )?lelz-H(ﬁ,.—tS»]-r) dv 1,

—i? J.

where ¢(T'+R*)/N < M < q(14-h%)/N. Substituting this into (3.1} and
using Holder’s inequality, we get
. n2

(32) BV <,, GRN LGN eR [ {Zy(f)""z}”“‘dwalaﬁ

-2 rEAs 1

further, by Lemmas 2 and 3, this iniplies
BV? <., GRN +GNP (qL)PR"™*{R (g7 N)* + (RTq)"®) P - ®

~ (note that z.(n) <,;n"). The term G'R® can be omitbed here, 80 we get
an inequality which implies (1.2). The proof of (1.3) is - analogous.

Finally, for the proof of {1.4), we ute (1.2) and the Huxley [5] sub-
division of the points s,. It means we apply (1.2) with ¢ =1, T = T,
and multiply the resulting estimate by 1--T5'T to get an estimate for &
an optimal choice of T, completes the proof.‘

4. Proof of the corollary. The deduction of 2 density estimate from
a “large moduli” theorem for Dirichlet polynomials iz well known, so
we just skefich the proof of the corollary. Let us consider the proof of
(1.5). We may restrict ourselves to zeros o satistying for certain @y, wnjh
la,] < z(n) and for certain Te[(¢T)%, (QT)”‘ +ae)

(41) D mea(m)n > (loggT) ™

U<n=alr

(see e.g. [3], Lemma 1.1). Raising this inequality to a suitable iuu;uafl :

power, we get a “zero-detecting” polynmomial with length bebween %
and Z**, where Z is an arbitrarily chosen number > (gl’)(“ 88, Applying
(1.2) and choosing Z optimally to minimize the extimate, we obtain (1.5).
The estimates (1.6) and.(1.8) are proved likewise. Tor the proof of (1.7},
we raise (4.1) to such « power that the length of the resulting polynomial
Is between Z and Z%* with 23 (QT)CH™ and use (L.3).

icm
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5. Concloding remarks. The “long” partial sums of L(1/2--42, x),
oceurring in the proof of the theorem, can be estimated directly by using

“known estimates for |L(1/2+44t, x)|. For example, if

L(1/24it)
then thiz argument gives
.R < ok (G NV—E __I_Tas—lj?chmlﬁc'V-G-I-Elk +TG1+I.*/DHNI+RI20V*z—ﬂl.'ic) Ta .

<1,

this i h])‘lﬂ‘p(‘l than (1.4) for large V, and implies the truth of the density
3k+e Bk—4
4_ij2@’ ;h% . With & = 3, ¢ = 1/6,
thix gives a new proof for the bound 11./14.

Tt is also possible to estimate L(1/2 4+ it, ) by using zero-free regions,
the functional equation and convexity as indicated by Bombieri in [2];
thiy argument leads to a new proof of the bound 21/26 in the corollary.

hypothesis for £(s) for ¢z max (

Appeudix

In [11] we noted that Huxley’s estimate (1.9) (and its @*7T-analogue)
can be proved in.a simple way by using the present method. The proof
can be gketched as follows. ‘

Suppose we have the situation explained in the introduetion and
want to estimate &,. In (3.1) there exists an index #, such that

R*V* < GRN +GR D {H (5,5, Follng)]-
HES )
Estimate here H({...) by Lemma 1, and multiply the term with index #
by V(8. %) At a vesult we get a sum of integrals having a Dirichlet
polynomial (with variable coefficients) of length < ¢(T'+A% in the in-
tegrand. Carrying out the summation under the integral sign by appealing
to & well-known mean-value estimate for Dirichlet polynomials, we get

Rz Vz <s G.R.N —}—GWERMQV_INUZ (qT)UZ.-l—a.

This implies (1.9). The proof of the @*T-analogue is similar.
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In 1949, A. O. Gelfond proved ([4], Theorem 1, pp. 132-133) that
if @ is an algebraic number (a # 0, loga # 0) and f is a cubic Irrational
number, then the two numbers ¢ and a® are algebraically independent
(over @). Shortly thereafter Gelfond and N. I. Feldman [6] gave a measure
of algebraic independence of these two numbers. B. Wallisser has con-
jectured that, for § a cubic irrational, o’ and a™ are algebraically inde-
pendent even when a is only well-approximated by algebraic numbers.
Tn this paper, we establish Wallisser’s conjecture when o is closely ap-
proximated by algebraic numbers of bounded degree. We wish to thank
M. Mignotte for hiy helpful comments on an earlier draff of this paper. -

TwroREM. Let o be o complex number, a = 0, loga 5= 0, and § & cubic
irrational nwmber. Let fi N>R with [ oo and let dye N. Assume thai
for imfinitely many TeN, there exist algebraic numbers ag of degree < d,
satisfying

logheight a, =< T,
log ja — tty| < e,

Then the two numbers of and o ave algebraically independent.
Remark 1. If ¢ iteelf is algebraic, we let a = agp for T = logheight a. -

Remark 2, If o is a complex number (a 5 0, loge 7 0) and B a cubic
irrational number, with o, o algebraically dependent, then for all d,e N
there existi two positive constants '

O = Qla, 5, dy), H = Ha,§, dy)
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