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Notes on generalized Dedekind sums*
by

DON_ALD E. Kxurr (Stanford, Calif.)
When Richard Dedekind prepared a commentary on one of Bernhard

Riemann’s fragmentary manusecripts, for publication in Riemasnn’s Col-
lected Works [13], he introduced a nmmber-theoretic function which has

Tecently arisen in several different contexts. Let

13, if 2 is an integer,
{0.1) é(x) =

0, otherwise;
(0.2) (2)) = o—l2]—3+38(0) = o—[w]+3—}8a).

{Hexre lx] denoteg the greatest integer < & and [#] denotes the least in-
teger = ».) Then Dedekind’s sum wag the speeml cage o= 0 of the gener-
alized Dedekind sum

(0.3? ok, ye) =12 y (( ))((ha;:c));

defined for all positive integers A, k and all rea.l values e

Our primary purpose in this paper is o examine this sum closely,
and in particalar to show that ke(h, k, ¢) is always an infeger which can
be caleulated by an efficient algorithm that deals only with integers.
In view of the applications of generalized Dedekind sunis, we shall also
be interested in estimating and Jor eomputing the minimum and maximum
values of o(h, &, 6) when b and . are fixed. '

A secondary purpose of this paper is to illugtrate the frmitful inter-
play between computer science and mathematics. On the one hand, we

) * This research was supported in part by National Science Foundafion grant
%J 36473X and Dby the Qifice of Naval Resecarch contract NR. 044-402. Some
computer experiments reponted herein were done via the ARPA network with the
MACSYMA system, a project supported by the Advanced Rescarch Projects Agency
under ONR contract. N00014-70-«A-0362—0001 Reproduction in whole or in part
is permitted for any purpgse of the United Siates Government.
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shall see that symbolic formula manipulation by computer is an aid o

the development of number theory. The quest for efficient means of cal-
- eulation iz also shown to lead to nondrivial results of & purely mathemati-

cal magure that would probably not have been diseovered otherwise.
Furthermore, the mathematieal results derived here have immediate
application to the problem of generating random numbers on a computer,

a8 diseussed in [7] and [10]. _

In recent vears important new results about generalized Dedekind
gums have been derived by U. Dieter and J. Alrens [6], and this has
substantially improved the analysis’ of random numbers generated by
& linear congruential recwrrence relation. In their fortheoming book [7],
they malke use of the even more generalized Dedekind sum

> ()

Qi< el

C(04) s{a,elx,y) =

where 6, ¢ are arbitrary integers and m, y are arbitrary reals. (See Rade-

macher and Grosswald (127 for a comprehensive survey of Dedekind sums.
and their generalizations.) If is not difficult to verify that

(0.5)  s(a,clz,y) =s(a, —e|—2,¥) = s(a, clz— [z, ¥~ 1))
and : that ' ‘

' 1 yd |1 oy + o 1/ ay+ex
(0.6) s{a,ela,y) = {5 ola e, wy+cm)+7((—7_~)) ~§((--G—))

when ¢ >0, 0 < y<1 and d = ged(a, c); henee it suffices for Qur' pur-
poses to work with the simpler function o{k, k&, ¢)-

- Bquations (0.5) and (0.6) follow readily from the well-known, ident-

ities

(0.7 (=) = (=),

(0.8) ((@-+n) = (), intoger n,

(0.9) _}: ((ac—)—»—:%)) — ((ne), integer n >0,

Dagl-im
which #ze uged ﬁeely'below withont explicit mention.

1. Preliminary transformations. For the most paft we shall study

o(k, k, ¢) only when % is relatively prime to % 2nd when ¢ is an integer. -

This is sufficient to establish the general behavior, because we have

iom
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LeMarA 1. Let B, k be relatively prime and let ”h' = 1(modulok). Then
{1.1) o{dh, dk, dc) = a(h, k, ¢), integer d > 0;

1.2)  o(b, k,e+8) =a(h, ko) +6((h'e/k)), integer c,

real 8, 0<C 81,
Proof. For (1.1), we have

S () - )

=i <dl

For (1.2) we have

SN - SN )

i<k

Note that thiz resnlt is independent of (. m
Twa other gimple tranzformations will be useful:
LemymaA 2. If 0<C A<k,

{1.3) olnk+h,k,¢) =o(h,k,c), inleger nz=0;
{1.4) “olk—h,k,0) = —olk, k, 0);

{1.5) ' (b, &, c+nk) = o(k, k, c}, infeger n;
{1.6) o{h, k, —¢) == ok, &, e).

Proof. Equations (1.3) and (1.5} are obvious; equation (1.4) follows
it 7 iz replaced by k—j; and equation {1.6) follows from {1.4) sinee
o(k—h, %, ¢) obviously equals ~o{h, k, —c). & :
~ The key tool in algorithms for efficient evalnation of o(k,k,6)
is the so-called reciprocity law for generalized Dedekind sums, first proved
in general by U. Dieter [5]. : o ' '

TEMMA 3. Let h, k be relatively prime and let 0 <c<{k, O<<R<EK.
Then .

@ b,k 0+ ok, by o) = fik, Ey 0)
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where
k 1—;—6[0] {e] ¢
(1.8) flhy Ry} = ’_‘f‘—‘}‘ E 6 W —3e(k, ¢);
1, 4 ¢=0o0r ez 0(moduloh),
(1.9) e(h, ¢} = o -
0, 4if c¢>0 and ¢ = 0(moduloh).

Proof. We shall defer the proof for ¢ = 0 until Section 3. Assnme
that ¢ is an integer, 0 < ¢ < k, and let &', &’ be integers satisfying

(1.10) b+ kR =1.

Since

(1.11)

(( 7”:;’+ 1 ))

hi+e 1 1 +e 1 [(hite+1
(N el )

an argnment like the one we used in Lemma 1 to derive (1.

2) proves that

.q(h, k,et+1) =a(k, k,c)+6((h];c)) . 6((151(%9))

Iii fOH()WS h; lnﬂuetl()n on ¢ lha;l

Gk, 0) =a(h,, 0)+12 g ((
( .'hJ __7:55_))

“We also have, for 0 j< &,
1 kg
7w )

)= (G =) -
VE Rk R
Hence, adding {1.13) to itself with % and & interchanged,

(1.12)

(1.13)

(1.14)

-5

by iy ) alky byo) = alh, by 0+ o(k, k, 00+ o
1 > . kfj k’
2 D& olB0) o~ (5
0\3<c

= olhy ke, ) +o(k, b 0)—&-«6—_6[ ]+3a (h)

= o(h, k, 0)+o{k, h: 0) +f(h1 k, o) _f(h; k, 0).

icm

' Furthermore the partial quotients g, ...,
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When 0 6 < 1, eguations (1.2) and (1.14) imply that
olh, k, ¢+ B}—}-a(k,_ hye+0) = o(h, &, c)+o(h, k, ¢) +6e/hk—38(c/h).
Therefore (1.8) has been established for arbitrary ¢. m

2. A Euclidean algorithm. The resuits reviewed in Seetion 1 lead
immediately to an efficient scheme for evaluating o(k, %, ¢). Let b and %
be relatively prime, with 0 < b < k, and let ¢ be an integer with 0 < ¢ < k.
By Lemmas 2 and 3, '

21 ok, k, € = flh, ], 6)—clk, }, c)

—f(h k, e)—o{kmodk, &, cmodh},

hence the evaluation problem for (&, k) reduces te the same problem for
{kmodh, ). (We write “smody” for the remainder of » divided by ¥,
namely z—y|x/y].} The same recurrence underlies Fuclid’s a.lgarzthm for
determining the greatest common divisor of % and %.

By writing out the process in detail, certain slmplifiea,tions will
become apparent. Let us sef

My =k, my =k, ¢ =u¢

by = Legmyiq by

My pn- == My modmjﬂ, iy = G modmyy,,

(22 & = Lmgfmy, ],

for 0 < j << t, where t is the least integer smeh that
(2.3) mt+1 = 0. i
For.example, if # = 4 we have the tableau

Ny = Gy My + M, €y = by, + 64,

Ty = Ay Mg+ Mg, e = bymy ¢y,

My = Gy Mg+ My, 3 = bymy+ 6y,

Ty = 03My, ey = bym, +04.

Since b and k were-relatively prime it follows that

(2.4) My =1, =10

a;_; are positive integers,
and (2.2) implies that .

(25) O<m,<my, O0<g<my, O0<b<a, for O<j<t.

Equation (2.1) says that
0<j<t,

olm Ly, 6) = flig g0, My, 6)— 0 (M4, mi+lr €141
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and o'(mh."l,'m,, ¢) = o(0,1,0)= 0; henec by iferating fhis recurrence
we have

(2.6)  a(h, %, c)

U (_1)j(waj+1 L™y v 1466

— BE
My My MG

—6b;— 3e(m; .1, Gj))_

[, e

Thig equation can be simplified in several wags. In the first place,
my My, = @Mty 30 the first two terms in the summand, reduce
to a; plus & telescoping series. In the second place, the. e(m;,., ¢;) term
is easy to take care of; if z is the least subseript such that e, = 0, we have

.1 P (—1Ye(mpe,, 6) = ($mod2)+(—1)— &y

1<

In the third place, it iz well known from the theory of continned

fractions that 3 (1) /mym;, . is a fraction whose denominator is-m, = k.
’ sgi<t .

Therefore equation (1.11) implies by induction on ¢ that ko(h, k, ¢) is
an integer. In other words, the sum
(2.8) D (=1 ey,

(BB
which is & rational function in the indeterminates ay, .., @,y by, ooy By,
- always evaluates tb a rational number with denominator m,.

From these considerations it is almost certain that the rational
fanction (2.8) can be simplified in general, and the author therefore used
the MACSYMA symbol manipulation system [11] for ¢ =5 to guess the
general form to which (2.8) simplifies. (MACSYMA is a large collection
of computer programs, written to perform gymbeolic mathematicad caleu-
~ Tations as well a8 numerical operstions on numbhers of arbifrary precision.
In particular, MACSYMA is able to simplify rational functions in any
number of indeberminates. Since it took 2 total of less than ten minutes,

from the time the amthor thought of simplifying (2.8) nntil hig computer

terminal typed out the simplified numerator and denominator, this ean
be conzidered a good demonstration of the use of symbolie mathematical
systems in the discovery of nmew mathematics. In principle, of course,
Euler would hive been able to discover the same identity in the 18th
century, if he had sef himself the problem; but it would almost certainly
have taken him much longer, and perhaps the lengthy formula manipu-
lation would have been quite frustrating.) The resulting formula is
stated in the following lemma. '

Lenva 4, Let -

(29) po=1, pr=ay, and p;=a_p; ,Fp;_, for 2<j<.

icm
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Then the definitions (2.2) imply that

! .6 ;1
210 Z -1 =
( . ) (=) Wy My T omy

Segi<l 0&-](?

_1)"bj((sj+ 041 D5 -

Proof. Littlewood has said that any ideniity, onee written down,
is triviak [4]; however, we would like to understand what lies behind
equation (2.10), so we don’t sinply wish to prove it by indnetion.

Aceording to a well-known identity of Sylvester, easily proved by
induction on j, we have

(2.11) Wy = Py ey, for D0 j<Cidl

Ag an alternative to induction; this identity can be “understoed” by
using Euler’s characterization of the continuant polynomials p; (see [10],
exercise 4.5.3-32). Bquation (2.11) leads immediately to the formula

(2.12) 1yp, /aﬁu My y -

D= immy, = (-

0575

Now by an appropriate interchange of summation,

Ty Z {—1) ( 2 b m,,_) g m;

i<t Jsr<t ‘
= m, Z Boby My My 2 (— 1Y fmymy
O=r <t s f<minfr,s)
O=is<t :
= Z Boby .y, My — l)mmr's]fpmin(r,a) /mmin{r,a)-i-l
Ogr<t
st
= Z brbs( ):pr s+1+ Z b b 1)3:psm’r+l
Osir<is<ct Dt
s 2 rPr T 2 (_1) bs:ps s+1°

Or<i Ol

Using the proof techmque of Lemma 4 it is posslble to derive the
congiderably more general identity

Sl 1

(2.13) S 1y =
( ) Wy Wy

n<gd LS Bt 4

o (f IR (L

C mcj’rl

where f is any pulvnom.tal (and hence, any frmotlon analytic at. zero),
this is an observation one does not expect MACSYMA to make. One of
the advantages of computer-sided mathematics is that it spurs us on,
as we strive to maintain our superiority over the machine. -

W
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Combining Lemma 4 with equation (2.8), and using (2.12) when r =
yields
@14) o(h, k) = D (—1) (0,—6h,—3e(my,y, ) -+

0j=<t

7'{,(;‘Iﬁi‘(wl)t 1_’P¢ 116 2 (— (¢ +Cg+1)p_1)

0Si<t

Therefore the following algorithm is suggested:

A]gorithm 1. Let A, % he relatively prime, 0 < k< k, and let ¢ b
an integer with 0 < e~ k. This algorithm, will output the value of o(h, %, ¢!
(For brevity and precision, ft has been stated in Algol notation, whlc]
is explained Dbelow for readers not familiar with computber progmmmm

langnages.)

0. procedure sigma (integer vilue %, %, ¢);
1. begin integer o, b, p, »p,r; s, szgma.l sv,gma_;,
3. sigmal := G; sigmal ;= h;
3. pr=1;pp:=0; s:=1;
4. while % > 0 do
3. begin comment At this point we have k = my, h = m,,
8. C=1¢; P =1P;; PP=7P;_,, and s=(—1) for some j<1
7. = [kfh]; b= i¢fh]; r = emodh;
8. ~ comment Now a =g, b =b, r =65 '
9, if r =0 and ¢ % 0 then sigmal := sigmal +3 x8;
10. if B =1 then sigma2:= sigmal +p X s;
11, sigmal i = sigmal+ (@ —6 X b) x8;
12, sigmad = sigma2 -+ 6 X b X p X (c++) X §;
13. Cim=1T) $:1= —8§;
4. ri=kmodh; k' :=h; h:=r;
1. —axpﬂop Ppi=p; pi=1;
16. : end,
17. " comment Now s = {—1)f and p is the original value of k;.
18. if 8 < 0 then sigmal:= sigmal —3;
19. output (sigmel - sigma2/p); '
20, end.

‘(Algorithms in Algol notation are expressed as a sequence of instruc
tions separated: by semicolons. A sequence of instructions surrounde
by begin and end acts as a single instruction, just as parentheses are use:
to group algebraie expressions; the instructions are performed one by on
in the stated sequence. Line 0 of the program states that the followin
“ingtructions constitute a procedure for evaluating o(k, &, ¢), given th
integer values &, %, and ¢; line 1 means that the symbols o, b, 5, pp, 7, :
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sigma l, sigma2 are used as auxilimy integer-valued variables in the
following program. If v is & variable and F is an expression, the instrue-
fion %y := B” means that the value of v is replaced by the present value
of B. Thus, “sigma 2 := 1" in line 2 means that variable sigma 2 should
be set to the (initially given) value of &, and “s := —s” in line 13 means
that the value of variable ¢ should be negated when we reach that point
of the program. The instruetion “if R then I, where R is 5 relation and X
is an instruction, means “if R is pregently true, do instruction I, other-
wise do nothing.” The instruetion “while B do I”, where B is a relation
and Iis an instraetion, is equivalent to “if R then begin I; while R do Lend”;
in other words, the ingtruction T is performed zero or more times wntil B
becomes false. Thus lines 5-16 are performed repeatedly until % is not > 0.
Relationships stated between “comment” and the following semicolon
are not part of the program, but they may be nsed fio prove the correct-
ness of the program; we assert that the stated relationships between the
current valnes of the variables will hold whenever this point in the pro-
gram is reached. The idea of the above program is to set sigmal equal to
the first sum in (2.14) and fo set sigma2 equal to the coefficient of 1/k;
comments appearing within the program provide the basis for a rigorous
proof of this fact.)

Lines 9 and 18 of the above program have the effect of subtracting 3
times (2.7} from sigmal. A simpler alfernative would be fio delefe line 18
and to use the definition of e{m,,, ¢) directly in line 9: '

if # 5= 0 or ¢ = 0 then sigmal : = sigmal —38 x s;

This requires only slightly more compubation and makes the algorithm

slightly easier to prove, so the above sequence of instrnctions would be

frowned uwpon by contemporary aesthetes of programming style. The
author spologizes for his bias towards using mathematics to avoeid compu-
tation.

To evaluate o{h, k, ¢ 0) for 8 < § < 1, it suffices fo replace “e-f-+? .
by %e+r4+17 in line 12, and to delete line 9.

The algorithm works entirely with infegers, although fhe integers
can become large when k is large. If necessary, muliiples of & ean be
subtracted from sigmo?2 and the quotient added to sigmal. We have

b; 2 (0 4 611) < &y (mj+mi+1) _
= a; mu‘l‘mg-z-l{ayﬂg — D)< (aj+1)mu

by (2.11). Therefore the size of numbers in line 12 is reasonably well
controlled. m

3. Extreme values of Dedekind sums. Let h, & be relatively prime,
0 < h< k. We shall now develop an algorithm to calculate an integer ¢
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which naximizes ok, k, ¢), for fixed & and k. Such an algorithm can alse
e nsed to find the ¢ which minimizes & (h, k, €), since ¢ minimizes o(h, &, ¢)
if and only if it maximizes o(k—h; k, ¢), by (1.4).

The alternating character of ouwr formunlas in Section 2, i.e., the pres-
ence of the factor ( —1)/, makes it very difficult o see how to maximize
alh, k, ¢); indeed, the form of the angywer we shall obtain shows that it
would be very diffieuit to discover the correct value of ¢ by working
directly with the Buclidean construction of Section 2. For our present
purposes it i3 much more convenient to work with & “subtractive” pro-
cess, using [#] in place of @] in the previeus formulas.

Let us set

_ M, =k, M;y=Hh,
(3-1). -A- = [-Z'I /J] +1-1; -Bj = [G /i' 1-1-|7 :
Mo = (=MpmodM,,,, C;, = (-0 )modM
for 0 <<j< T “hele T is the least integer such that

(3.2) _ My =0.

Gy =0,

(CE. (2.2), (2.3).) For emmple, it 7 = 4 we have the tableau
My =AM, -3 o = By, —Cy,
M, = A;M,—M,, O, =B M,—0,,
My = A Me—M,, Oy =B,M,~0,,
M, = A M, Oy = ByM,—C,.

Ag in the addifive process we have

(3.3).  Mp=1, Cp = 0.

The analog of (2.5) is . N
(B4) " 0< My, < M;, OO <M, O0<B<A4d;, A4,>2,
: for O0Lj<< T

. The important advantage of the subtmetwe pmces‘s is that we now have
an additive Tecurrence,

O'(Mj+_1, j:Gj)=f(-Mj-;Q173I G)—G( i My OF)

= f(M;y, Mj: 05+ O'(I'fHﬂ: M4, 05,
by equations (1.3), (1

o<j<T,
.4); hence the (— 1)’ factor does not appear in

(_3-5) olh, k,¢) = y (My-f-l' 4 Mj l 1-{—60—

— 6B, +3H( _.,+1,O)),

&
0 AR TR T T
—l i 0=0
{3.6) (M Oy = if - @ 220 and Cmod M = 0;

icm
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Our interest in (3.5) rests solely in those terms which depend on ¢;
we obtain the maximum of o(k, &, ¢) if and ondy if we maximize

ird G-
(3.7 (M i —B; + E( 519 Gj))
[iE J(T
over all the appropriate choices of By, By, ..., Bp_;.
‘TuroreM L Let R,k be relatively prime inlegers, with 0<<h<k.
The marimum value of o(k, &, ¢), over all integers ¢ in the range 0 < e <<k,

occurs when B; = 1 for 0 < j<< T in the subtractive process (3.1), (3.2).

Proof. Let
(3.8) - Py=1, P =4y PFPi=4;_F  —P

be the subtractive aunlog of (2.9), Then it is easy to vemfy that the analogs.
of (2.11), (2.12) are

(3.9) My = PP
(3.10) Sy

B j<ir

My, 0<isg T,
a1 = P M ML,

Since each A;> 2, we have P, 2P;_;—P;_,; ie., the P's are convex,

(3.11) P; Pj 1= Py Py,
It follows that s
(3.12) P;=2P; ;—2P; ,+2P; 4— ...,

where we may assume that P_, =P_, = ... = 0. Equality holds in
(3i2yiff jisoddand 4;_;, = d; 5 =... =2, A similar inequality applies.
to the M’y ie, Co

(3.13) : M, = 2Mj+1—2Mm+2M,-+3 -

Now let ¢ be a value which maximizes o(%, &, ¢). We may assume-
that ¢< Lk, by {1.6}; and under this assumption we shail prove that
By, =B, = ... = Byp_; =1 yields the maximom.

For convenienee in notation, suppose we have proved that B, = B,
= B, =1 and we wish to show that By = 1; essentially the same argu--
ment will work for all B;. If C; # 0, the first three terms of (3.7) are

(514) p(0y = Fam At M) AM,—HL,+ 0, (My—Cyf 3
A A MM, MM, M,M, 2
OZP M—M,+M, —M,+M, M,
= —20; [t ) -
Mo, 3( MM, M, M. M,
CiP,
( —2C4(P, P1+Pg))+w
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where W is independent of C,. Since P,/ MM, > 0, the minimum of this
quadratic ¢(C;) oeeurs when the derivative is zero, i.e., when
| Coj My = (Py—Py+Py)[P;

and (Py—P;+Py) [Py 2 1/2, by (3.12).

We may now conclude that Cy < $M,, Dy usmg the following argu-

> } M, and let ¢’ be the valae defined by
G; :MS"‘G;r G; = M,—-C;.

ment. Suppose >
¢ =0y = M,~C, € =M,—0,

Since the minimum of ¢(C;) occurs 2t a point = £ 3;, we have ¢ (O3} =9(C,).
Furt;hermme o(My, My, O) = o(M,, M3, M,—C,;) by (1.6), so we have
o(k, &, ¢) = ok, k, ¢). The optimality of ¢ implies that o(h, &, ¢)
= g{h, L c) hence p(C3) = ¢{Cy), hence (Py—P,+P;)/P;=1/2, but
+thig is impossible.

A different argument ig used to show that G, < $M,, since (Py~P,+
+P,—P,) P, = 1/2 is possible when A4, = 4, = 2. However, 'y > LM,
jmplies that O, > M,~M,+3M, = }M,, a contradiction.

The fourth term of (3.7) is '

B,M,—0,) 1
wipg = Pt g 2BOL, €,
3
and thes quadratic ¢(B,) has its minimum when
Z(B M 04)

-1 =0,
3 .
i.e., when Gy = } M. Therefore if B, > 1, decreasing B, (while holding €,
fixed) causes both v(B,) and ¢{C,) fo increase. It follows that By =1
when 0, # 0. ’ _
All of our argurments so far have been made under the assumption
that the (; were nonzero. We have proved that there is a subscript 2 > 1
such that B; =1 for 0 < j < 2, and B; = 0 for # < j < 7. It remains to
choose the best value of 2. Formula (3.7) reduces to -
T 12
(2 =oMf gy ‘
MMy 2

{3.15)

0gi<e

For example, the valne of (3.7) when z = 4 is

(My—My+ M, —M,)*  (M,—M;+-M,)*  (M—H)*
MM, MM, | MM,
' M T+1

+ —
M3M4 2
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Let :
(M — M, M,— X)2 -M,--X)® (M,— X 2
o) = AT Mot My~ T | (0,3, + T PL_X
M, M, T MM,
Then
. . P
Pu (M) ~ g5 (M) = Pu( M)~ (0) = “—(MZ s —2M(Py— P4 Py)
i M, M,

o
=, (Fr= 2Py +2P, —2F;) > 0

Similar argmments apply for all #, hence

(M) < 9p (M) < @p(My).

Note shat Theorem 1 only finds the maximum over the range 0 < ¢ < K
it is possible that an even Iarger value will ocour when ¢ = 0. Tn facﬁ
this happens if and only if

{3.186) el M) < %
in the notation of the above proof. I¥ A; = 2 for any j, we have
or(Mg) 2 o( M) = M3M,_ My = MM, —M,. ) =1j2,

so o(h, k, 0) will not be maximum. But on the other hand if 4, ==
for all j, we have pp(Mz) ~ T'/z 88 2> 0o, henee the maximum will occur
at ¢ = 0 for sufficiently large z.

The proof of Theorem 1 demonstrates thaf there is exactly one value
of 0<¢<$k where the maximum ocours. (For if gp(My) = P {(Mp_y)y
we have T even and A, ,= A, , =... = 4,= 2. But then By =0
implies that Op_, = My > 3Mp_,) '

It is possible to generalize the proof of Theorem 1 in order to find
the maximum of ¢(h, k, ¢) over all real ¢; it Surns out that the ‘maximum,

over all real e mcludmg ¢ = 0, ocenrs When

(3.17) ¢ = .ﬂfl—ﬂz—i— s -+(_1)T_B[T_l+%(_i)1‘+1. )

Let us now conneet up the additive and subfractive processes. In
order to simplify the formulas we will be obtaining, we shall assume that #
is always even in the additive Buclidean algorithm. (If ¢ is odd, replace

Moy = G M DY oy = (G~ 1)mytmy

my =1 m; = {1)m,
(3.18) /] Ty ( ) 11
mﬁ_,_l = 0 mf'i"l = l
MWy 1a =0

and increase ¢ by 1.) This yields an even number of partial quotients _
Ty By ..., B, which we shall call the canenical. sequence for (h, k). The

2 — Acta Arithmetica XXXTIL4
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formmulas that we have derived for the evaluation of a(h, k, ¢) still hold,
for the canonical sequence, since Lemma 3 includes the case b = & = 1.
The subtractive quotients A,,..., Ap_, can be expressed readily

in terms of the canonical sequence, as
(819) a,+1,(a—1)%x2,a,+2,(a,—~1)x2,
where (¢, —1) x 2 stands for a sequence of a; —1 elements each equal fo 2.
Thus in p&ltl(’lﬁ.&l‘
(3.20) Z ;-

0<J<t

jod

For example, if h = 3141592621 and % = 2% = 34359738368, the
additive parfial quotients are

10,1,14,1,7,1,1,1,3,3,3,5,2,1,8 7,1, 4,1, 2, 4, 2,

ey Bya 2, (G ~1)X 2,

and the subtractive ones are 7
i1, 16,9,3,5,2,2,5,2,2, 22 2,4,10,2,2,2,2,2,2,3,2,2,2,3,2,6,2

The canonical sequeﬁce for the pair of numbers whose subtractive quotients
are Ay, 4y, ..., Ap_;, when all 4;>3, is

Ag—1,1,4,—-2,1,..., Ap_—2,1.

If b= k—1 the addifive quotients are 1, k—1 and the subtractive ones are
(% —-1) % 2. Thus the subtractive process can be exponentially slower than
the additive one, although it can also be fiwice as fast in favorable cases.

The subtractive convergents 3y, M,, ..., M, are easily expressed as

{3.21) (O (jma‘i‘ma}}zl: {gmy-+ ms>1a3s Ly gy + m¢+1>}&1_'17

where {f(§)>} stands for f(a), fla—1}, ..., f(1)

It is now possible fo express the number ¢ of Theorem 1 in terms
of the canonieal partial quotients, so that we obtain an efficient algorithm
" _for the evalnation of ¢. The first ¢ = @, steps of the subtractive process give

Cy= My~ 0O, e,  Cp=amy-tmg—0i,

0y = Ma—ag, g, = (a—l)m2+m3*02;
Ga—l = Ma_GaJ Gakl :‘dns"ff”ms_aaz
and it follows that |
(a/2)m; 0, &4 even;
{3.22) C, = :
. : ‘ ((a,J-l) 2)m2-§—'m3 C,, aodd.

(3.23)
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Similarly, if 5 = a, we have

. (B2ymy+ Oy b even;
C ) mymy— Oy, B 0dd.
~And so on.
Note that
o 1€.—5% ven;
Co—im, =Cy—famy—fm, = 21 @ ovens
imy— (0, —Img), & odd.

Hence we have the following rather curious rale for evaluating the number ¢
of Theorem 1: Look at the odd numbered elements a,, as, -.., @,_, of the
canonieal sequence for (k, k) and strike out all the even quotients in
this list. If the remaining partial quotients are Cﬂz;m};; 3 Gy a1y + =y Gogumny 41
for 0 < J(0) < ... < jlu—1) << /2, w = 0, the value of ¢ i8

F{ma My 12— Mgy ga b voe B (=1 g0 1)

The fn_llowing algorithm evaluates this forﬁmla.

Algorithm 2. Let &, & De relatively prime, 0 < b <% This algorithm
will output the unique valne of ¢ < {4 which maximizes o(h, k, ¢} for
O0<<e< k. :

- {.- proecedure maxc (integer value h, k);

1 bhegin integer a, r, sigma;
2. §:=1; sigma = h;
3. while 2 > 0 do
4. begin comment At this point we have % =my;, k= iy,
5. for some 0'< § < [#/2], and ¢ is the sign of the
6. next term to be added in (3.23);
7. ri= kmodh; k_h hi=r;
8. ifh =0 :
9. then begin comment { = 3j+1, .convert to 2j+2;
10. sigma : = Sigma -+ §;
11, end ‘
12. else begin ¢ := [k/h]; comment a = @,;,,;
13. if amod2 =1 then
14 begin sigma := sigma-+5xh; 8 := —s end;
15, ri=kmodh; ki=h; hi=r;
16.:, end;
17, end;
18.. - output (sigmai2);
19. end, :



312 - - D, E. Knauth

The value of sigma remains positive and <
gorithm. | ‘
4. Estimates for Dedekind snms.‘sf Our goal in this section is to obtain
tight bounds on ‘a{h, k, ¢)] in terms of the canonical sequence of partial
quotients ay, @y, ..., &_; Tor (h, k), where ¢ is even (cf, (3.18)). Throughout
this section %, % are relatively prime, 0 << h <k, and ¢ is an integer.

We have proved in (2.14) that

‘ b~ .
(41) ol 0) = f‘ ! 2(—.1)’%..-

i<t

T4 is well known from the theory of eontinued fractions {(cf. [10], eq.
4.3.3-8) that

(4.2)  Piah = —1{modulok).
Hence if &' is the inverse of b modulo %, i.e.,
(4.3) WA =1(modulok) and 0< k' <k,

we have p,_, = k—1', and (4.1) takes the more symmetrical form

h—l-

(4.4j ok, k,0) =

0<_'p<t

{Note that sinee k =p, = &_,p;_; +P;_., We have k' =<}k if and only
it a;,.; = 1 in the canonical sequence.)

In order to estimate o(h,k, ) for ¢ =0 we shall first  determine
the sequences by, by, ..., b,_; and ¢, C1,-..., ¢_, defined in connection
with Algorithm 1, for the special value ¢ of Theorem 1 and equation (3.23).
It is not diffientt to prove that

(4,5) _ byy = 0, Caj = Cagiy;
(4.6) bajor = 3@a500, L @y I8 even;
4.7y Bajon = Haasey +1+(—1)’), for  0<r<< u;
- (4.8) = %(‘m:mw— Z 1)’m2,.(,)+2);
o :

=

for these va.lues satisfy - ¢; = bymy 1k G4y 0< Gy <My, With one
exceptior. The exception oceurs when a,_; — 1 and u is odd; for then
Zj{u~1)-+1 =3—1, and ¢_, = 3(m,_,+m,) = 1, and b,_, should be 1,
and ¢, should be 0. We ghall use equations (4.5)—(4.8) even in this excep-
tional case, and take care of the exception later.

< &k throughout the al-
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The prooi we ghall discuss can be expressed very eompactly in termns
of } notation, ete., but such a derivation would be guite hard to under-
stanrl without some indieation of how it could have heen discovered.
Indeed, equations {4.3)—(4.8) are not very easy to conceptualize unfil an
example has been written down. Therefore, it will he helpful to sonsider
an example in which t == 10; a;, a,, and a, are ,0dd; a, and a, are even.
We have the fo‘Howing tablean:

My = QoM+ Nls, My = Gy My + My,

s
—

G =& = fla, +1)my+c, =

My = QyMy Ty, My = QgMy + My,

g = M5+ Mig) 3

Gy = 03 = FUyMy+ 0, = F(Mg— Mg+ My);

My == g g =+ Mgy g == asmﬁ—‘,—m7,

¢y = ¢ = Flag—1)ms+es = F{my— Mg+ My) 5
Mg = “’&m?'s"mas' My = @mgt g, |
G = €; = FtaMy+ 0y = F{my+My);
Mg = @g¥g -+ Mg, g = a9m1:1"r“'m11:'

ey = € = §{ay+ 1) myp-+ ey = F{My 1 Myp);
¢y = 0.

My =1, my =0,

According to {2.14) the major unlmovm term in the evaluation of
olh, &, ¢)is

2 —l)jh(CA—‘-ch)pj,
and since I;o,J =0 we can express —4 3 (—17b;(6-+¢,,)p; as follows:
(@ 1) P11y My -y — 2 - 2my0) +

o Gy Pa{ty Mg — 2mg - 2mg} +
{5 — L) {1 — MetMiy 1 2MM0) +
G Pr (Mg 4 2y -
+as+ 1)1’9:(7”’9 o+ M)
We can rearrange these terms into §+ 7, where
8 = oypy(m+ ms)T“aPa(m3+ms)+“sP5(’ns M) + g Py (Mg - Mg} + Gy Mg

is the portion which will be present whenever ¢ = 10, regardless of the
evenness or oddness of ag, a4, ..., ay. Fortunately this sam turns oub
to be simply '

(4.9) = (0t 8+ 0+ +&9)m0 -1y

a8 we ghadl sce in Lemma 5 below.
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The remaining sum T can be written

T = p,(my+mg-+1a— 2mg = 200} 4 Dy (Ma — Do+ D) +
+ayps( 2+ 2my0) —
P (Mg -+ — Mg+ 2M) F P { — g 2g0) +
T @70 ye) -
“+ Do (g + © M) + Py { : “Mhyg)
= p(2my--my — 20+ 20y0) + 4y Py (20— 2 1 20gp) -
+ asPs{ — 24 2Myg) —
C s (2 g + 2910} + a5 D5 ( = 2+ 2mgp) +
+ 5Py O 2my)+
+ 2o (2, + Mge) - APl . 2m4) -

Now a;9; = Dy, —Pi—1, 50 we geb some helpfuol telescoping:
T= 21 (Po— Pa) —2Mg (Dg— Do) + 2Wag{P 1o —Po) +
+2mgpy - 277""717% + 2y, pt
b WPy 4+ mg(Ps—2P4) + Maa(Pe — 205+ 204)-

Turthermore, My = MaPytMgPy = MgPg -+ MyPs = MygPrg+ My Py DY
{2.11),50 : '

{410} T :27no+”1;(ﬁ1‘9).;—”?’5(?5“2191+2)”3"”"'*10(}99_9195‘5”2?1_2)‘

The coefficients of m, and my, are nonnegative since p; ., = 3p;and p;, = p;
for 0 < j < t; hence '

{4.11) T = 2my+-m,(a,—2).

Finally wypy.; = mj(pj— sl oy < mypsla ) < mglog_y, 8O
{4.12) T ml2+1fa,+1]a;+1/ay).

(Note that if ay = ay = ... = a5 = @, then

Ti'mu-—>2—{—1/al'+1fa.5 +1ja, 88 @-»oo}
i.e., the upper bound in (4.12) is sharp.)
Let us now prove that the analog of {4.9) holds in general.

Leuma 3. If my = a0+ Myas @RE Dpyy = &30Py for 0 {j < t
and py =1, p_; = 0, my = 1, myy == 0, ¥ even, then

(4.13) Comt Y apy(my +ya) = 1ty D a,
. 045<1 o<t
§oad Jodd
(4.14) : 2 8 Py (M4 Mg 5 —Pz i a0 51 &y
. 0=j<t 0<J<t

jeven jeven
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Proof. Sinee p;m;+-Pj_1M,; = 7, We have

;P (Mg + My s) = Gymg— D Mgy + QDM s
= My Py (M — M)+ (Pysa —Pimr) Mypa
= WMy —Djy M+ Piga Mypn
for 0 <L j << ¢. Hence the sums on the left of {4.13) and (4. 14) are immedi-

ately evalnated. B
We are now ready 50 prove our main result,

TEBOREM 2. Let b and & be relatively prime, 0 << h< %, and lot ¢ be

an integer. Let ay, 4y, ..., @, be the canonical sequence of partial quotients
Jfor (b, k), t even (cf. (3.18)). Then

{4.15) o(h, ko< Y “j)?*-( 2 aﬂ)“%'
sy ks

Moreover, there exists a value of ¢ for which

(16 o,k ez Y of+{ Y ta) —443( > 1ay)

0t g f<t 15 i<t
Faven jodd joddend
ajodd

Proof. By (2.6) we have

ok, by €) = olhy T, 0)—3(—1)+6 S‘ (—1)f(JL~ Hb,.)

i M4

for 0 < ¢ < k, where z is the least subscript such that ¢,= 0. The value
(3.93) of ¢ which maximizes o(k, k, ¢} always has z even exeept when
a,; =1 and » i3 0dd (cf. the discussion following (4.8)). It follows that

(4.37) max:f(h kE,e) =c(h, k, 0) 346 v( 1y (__?_am_b)

ook My

0<3<t

holds without exception when the ; and ¢; are defined by (£.5)-(4.8).
Now ) .

{4.18) —6 3 (—1l =3 D a3 =1y
: ugj-:t P B i<if2 bSr<td
=3 ST%er( —(~1)%-.
nggdlz
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The argument leading up to (4.10) proves n general that

(4.19) G 3 (—1Y¥emymy, = — Z ~1¥ by (05 + 642)9;
0<g<t U =5 <
3 3 my 3 3
1 u
-t Yt -2,
2 G 2 my 2 2
9 1 Sj ) 0 r—s 5 ,.)
(4.20) B = “?};' = My jry4e {Pejiry4e T 2 (=1 sz(s)-:~1_“-’(‘“1) !

0 ogr<u os<r

Ag if (4.11) and (4.12) we conclude that

(4.21) = E LGy <
. b )
Note that & = 0 when» = 0;1.e., we have an exactresnlt when a,, ..., a;_,

are all even. Combining (4.4) with (£.17), (4.18), and {4.19) now yields

(422)  maxo(h, ko) =( X a)+{ > 1a) .
<ok i<l Oscjt
feven Fodd
3h  h+R 3
SRR R - S
2% k 2

Since (4.15) is easily verified when o = 0, the proot of (4.15) snd (4.16)
iy immediate. m
It is amusing to note that when a,, =« :md. s = 2y for all j,
we have ' = k—oh/2y, and there is a simple explicit formula
max ok, k,8) = Ple+y)+F3(6—ihbiE—3.
[E=CE
Theorem 2
of cr(h k,c):

THEOREM 3 Under the assumptwm of Theorem 2,

can also be uged to obtain bounds on the minimum value

(4.23) by 0)> —{ 3 day)—( ¥ j}+%.
fovem prr

Moreover, there exists a value of ¢ for which

428 ok o<~ 3 ta)~( 3 ajreti 3 1a).
i
i

Proof. Sinee ¥—#' = p,_;, the canonical gequence for {(k—W, k)
ig )
(425}

Boyy Bggye-ry .

Noles on generalized Dedekind sums _ 31T

Nofe that even and odd positions are inferchanged here {as are the p's
and the m’s). Now

b =12 ) )
——n 3 ((H))(3)
[ A

. (424

(4.26)  olk—7,

hence maximizing o{k—h", &, ¢ is eguivalent to minimizing o(h, &, ¢}
and changing the sign. m
CoRroLLARY. Under the hypotheses of Theorem 2,

< D 41

ugjﬂ e

(4.27) ok, &, )

Proof. In fact, by combining (4.15) and {4.23) we have

loth, By )i <{ 3 a) —3—fmin(a,+ e+t ... +ar,
‘osj<i

Gyt . ).l

A combination of (4.16) and (4.23) yields

2 (e

[ES B/

(4.28) maxo(h,k,c)—mina(h, k, ) > } — (a;mod3) ja,) —
[ [+

This bound is weakest (indeed, trivial} when we have the Fibonacei cage
Gy =@y = ... =@y =1, h=F~F, k=F, where

(4.29) ] Fy, =0, v =1, F,= J+1+FH

80 i will De of interest to examine max(F;, F,  , ¢)—min(¥,, F;.,, c).
Both max and min have the same magnitude whenever (a;, ¢y, ..., 1)
= {@;_1; @5y ..., By), i.€., Whenever i’ = k — h (¢f. the proof of Theorem 3),
henee it suffices to consider max(F,, Fy,,, ¢). By (4.22) we have

R L
(4.30) max o(Fy, Fy,, ¢) = ;Hg»}; —iR—3,
<ol :
where
{431) - R = Z Ft_zr_l( opry T2 2 1)'*3F28+2—2(—1}’).
i+l O <if2 Bea <
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Yor example, when ¢ = 8,

1 ‘ '
B = — (B, (Fy=2) 4 By (Fy— 20+ 2) + Po(Fy— 2Py 20— 2+
2
+F, (Fy—~2F, -+ 2F,— 2F;+2)).
Let L, = F,.,+F,_,. Using the easily verified identities

(4.32)  Fo,— 20 4+ 2F, k... H(—=1V"12F,H({—1)2

= %{Lzr +( _—'1)]‘8) H
{4.33) By Lyt Fop g Lyt oo + Tl = 0y, —E*E1E9L ),
we find '

B = (Fy(Ly~8) + Fy(Ly+ 8) 4 Fo( L — 8) + Py (Ly +8))

5%,

s .
= = (4P, + By~ 8(F,—2F, + 2F, —2T))
9

*

1 1
- (4Fg+1ﬂs 8(5 (L, 8) )),

and in general we obtain the exach formula

, ; 1 n _,
{£34) B = (;Fz+1+1*’e—8(~ (Lg-I-'(—l)"—S)—(—l)“‘Z))
-k t+1 W2 5]
1,16 137 16 (—1y°
T 10 25 T2k 25k

when & =F, and k& = Iy, ;, ¢ evens

Instead of using a strict Euclidean algorithm to compute o(k, %, ¢),
it is possible to use the so-called least remainder algorithm, which replaces b
by k—bh, if necessary, to ensure that & << 3% at each step. The least re-
mainder algorithm it 2 combination of the additive and subtractive
processes, and it ean be obiained from the additive process as follows:
When a; = 1 and a;_; > 1, replace

by

+

Wy_y =& Wy+ My~ My_q = (@) + 1) By — g,

(4.35) m; = m +1+ij_ Wy = (G 1)y, +‘mj+3 .

my+1 = 1 Mypn + Miga

This saves one iteration for éach partial quotient 1 that is immediately
preceded by an even number of partial quofients equal to 1, and it is
known ([10], exercise 4.5.3-29) that the number of iterations decreases
by about 2-—log,(1+V3) ~ 309% on the average. The transformation
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inereases > a; by 1, so it increases the bound (4.27). Other changes from
an additive 0 a subtractive procedure also increase the hound, except
when a;_; > 1 i3 replaced by (a;_,—1, 1). In other words:

CoroLrarY. The bound

(4.36) lo{h, E,e)i €

2 a;—}t
[ £
Rolds for all sequences of pogitive infegers g, @y, ..., 4,_, such that wmy =1F,
Wy =R, By =M, S=My., M =1, and my., = 0; in particular, it
holds for the least remainder algorithm.

Proof. Let § be any number between 0 and 1/3; we will prove that
the minimum value of } a; — 6%, over sl sequences ay, ..., &_; as described
in the corollary, occurs when the a; are defined by the additive Ruclidean
algorithm modified so that a,_, = 1.

Tt is not quite easy to prove this statement rigorousiy, as the reader
will see if he makes an sttempt, since there is no obvious quantity which
can be used as the hasis of a valid proof by induction. In fact, the result
would be false for 1/3 <¢ ¢ < 1/2, although this is not iminediately evident.
For emmple let i =2, & = 7; the modified Eueclidean algorithm has
{tgy +erp @y} = (3,1,1) and the sum is 5—30, but the sequence
((an,.. i) = (111111)ha~,a,s11m0i6 66, :

Our approach will be to consider an infinite directed graph on the
vertices (b, k), for all pairs b, k of nonnegative, relatively prime integers.
The arcs of this directed graph will go from (k, k) to {k—ahi, k) for all
positive integers a, and every such arc will be assigned a “distance”
4—8. In order to prove that the modified Euclidean algorifhm gives
the “shorfest path” from (&, k) to {0, 1) for all  and k, it suffices to prove
that f(h, k) < a— 0+ f({k—ahi, h) for all a = 1, when f(h, L) 12‘% the dlstanee
to (0, 1) in the modified Euclidean a.lgonthm N

Let f(0,1) =0, f(1,1) =1—86, f(1,k) = %k—28 for k=2, f(h,h)

=1—0+flh—k, k) for h>=k and f(h, k) =|k/h]—0-+f(Emodh,h)
for 1 < < k. It follows that
1, it h>k>ih,
S k) = fE, By {10, i kh=Fk,
126, # ih>k

and

flhyoh—k) =a—2+flh, k), # k>kandaz?

We must prove that f{k, k) <a—0+f(lk—akf, k) for all a§1
This inequality is readily verified for h =1.Whenl<h<klethb ={kR]
g0 that equality holds for a = b. I 1< a<<h we have f({E-—ahl, k)
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> 1—264f(h, k—ak)=1—20-f(h, k) —a=f(h, k)—a-+ 6 since § < 1/3;
if @ =>b+1, we have f(ik—ah, b)= f{h— (kmodh), k) = f(h, kmodh)—
14031 —20--f(kmodh, k) —1 +0 = f(h, k)—a+1>f(h, k) —a+0;
and if @ > b1, we have )
Flk—ahi, B) = f{la—b)h— (Fmodl), h)>1—26+F(k
=120 (6—b—2) +F(h, kmod})
1-284(a—b—2)+1—26+f(kmodh, k)
e a—25—304f(h, k) > —atf-1f(h, &

, (@=b)h~— (kmodh)}

Finally if & >k and ¢ > 2 we have
C f(ik=ab), h) = flah—k, h) = 1 —20+f(k, ah—F)
=a—1-26+Fh, B)> flh,k)—~at0.m
. Theinequality (4.36) is a slight improvement on the results of U, Dieter
and J. Ahrens ([7], Theorem 4.8) who showed that

1o (k, %y 6)] < Y ay+31+5.

~ For applications to random number generation, we would like fo
know that a(h, &, ¢) i3 not too large. A, Khintchine has shown [8] that
for all £ > 0 the measure of the set of real numhers with

|._m.__§:ﬁ':._1 —1l>¢
nlog,n ‘

(+.37)

approaches zero as n-»co. Henee by applying Lemwma 4.5.3M of [10]
we can show that (for sufficiently large fixed n and all large %) the number
of values of } whose first n partial guotients satisfy (4.37) is less than k.
This Is not as strong a result as one would like, but it does suggest that the
averagé sum of partial guotients satisfies

: . 1 % v :
{(4.38). “Elr%k ( s c&,-) < C(logk)(logloghk)

for some appropriate congtant ¢, (It is well known thak ¢
é = (1+V¥5)/2, ¢f. [10], Theorem 4.5.31.)

Yao and Knuth {147 have recently established the somewhat sur-
prising fact that (4.38) is false; in fact,

B 2
1 (va) _ 6(Ink)
b & \aad

1shlk

< log, %, where

(4.39) + O{(log k) {loglogk}2)

a$ E-»co, Apparently the “middle” partial quotients tend to be larger
than the first omes.

icm
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The results in [14] imply that the average of ¥ a; restrieted to odd
values of j is ‘Lsymptotieally 3(Ink)2/=2; thus the value of our hound on
te{h, k)] I8 ~; (ink) [=* for fixed %k, when averaged over 1<<h<k.
It follows thatb a.t_ most G{(logk)™*) choices of h will have la(h, %, ¢)]
>'{logky**®, This supports the empirieally observed phenomenon tha.’c
“random?” choices of k almost always lead to satisfaefory random namber
generators.

5. A general reciprocity law. It remains for us to prove Lemma 3 in the
case ¢ = 0. Let us consider fivst an extremely general identfity:

Lemva 6. Let (i), g(®) be any real-valued functions defined over
1he nomnegative integers, and let m, n be positive integers, Let a be any posi-
tive real mumber. Then :

G1) Y (FEHD—F@D)elminl+ D+ N f(ram) gtr+ 1)~ g(9)

Igi<<an [(E 2 11
= fllenDg([am])—f(0)¢(0)

Proof. Consider the ehange of variable r = [mj /n}, a condition which
holds if and only if
L mj [n << r+1,
, riiin
L i< (r+1in

= H
() ] n

[2]er<f 2],
m m

This range of values of j is used for those r with

F | 1
(r+ )n <
the next value of » satisfies
' i—?b«{j«( an < (I—I—l—)ﬁ, Le., = fam]—1.
m

!
Hence

N (fE+D=f@)glimifm]+1)

Di<un

- ¥ g(r+ 1) {/(1r + Lynm) — f(Frnfm])) +

. bZr<am—1
+g(Tam)){f(TenT) —F([([am]— Lin/m])).

Reama,ngmg the latber sum by grouping terms with the same value of -
fi([rr/m]) vields the result. =



o
[
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(Btieltjes infegration by parts can be used to give another proof of
{5.1) and formulaz of even greater generality.)

CORDLLARY. .
Aflmjmi+3y [jnjm] fanl\ [Tem] .
5:2) OS'TE-";(Q)( »+1 ) ' 0<§ ( g+1 )( ) (q—;—l) (p—i—l)'

Proof. Set f{r) = (qil)’ () = (p'_f_l) i (5.1). m

The general reciprocity law of Lemma 6, with ¢ = 1/2, ¢ = 0,p =0, '

lies at the heart of Bisenstein’s proof of the law of guadratic reciprocity
for prime numbers (cf: [9], exercise 1.2.4-47, and [2]). We shall now show
that it immediately yields the reciproeity law for Dedekind sums o (7, &, 0).

Let ¢ =1, p=1, =0, m =h, n =4k in (5.2), and espress | }
and .| ]in férms of (( )]. Assuming that 7 and k are relatively prime, we
have

o = 3 (8- 2 -(2) -3
| r2 3 (- () 3)e
éﬂ%)%((%) () )
2 B ()49
(B wE-
+ 2 (5= () G)+)

B j<h
Everything ¢an now be sumaned, and we obtain the desired law,

1R 1 11 1
S St S Tl W
=13 A 6_h(o(7_z,k,0)—l-o‘(k,h,0))

Il

i

- kh(hmi).

It is important to note that the existence of 2 reciprocity formuls

connecting f(h, k) with g(%, ») does not necessarily imply that we have -

_an efficient “Hueclidean® algorithm for the evaluation of f and g; it is

also: necessary %o have relations between f(hmodk k), g(kmodh, k)
and f(k, k),g(k k). _ : .

~
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For example, let us try to extend the above derivation fo dm}elop
a reciprocity formuls for cubic anslogs of Dedekind sums, by faking
p =-2in (8.2), A derivation like that above yields

o 3 - E)E)-

S -

b jch

where ¢k, k) can be explicitly evaluated in ferms of &, & and Dedekind
sums. However, this is a rather pointless identity, because the substi-
tution j—+k—j, h—j shows that both sides of {5.3) are zero! Tm'mng to-
p =3 we find

o 2T -

- S 2 v,

D feck

hut this equation by ibself does not imply an efficient evaluation procedure..
If we set ¢ =1, p = 2 we get an independent reciproeity formula,

S -« -
¢ S -2 ) - e

ik

(56 ol ) = 2 ((%))’"((h%))”

t<j<k
Equations (5.4) and (5.5) combine to give an efficient procedure:
THGOREM 4. There iz an algorithm which computes oy3(k, k), ase(h, k),
and oy (h, k) in O(logk) arithmelic operations. ‘
. Proof. By definition, o,,,(h, k) = 0,,(hmodk, k). Equations (5.4}

““and (5.5) tell us that

éksgal(hs k) = p.(h; ]‘;)_3);;30-31(]; )+ 3K oa(k, h)—‘l'kﬂ'la(ky h),
1K 0us (R, k) = %%(h k)—}—lhk‘uﬂ(h k)—[—%hk oa(k, 1) —
— Rk oo (k, B) + 3hass (ks B) 5
—kuls(}’a k) = w,,(k h)T%hkaH(h, ) — 3R koy (B, k) —
— 3R kag (B, B)+ 1R a0s (K, B)
Therefore a Euelidea,n a.lgorithm a,pphes. |
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A gimilar argument shows that we can evaluate any o,,,(k, k) in
O ((m~+mn)?logk) operations.

Reciproeity laws for sums of polynomials such as (5.6), bub in & com-
pletely different notation, have previously been obtained by T. M. Aposiol
[1] and L. Carlitz [3].

In order to carry the application to ra.ndem-number generators
further, it will be neces ary to deal with sums of a still more general type, e.g.

S (N )

o<i<k

TReciprocity laws for such sums (even if we had them only in the special
oages hy = 1, hy = hy, hy = A7) would he useful for further development
of the theory.

Acknowledgment, The MACSYMA system was very useful not oxly
in developing Algorithm 1, but algo for much of the formula manipulation
- and experimental computations as the theorems were developed. MACSY-
MA®s exact rational arithmetic and its ability to eompute funetions sym-
Dolically were of considerable ufility in this research.
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