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On the values of p-adie L-functions at positive integers
by
Jack Diavoxp (Flushing, N.Y.)

1. Imtroduction. Leopoldt and Kubota, [4], have defined p-adic
L-funetions so that when » is a positive integer,

Lyl —n, y) = — B {1—y,(p)p" "} /n.

In this equation, y is a primitive Dirichlet character, o is the character
; - A . P
defined by w(a) = lim o when p = 3 and w is the non-principal charae-

f—oo -
ter mod4 if p = 2. y, is the primitive character induced by the product
z{e)o " (a) and By is the nth generalized Bernoulli number defined for
the character ¢ with modulus f by

{1 o{a)te™ _ SmxBn_ti :
L 1 LTl
=] n=0

In order to consider p-adie and complex L-functions simultaneously
we will use an isomorphism, ¢, between the algebraic closure of the
rational fiumbers in 2, and the algebraic elosure of the rational numbers
within the complex numbers. A Dirvichlet character can then be considered
as & mapping frein the integers into either 2, or the complex numbers.
If we have a character ¢ in £, the corresponding character in € deter-
mined by ¢ will also be denoted by g. Thus the function L{s, p) corre-
sponding to I,,(s, ¢} ix determined by our choiee of g. -

It is possible to avoid this dependence on o by stating our results
in terms of sums over the positive infegers in a residue class instead of
L-fanctions. In faet, several of our theorems are specifically about such
SHUINS. '

However, our purpose iz to discuss the values of L-funetions, so we
ghall conzider o as fixed throughout this paper and use ¢ fo identify p-adie
algebraic numbers with complex algebraic numbers. We ghall write ¢ = ¥

‘when 22, ye € and ¥ = o(2).

When we compare the formula

L(l—an,¢) = —B:m
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with the formala for I,(1—mn,x), we see that when = iIs a positive
integer:

(0) Ly(l—mn, 7)) = (1= 2.(0)p" ) L1 —m, 7).

If we wish to consider (0) for other infegral values of » we mush
take into account the fact that if the values of the L-functions are tran-
seendental then it iz not meaningful to ask that (0) be true. On the other
hand, from the approximation theorem, we know that for each n there
is a sequence of algebraie numbers which converges fo the left side of (0)
in 2, and to the right side of {0) in C.

Leopoldt ([2], [8]) has found an interesting middle ground in this
situation: '

When n = 0 the formula

2N Tl o
(1—7) 5 E;ma)log(l—c*“)

gives each side of (0}, depending whether we use p-adic log in £, or complex
login ¢, In [2], Iwasawa asks: are there #similar expressions for the values
of Ly(n;x), n3=227

We shall give an affirmative answer to the following question:

{1)  Are there natural infinite series of algebraic numbers and their
logarithms which eonverge to Ly,(1—n, ) in 2, and to

L=z()p" | DL —n, 1)
in ¢ when n is a rational infeger?

The series to be given are natural in the sense that they arise from
the term-by-term computations of standard integral representations of
L-functions and the derivatives of the log gamma function.

For the case n = 0 we obtain a new formula for 1, (1, %).

Question (1) can be generalized to: :

{2)  For which pairs of integers n, k, with k > 0, are there natural infinite
series of algebraic numbers and their logarithms which converge to
De(;k)Lp(l —95, Z) I.:=n
n £, and to
D (l—xn(p)p““)li(l—s, Zn)lscn
in 0%

We shall show a solution to (2 ) in the cage n =1, k = 1,

Two separate proofs of our formulas will be given. The first approach
18 b0 express certain values of complex L-funetions in terms of the deriva-

tives of the log gamma function and then use the inverse factorial series
for the derivatives of log gamma. No integrals are used in this discussion.
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Then we use G, a p-adic analog of log gamma, [1], to obtain the corre-
sponding Iehul‘ts for p-adie L-functions.

The second approach is to express the values of eomplex L-functions
as definite integrals and then compute the integral. On the p-adic side
we wse Leopoldt’s p-adic Mransform, [5], [2]. Since I'y(0) is.comparable
to H(1)-—H(0), we have a computation which is similar to the integral
approach for complex numbers.

In order to be able to work with p-adic inverse factorial series, wo
have a result which equates inverse factorial series with certain power
geries In 1/w, The two series need not have preecisely the same domain of
convergence, s0 owr results provide a technigue for (Krasner) analytic
continuation.

We will use @, @, Z, Zy,, Cand 0, for, respectively, the field of ra-
tional numbers, the p-adic eompletion of @, the ring of rational integers,
the p-adic completion of Z in @,, the field of complex numbers and the
completion of the algebraic closure of @,- B, will be the sth Bernoulli
number defined by tef/(ef—1). » will be the p-adie valuation on 2, with
»(p) = L and | |, will be the absolute value on 2, with [Pl =27

2. Invexse factorial series. An inverse factorial series is @ series of
the form

= El
(3) 2 b[ﬁ]

whoere

[n] . !
2| sml) .. (@)

Elementary estimates show that if » ¢ Z, and »(z +m)
@ >> 0 and for all m e Z, then

i1 e
Vl:a;] = F:I(_P_-——T)_ —0 (I()g J!‘) .

As a consequence, (8) is Krasner analytic on 0,—Z, if »(b) = o(n).

In the early eighteenth century, Stirling used o pair of fransform-
ations which relate an Inverse factorial series to a power series in 1/,
These transformations correspond to wrifing the Laplace transform of
an analytic funection as either an integral from 0 to oo or from 0 to 1.
In the complex field, the corresponding geries are not always both con-
vergent. However, in £2, we obtain eqnal series. The following two the-
orems show how Stirling’s transformations behave in £2,.

ToeoreM 1. If

Fa) = 3 fy] o

fa=0

< a, for some

o, > B> 1,

2 — Acta Arithmetica XXXV.3
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fly = an(l—t)“ and  fle ™) Za utint,
=0

then when |zl, = B,

oo

P2y = Zan/m’”".

n==0

Proof.
i n
Case 1: F(2) = an[ ]
n=p 19
Tt is sufficient to congider F(z) = [:;] Direct computation, to-
gether with

establishes the rvesult.
Case 2: Flo Zb [ }
We obgerve that F (L/z) i8 & uniform Hmit of holomorphic function
on ||, < L/R, so F(1/») is holomorphic at zero and we have constants 4,

850
o0
— ZAﬂ/mﬂ+l
n=0

The following simple result will be. mefrul
Z' en "y (@) 2 b and lm g, (2) = g(®)

n=0 n=0 Moo
uniformly on a dise of positive radius about 0, then

when | lel, = R.

Lruwma. If gz

me,, =¢, for =w=0,1,..
H—D0

We define

m S
=2bu(1_t)n and fm —-u} = Za’m,n !
n=0 n=0
Trom case 1 we have
o .
. Fm(w) = Z-am,ulmn+l-
- n=i
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We can apply the lemma to F,,(1/z) and F(1/x) to obtain

An = lim Con

m—-00
We ean also apply the lemma to £, {6 %) and f(e~*} to obtain
&, =lima,, .
=00
Thus A, = @, and Theorem 1 iz proved.
We make the observation that Theorem 1 remains true if |7y
is replaced by [s), > R =1 and |#|, > R is replaced by jel, > R.
TeROREM 2. If

=R>1

[y > K= 1,

3
= Zan,’m"“ for
n=0

o+
glu) == Eaﬁu“in! and g{—logt) = S‘ b,(

n=0

By = an[:] when 2], > R.
=0

Proof. It is casy to show Zb

=i

orem 2 follows from the remark after the proof of Theorem 1.
Ar a consequence of Theorem 2 we have immediate proofs in 2, of
several classieal formulas:

_'t)n:

then,

n
] converges for |z}, > R, 8o The-

. 1 o1 1 [n
(i) == Zhﬁ[w] zeQ,—Z,.
L]

. 1 1, valetl) ... (@-+n—1)
(H) pryp _?a“+; w@+1) ... (@+n)
for at least |a], > la],. )

" v 1w
. 7
(i) &, () gﬂ_{_l[m] for 2ef, -7,

@, iz & p-adic analog of the log gamma function and is described in [1]and
in the next section.
If we define

m=90
me=1(modyp)
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then from the formula for G, (1/p) we obtain

1 m‘f 1 [a
® =?ﬂ% w1 [1/19]'

Putting p =1 in the inverse factorial series we obtain [(2). There are
similar formulag for { (#) with v € Z (also see [1]).

3. L(r, y) and Ty(r, 7). We will now derive inverse factorial series
for L{r, ) and L {r, x) when r is an infeger > 2, First, we work in .
ProposrtioN 1. If Res> 0,

51
Dog I'(w) = 2 — [Z]

This known result can be dednced without the use of mtegm]s by

obgerving that
o 1 "
F ) =
() ;’ — [m]
gatisfies:

(i) F iz analytic for Rex > ¢ (see [6], p. 279),
(ii) F(z+1) = F(z)~1/[z2
(iii hmlf’(w) = llm_D("’log[’(m) =1 for re'hl

For the higher derlva,tlves we have
ProPoOSITION 2. If 7> 2, Rew > 0 and we define ¢, , by

oo

' (logy—t
St 2,

roe

then

DNog I'{w) = yc,,n[n].

a=0 ®

Prouf Thizs result is just an apphcatlon to Proposition. 1 of the

formula
o, [#] _ v =
D, an[w] = an[m]
=0 n=10
where
. le bl bn—l
a, = —f}— e e —
" (n T et )

 ([6], p. 297).

Values of p-adic L-functions at positive integers 229

We begin to relate DWlogI'(#) to L{r, ) with -
ProrostrioN 3. If v, a, f are indegers with r 22 and 0 < a < f, and
we let

"‘ir,n = ( _l)rcr,u/(r —1) !

then
11 )
y = Ar . [ ]
= " I alf
m=a{mody}

Proof. We combine Proposition 2 with the well known formuls

o
DMlog I'w) = (— 1) (r —1)! Z (2 Lm)~”
. f=0
and evaluate at @ = aff.
We can now write an inverse factorial series for L(r, ). .
PRrOPOSITION 4. If 7 is an integer = 2, y 18 a Dirichlet character modf
and ¢ 48 an arbitrary positive infeger, then

Lir, z) = Tx(@ ZA’“[a,fcf]

We obtain the last part of (1) from a
COROLLARY. If y i3 a primifive character and y, is the primitive character
mod f induced by y(a)w™™(a), then if n is a negative integer,

n—1 3 Byt Lo 3 ; w
[1—%(?)1’ )L(:L——ﬂ, In) = {pr) ,_}_: Inl®) E-Al—vu.m [aljﬂf]'

=1 m=0
The * in 2* indicates that the index of summation omits values which
are multiples of p. ' : o
Now we proceed to obtain a series for L, (r, x). The function @, [1],
plays the role of log gamma in 2,. For convenience, we list some of its
properties. The proofs and other results are in [1].
(i) DepnTEION. For e 2,—7Z,,

;pk—l

1 .1

Gplo) = — —a:—l—hmTZ (2 +n)log{xtn).
= k—>00 pyerr .

The p-adic log is defined by the usual i)ower series when |z —1|, <1

and by setting logp = 0 and using the functional equations for log when

[#—1|, > 1 and z % 0. There is a complete discussion of this Ides in [2].
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(i) (Stirling’s series): If |z}, > 1,

B‘-"H'l

G, —ndl
#( %—i—l)

p(#) = (#—f)ogw —z - y

(iif) &, is locally holomorphic on 2,—%, and & (x) iz Krasner
analytic on Q,—7,. '

The next three resuits ave similar to Propositions 2, 3 and 4.

ProposITION 5. For 2 2 and @ & Q2,—Z,,

nn & Z . [”’]
Proof. We apply Theorem 2, with B == 1, to the formula
17 Y B n+1) ...
=0

" and then continue to Q,—Z, by analytic extension.
PROPOSITION 6. If 7, a, f are integers, » = 2, 0 < a < Fand »{ajf) <0,

DG (2) = (— (#4-7 ~- 2) jn =1,

then
k-1 oo
1 1
r—1 Hm_f—T 2 %:}?EAr,u[%]-
koo = on f = alf
n=a{modf)

Proof. We comhine Proposition 5 with the formula

ph_y

DING (z) = (~1)'(r—2)!lim —}-

o-—p)-T
Y (@ +-n)

n=0
and evaluate at o = aff. |

TrEOREM 3. If r 45 an integer > 2, y is @ primitive Dirichlet characier
and o, 18 the primitive character modf induced by the product y(a)w'™(a a),

a /Pf :
:E TO Of. By defmltlon,

1 o
Ty imE 2 me oo

When (7, p) =1, p,(n) = (Y™ (m). Application of Proposmon 6
completes the proof.

oo

vy xt = 'Pf Z o (e ZA"-""'

g=1 = |

Lyr,x) = ,
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If we write r = 1 —# in Theorem 3 and eompare the result with the
Corollary to Proposition 4 we have a solution to (1) when » is a negative
integer. Stated precisely, we have

THEOREM 4. If n 15 a negative integer, x 48 a primitive character and

has conducior f, then
a) 3 A1 pm
PR

PJ'*
@ D

is equal to L,(1—n, ) in Q, and to (1 —g,(p)p" "} L(L—a, z,) in C.

4. L,(1, z) and L(1, x). We will use inverse factorial series to find
a new formula for L, (1, x). This formula satisfies {1) with » = 0. We will
also be able to esbimate L, (1, y) —{ —M%(log)} and show that both the
Leopoldt y-mean and the expression >™y(n)/n ave natural parts of L, (1, ¥)

and (1 —x{p)p~*) (1, ).
In ¢ we have the following formula for L(1, ).

ProposITION 7. If ¥ i a nen-principal character mod f and ¢ is & posi-
tive integer, themn

L(l,y) = —~Z x(a) logaTmzx(“)Z‘i [a{cf]

where A, is defined by

1 1 -
e = 4, (1 —t)".
1—t+10gt ; nl )

= DM log I'(z). From the relation

Proof. Let y(2)

o0

1 1
vlo) = _—yﬁg(m-{—n - n—{-l)

" we easily obtain

of
of L1, )= — Y z(a)p(alef).
a=1

‘We combine this formula with ({7], p. 286)

(@) =logz— An[:]

ne=0

to establish Propomtlon 1.
The following eorcrllary will be useful
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COROLLARY.

' 1 o * o
(1—xp)p™ )L, ) = — — z{ejloga+ — x(e) An[ ]
ot o2 e Stio Sial g

In &, there are similar resnlts:

PROPOSITION 8. For ], > 1 and y,(x) = DG, ()

it i
() = logo — _,W[m]

Proof. This is an application of Theorvem 2 fo

p,{x) = loge — EB“ fnx® for @, > 1.
n==1
ProPOSITION 9. If a, [ are positive integers, o << f and »{ajf) < 0, then
G To 1 <
ga v T
~lim —— logn = ———— + - 4 [ ]
kesoo JD" ; ! f nég "lalf

n=a (mod f}

Proof. The result follows immediately from the definition of v,.
Now we ean proeeed to L,(1, ).

TarorEM 5. If v 49 ¢ non-principal clowv.cter mod f, then

of f o0
1 * N \ #n
’“7; z(a)ioga - E L;—:f x(a)éjA"[Mpf]'

Proot. From [4], we have

Lp(li?:)

1 fpk*
Lp(l, ) = — lim——-—.z x(n}logn.
’ ’ . fpk fopany
We combine this formula with Proposition 9 to obtain our result.
Now we have a solution of {2) with & = » = 0.

THEOREM 6. If y is & primitive, non-principal character with conductor 5
then

Lyil, %) and

are given by the series in Theorem 5

(l —Xo (P}P_I)L(l’ %)

Proof. Bince y is primitive we have y = ,. We need only observe
that we have the same formula in Theoren 5 and the Corollary to Prop-
ositien 7. ® -

In the proof of Theorem 5 we can replace pf by fp* where f

tf, al
andq_plfp>2andg~41fp >Wethenobta.m

icm
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THEOREM 7. If y 45 a non-principal character mod f,

1 B 1 vf\ﬁis« .
1,7 — —_— ol = i
Lp( 2 %) (fp;” ;S_; Z(a)jot-a) fpk ;{"{ xia) Eg‘in[a/fpk]'

The expression on the left is L, (1, z)—( —3(log)) and the expression
on the right is a well-behaved series which converges rapidly. Our next
resnlt allows ns to use Theorem 7 to calemlate *how fast” the partial
z-means approach L, (1, zh

Proposirion 10, If A, i3 defined by

1

1—1t locva‘ Au "

|| \4‘48

then

Ay =1/2 and

v(d,) =

Proof. Tse induetion on x.
If we extract the term for # = 0 in Theorem 7 we have

1 Sy 1 B -

@ * Bl n
1) L1, = —Mr(log) - — S a4, L N7 al m,
(4) p( s %1 Z(Og) Ty ;,;1 a P] a/=l Z(a’)?r;l n &ffp.‘!.

When we look at Proposition 7 we see that with ¢ = fp*Jf, (4) is
(L—x(pp ) L(1, ). Thus Doth the partial (Leopoldt) y-means and the
partial Dirichlet sums are natural parts of T,(1, ) and {1— x(p)p~ ) L(1, z).

5. I, (0, ) and L' (0, g). The technique we have used can also demon-
strate (2) when n = % = 1. In this case, we want to show

_ L, (0, x) L—x{p)L'(0 %(p)logp) By,
have the same series.

A formula by Lerch ([8], p. 271), for the derivative of the Hurwitz
zeta function can be nged to obtain the following formula for L'(0, ¢).

Prorosirion 11. If o 458 a Dirichlet character mod f and ¢ is a positive
integer, then

I(0,¢) = Bilog(e) +2¢ {—(12)log(2m) +1og Ia/ef))-

The ugeful corollary is:
CoroLrAry. If ¢ is & Dirichlet character mod f then

1—g(p))L'(0, @) —p{p)(logp) BL

7
= B} (L—g(p)jlog(pf)+ } ¢la)l

and s X —

—(1/2)1og(2%) +log I'(a/pf)).
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In 2, we have a formula for I, (0, x).
TrworEM 8. If v is a primitive eharacter and 2! is the primitive character
mod [ induced by y(a)o*(a), then

»f

D n(@)6,y (afpf).

a=1

L, (0, 5} = By (1 — 31 (p))log (pf) +

Proof. This is a straightforward caleulation using the definitions
of G, (z) and L,(s, 7).

We are now prepared to show (2) is satisfied when # =% = 1.

THEOREM 9. If y 4s a primitive character and y, is the primitive character
mod [ fnduced by y{a)w {a), then

L0, )  and  (1—z(p)) (0, 1) — xa(p) (logp) By

can be given by the same natural series.
Proof. First we observe that

Gy () and
are hoth given by .

—{1/2)log(2r) +log I'(w)

(m-_%)logm —a+ j’ ey, [Z]

n=10

where ¢, is defined by

oo

2 1 e — 1 {1 1 1
Calt =) " logt\2z 1—t logt]

a=0

The formula for G,(#) is derived from the Stirling series and Theorem 2;
the formula for log'(z) is in [T1, p. 285.

When we substitute the series for &, into Theorem & and the Uorollary
to Proposition 11 we obtain the formula which establishes Theorem 9.

6. Proofs with Leopoldt’s I~transform. We demonstrated our results
in ¢ without using definite integrals so that we conld show a certain
parallel structure in £2,. However, if we use definite integrals in ¢ we can
still parallel the approach in £, by using antiderivatives and Leopoldt’s
Itransform {[5], [2]).

We will indicate the computations for L(r, y) and L,(r, y) with »
an integer 2> 2. As before, ¢ will be a character mod f. Using the well known
identiby:
f:vs‘le‘"“‘dm, Res> 0,

0

1

T
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we can deduce
of

r-—-l Pl

(1~¢(T) = ;‘;E; {p(ﬂ? 1)| f 1 — *Dfa'

p—r)L(?r P)

Let ¢t = ¢ % and

1 (—logwy? &
A = =1t e = 2 Ay
. =0
Then,
1 i
Gy (1—grp~" | Lir, ) J- ’fA,, 4 2 (@)1t
] a=1

We will see the analog of equation (5) in the calenlation of I {75 2)-

In order to complete this proof of the Corollary to Propﬂsmon 4
we can substitute # = . The new integrand does not conv erge nniformly
for z in [0,1] because ¢ < afpf < 1. However, if we let o = = g/pf the
integrand converges uniformly in # when Res > 2. Thus we can integrate
term by term when Rex > 2 and then use an analvtic extension argument;
to show that term by term integration is valid in (5). We finally obtain

Z*tp(w) ’g,: Ar,ﬂ[azf]-

a=1

L~ p™) Lir,9) = (pf)"
In @, we will again prove Theorem 3. Let y be a primitive character
and g, be the primitive character mod f induced by y(a) o™ {a).

For r fixed, r> 2, we define

1)atp.1f+a

o= 29"(“5 yﬂ()zﬂ.?fm

a=1] F=0

F hag the following properties:
(i) The series for F'(t) converges uniformly for ¢ with

yii—1) = PipoD) +& for any . &> 0.
.. 1
(11) If‘.'l’(t—l) > m,
pf*
F'(t) = 4,(%) ) g (a)ts.

a=1

(i) F has a I-transform.

We will use Leopoldt’s I-transform as it is defined in [B]: The Itrans-
form is a continuous linear mapping from a Banach space of functions
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which are holomorphic at 1 and whose series converges sufficiently rapidly we have
into the space of continuous p-adic funetions on 2%,. The [“transform
is determined by the values
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Tpw(s) = (@Y H=1) e —r+1) ... (8} Ly (r—s, g)/(r — 1)1
Then,
@y (n,p) =1, _
I'u™y(s) = 0 & pin Tpls) = (pfy 7 Hr—1—s) ... L8 L,{r—s, 2)/r—1)!
and Tp(0) = (2f /L, (r, 7).

Comparing this last result with {6), we have Theorem 3.

There are similar p-adic arguments for L,(1, ) and I, (0, #) in which
we also use the generating function for the coefficients of the inverse
factorial serier.

where (0} = ne™ ' {#).

The Itransform is also discussed in [2], but ifs domain is translated
to funetions helomorphic at zero.

Since for certain functions g, I,(0) behaves like ¢(1)—g(0) (note
that g(0) may not be defined), equation (3) indicates that we should
caleulate 'z (0).

From the formula I'(u”)(s) = {n)>® when {n, p) = 1, we obtain
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