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follow that

(7 Y S ~x as  x-co.

On the other hand, it is not hard to show that if there is an h = h(x) such
that logh = o((logx)"/*) and

() .Z‘(A (“"Fh)—/i(fi)—@) du = o(h* x(log x)™?),

then both (1) and (7) hold. From (1) and (7) we see that
©) T (f ) —1)" = o(x),

n€x
from which it follows that f(n) is near 1 for almost all a. _ .
If we take < to be the set of prime numbers then we have (1), since this
is the prime number theorem. If the Riemann Hypothesis is assumed, then (8}
holds for prime numbers with h = exp((logx)'”?), for example. (See [1].)

1 am hzippy to thank Professor Pdl Erd8s for his comments, and a.lso
Professor Carl Pomerance, who pointed out an error in and a simplification
.of my original argument.
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1. Intreduction. The additive property in the title is that of being an
essential component. Essential components are traditionally defined via the
Schnirelmann density. The Schnirelmann density o (A) of a set A of integers is
defined by the formula

a(A) = inf A (n)/n,

where n runs over the natural numbers and we use A(n) to denote the
counting function of our set A, that is, the number of its elements between 1
and n (the nonpositive elements are not taken into account).

This concept of density was introduced by and named after L. G.
Schnirelmann [10], who proved the inequality

(1.1) o(A+B) 2 0(A)+0(B)—o(A)s(B)

and used it to show that every set of positive density is a basis, and that the
set P of primes is an asymptotic basis (that is, the sumset P+ ... + P with a
sufficiently large number of summands contains all large integers), which was .
the first unconditional result -concerning the Goldbach conjecture.

A set H is called a (Schnirelmann) essential component if e{A+ H)
> a(4) whenever 0 <a(d4) <1. By (1.1), sets of positive density always
have this property. The first essential component of density 0 was discovered
by Khintchine [4]; it was the set Q of squares. A few years later Erdgs [1]

found that every basis is an essential component; he proved this in the
effective form

(1.2) o (A+H) 2 0(A)+0(4) (1o (A))(2h),

if His a basis of order h. A much str.onger version of {1.2) was found by
Piiinnecke [8]; he proved o

(1.3) o(A+H) 2 o4V,

which is, in this generality, the best possible order of magnitude.
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Write o(A) = 1/K. Since the squares “almost” form a basis of order 3,
and the primes “almost” form a basis of order 2, in the sense that Q+0+9,
resp. P'+ P (P'= Py {0, 1}) has a positive density, by Pliinnecke’s method
one can obtain

{14) o(A+Q)» K23,
(1.5) o{A+ Py K™Y

On the other hand, let 4 consist of the numbers that are =1 (‘mod ‘m.), wijch,
say, m = [K]. Then up to K the sums A+ P, resp. A+0, are identical with
1+ P and 140, and this shows that

(1.6) g(A+Q) < K12
(1.7) o(d+ P) <€ ljlogK.
For the squares, Pliinnecke [6] proved already in 1959
(18) G(A+0) > K~
and later [7] improved it to
(1.9) o(A+Q)» K~

by analytical methods; this means that (1.6) gives the correct order of
magnitude. I do not know of any similar investigation concerning the primes.
Our first result fills this gap.
Taeorem 1. Let A be any set of integers of Schnirelmann density o (A)
I/K K >2 and let P’ denote the set of primes, 0 and 1. We have

a(A+ P = c/logK

with some absolute comnstant ¢ > (.

Clearly no inequality like (1.1) can hold for the asymptotical lower
density

d(A4) = liminf A (n)/n;

just think of the set of multiples of a fixed number m, and it was much later
that Kneser [5] found an analogous but more complicated inequality for the
lower density of sums (see also Halberstam-Roth [2]). This seemed to imply
that the Schnirelmann density is better suited for the study of set addition
than the asymptotic one. On the other hand, the asymptotical density is
invariant under translation and the inclusion of a finite number of elements,
while the Schnirelmann density is very sensitive to the first elements. Our main
objective is to investigate the impact of addition of P and @ on the
asymptotic lower density of sets; it will turn out that the increment is much
greater than in the Schnirelmann case.
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2. Résults on the asymptotic density. As before, we put
P = [primes}! = {2, 3, 5, .}, Q= [squares} = {02, 12, 22, s
THeOREM 2. Let A be a set of integers with lower asymptotic density
diA) = 1/K.
For every ¢ >0 we have
(2.1) d(A+Q) > K ~Uezi+ufloglogk

if K> Kol(e). On the other hand, for every ¢ and K > K, (g) there is a set A
with d(A) = 1/K and

(2.2 _‘_i(A +0) < I ~log2-dfloglog &

A lower estimate of the type CK™'? was given by Pliinnecke [7].
However, while this was optimal for the Schnirclmann density, we have just
scen that the case of the asymptotic density is rather different.

THEOREM 3. Let A be a set with d(A) = 1/K, K > 3. We have
(2.3) d{A+ P} = c/loglogK

with some absolute constant ¢ > 0. On the other hand, there is a constant C
such that for every K >3 one can find a set A with d(4) = 1/K and

(2.4) d{A+ P) < Cfloglog K.

The construction of the examples to show (2.2) and (2.4) is very simple.
Choose a positive integer m << K and let 4 be the set of multiples of m. Then
obviously

d(A) = 1/m > /K

{to make the density exactly 1/K, one can select a subset),
In A-+@Q, a residue class a(modm) is represented if 2 is a quadratic

residue modulo m. Now if m = p, ... p, with different odd primes p;, then the
number of quadratic residues is

pt+1l  p+1
2 7 27
hence
(2.5) dA+Q <271 +p7h) ... (1+p7 Y.

In A+P, a residue class a{modm) is represented if there are primes
p =a(modm). This is possible if either a is a prime divisor of m or it is
coprime to m, hence

dia+p) =*+20)

=kim+(1—pr) ... (1-pi

where ¢ denotes Euler’s function.
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Now let m = p, ps ... b, the product of the first k odd primes where k is
selected so that

PP S K <py BBt

(2.2) and (2.4) now follow from (2.5), (2.6) and the well-known estimates for p,
and the related products (see Hardy-Wright [3]).

3. Preliminaries. Our proof follows Schnirelmann’s footsteps. We take
all the sets a+R (R =P or (), ac 4, we show that the intersection of any
1wo is comparatively thin and we infer that the union must be big. This is
expressed in the following lemma.

Livva 3.1, Let X, ..., X, be finite sets,

(3.2} Y=UX;,, S=3IXl. S;=YX;nX)
[<j

We have _

(3.3) Y] = S2/(S +255).

This is not the best possible estimate for Y] in terms of S and §,, but
for our purposes even the weaker

(34) |X] = $min(S, $%/S,)

suffices.
The proof of Lemma 3.1 is standard. Let f; be the indicator function of
X;. g that of Y and apply the Cauchy-Schwarz inequality for g and 3 f.

4. The primes. Put T = A+ P. To prove Theorems 1 and 2 we need a
lower estimate for T(x) for large x.

LeEmMA 4.1. The number of positive integers n
and n+b are primes (a #b) is

< x for which both n+a

X
écl@qg(a‘b),

where ¢, is an absolute constamt and

1T (1+1/p).

pla=b

g(n) =

This is a standard application of Brun's or Selberg’s sieve and it can be
explicitly found in Prachar [9].

Let A*=An[l, x/2] and P* =Pn[l1, x/2]. Clearly |A*+P* is a
lower estimate for T(x). We apply Lemma 3.1, in the form {3.4) for the sets
X, = a+ P* aeA*. Obviously

4.2) 8= 21X, = 4% |P*| = A(x/2) n(x/2).

icm
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For different ¢ and » we have by Lemma 4.1

x
{4.3) |Xa N Xyl < 0y log” x
Lemma 44. Let B <1, y] a ser of integers, |Bl = y/L, L= 3. We have
(4.5) Y g(b) < c3|Blloglog L.
beB

Let us assume this lemma now and postpone its proof to the end of this
section.

By (4.2) and (4.3) we have for any fixed a

(4.6) 2 XX, <

b#a
where M = max (3, x/4(x/2)).
Now we apply Lemma 3.1 in the form (3.4). This yields

X
Cy ﬁ;log ]OgM

4.7

T'(x) 2 csmin (lolgx’ x/log log i?),
where = A(x/2).

To obtain Theorem 1, we apply [ = x/(2K) by the Schnirelmann density
condition and then (4.7) yields the required estimate for x = 2K: for x < 2K
we use the obvious T(x) = L4+ (x).

To obtain Thecrem 3, we observe that the condition d(4) =

1/K implies
12 x/(3K) for large x and then (4.7) yields

d(T) =z cgfloglog K. =

Proof of Lemma 4.4. By the power-mean inequality we have with
any k=1

48 pEB- 'To)< (1BI7' % g0 < 1BI7 (T g (i)™,
beB

We represent the function g(n)* in the form
g(n)* =3 hid)
dl#

Since g is multiplicative, so is A, and clearly

. (A+1/p' forj=1,
hp) = g (P —g (P 1) = { for 1> 2,
Hence
Yogmt =3 hdx/dl<y ) hidyd <y[](1+h(pyp)

n<y d<p d=y F
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To estimate this product we distinguish the cases p < k and p > k. For p <k
we use

1+ h(plp < L+h(py = (1+1/p}.

whence

[T (1+20y/p) < TT (L+1pF < (c3loghl (k= 2)

<k psk

with an absolute constant c,.
For p >k we have

(1+1/p)* < 9" < 1+ 2k/p,
thus

[T (+ryp)< [1(+2k/p") Sexp2k 3 p™? < ey

k>p P>k pk
Thus we obtained
Y, g < y(clogh).

nEy
Combined with {4.8) this means
B < (/1B *logk.
Lemma 4.4 follows by taking & = max(2, log(x/|B]).

5. The squares. Now we put T= A+Q. The proof will be parallel to
that in the previous section, with much difference in the details. To estimate
T{x) like there, we need a bound for

(Q+a) N (@ +b).
This is the same as the number of solutions of
a—b =m*—n®=(m—n){m+n).

This s, in general, too large; we need a quantity that is bounded (on the
average). This can be achieved by restricting the choice of a, b to small
numbers and of m, n to big ones. To be more exact, let

A*=An([1, L/x]), Q*=Qn[x/4, x—L/x].

Clearly ‘
T(x) 2 |4*+0¥.

Let 7;(n) denote the number of divisors of n up to L.

Lemma 5.1. For a, be A*, a # b, we have
(Q*+a) ~(Q* +b)] < tplla—bl).
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Proof Assume a > b. A solution (m, n) of the equation
a—b=m>—n*=(m—n)(m+n)

is uniquely determined by the value of d = m—n, which is a positive divisor

of a—b and which is at most L, since m, ne(Q* means m, n > \,/;/2 and
hence '

—_
a—b L./x

d=m—n= -
m ’1 "
N2

We need also an analogue of Lemma 4.4.

Levma 5.2, Let B <[, y] be a set of integers, \B] = y/L, L= 3. For
every & >0 we have with a suitable constunt ¢,

(53) Z 'EL(b) «-{ Cr;lBl L(lug2+c)flnglngL.
hel

We assume this lemma now and postpone its proof to the end of this
section.
Put L = 3K, for large x we have

S = (04144 > A(L/X)(/x/2—L) > x.
By Lemma 5.2, for a fixed a we have
L Q* ) N(QF+D) < A% Lios2 rolcslort
bed*b #a
hence

zlog L
SZ \<‘ C8|A*|2 L(i052+2)/]mglog

and now an application of Lemma 3.1 yields Theorem 2.
Proof of Lemma 5.2. Like in (4.8), we have

(54) BLIBITL Y v (b) < BTV w00
beB R<y
We assume k to be an integer. 7, (b)* is the number of k-tuples {(d,, ..., dy)

where every di|b, thus

Z TL(H),‘Q.’C Z [dlz"-adkj—l'

nEx diseadpSL
Lemma 5.35. Let dy, ..., d, be natural numbers. For a set
Jeol={1,...,k}

write
Ay =ged {di: ied},

5, = A4/(Ay, lem {d;: JEI).
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We have 65 = 1,

(5,6) H 5.] - [dl’ ey dk:l
Jel
and
Jsd
Jor all j.

For a proof, just compare the exponent of an arbilrary prime in both
sides of (5.6) and (5.7).

(5.7} shows that (i} if all the d; are < L, then so are all the &, (ii) for two
different k-tuples, the corresponding systems (d,) will also be different.

By the Lemma we have

oM dad s Y (T 5J)~1

EFRS AN S )

<(3 1o < (1 +log Ly,

aslL

Combining our estimates we obtain

B< ()C/|B|)1‘”‘(1 +log L){z‘L Uk

To obtain the Lemma, we put

. loglog L
" | log2+4¢ |
This concludes the proof of Lemma 5.2 and hence that of Theorem 2.

6. Concluding remarks. Since we are interested in small densities, accor-
ding to the terminology of Pliinnecke, we are speaking about extraordinary
components (auBenordentliche Komponente) rather than essential compo-

nents. He calls a set H an extraordinary component if the jmpact function
{Wirkungsfunktion)

F09 = inf {g(A+H): o) = x}

satisfies f(x)/x—c0 as x— 0. It is known that there are extraordinary
components that are not essential components and it seems likely but is not
yet proved that every essential component is an extraordinary component.

With my method it would be possible to determine this impact function
for the sets P and O and small values of x exactly, but it does not work for
any thinner set. For the set of cubes rather than the squares I cannot tell
anything nontrivial. On the other hand, Pliinnecke’s method of [7] works
equally well also in this case and yields f(x) > x**. Obviously Fx) €x™®
and one would think this is the correct order of magnitude. Also I feel that
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for the cubes and the asymptotical density the set of multiples of a “highly
composite” m is about the worst possible, thus

f(l/K) > K‘C,”Oglogl(

with some ¢ =0, but presently I have no idea of how to prove this.
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