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On completion of proximity spaces by local clusters *
by
S. Leader (Rutgers)

1. Introduction. In [4] the concept of a ‘“‘cluster” of subsets
from a proximity space X was introduced and used to construct the
compactification X of X by identifying each point z in X with the cluster
of all subsets of X which are close to ». Viewing the completion X* of X
ag o subspace of X, the present paper characterizes those clusters, the
“local” clusters, from X which are defermined by points in X*. These
clusters can be used to construct a completion theory for proximity
gpaces along the same lines ag the compactification theory in [4].

The key concept in any completion theory for proximity spaces
is that of “small’’ sets, since X* consists of just those points in X which
are close to small subsets of X. The concept of small sets can be introduced
through various devices: uniform structures, uniform coverings, or pseudo-
metrics. Smirnov uses the second device in [11], [12], [13] and [14]. We
shall use the third device here making use of the ideas and results of [4].

In the last two sections of the paper two conjectures are posed for
consideration by the interested reader.

2. Gauges. A gauge o on a proximity space X is a real-valued
function o(z, ) on X x X satisfying the following two conditions:

(21) ol#,9) <o(@,?)+eoly,#) forall a,y, in X.

(2.2) Given 4 close to B in X and ¢ > 0, there exists a in A and 5in B
such that e(a, b) <e.

We define o(4, B) to be the infimum of ¢(a, b) for allain 4 and bin B.
We define o[A], the o-diameter of 4, to be the supremum of o(z,¥)
for all » and v in 4.

That o(y,y) <0 follows from (2.2) for all y in X. The reversed
inequality follows from (2.1) if we set z = y. 8o o(¥, 4) = 0. Thus, setting
7= in (2.1), we find o(x,y) < oly, ®) for all » and y in X. So ¢(z,¥)
= g(y, x). Finally, setting y = in (2.1) gives 0 < o(z, 2).

* Researmupported by a grant from the Research Council of Rutgers —
The State University.
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A proximity space is discrete if disjoint subsets are remote. A pseudo-
metric is just a gauge on a discrete space. _

An immediate result of (2.2) and the Urysohn lemma (Theorem §
of [4]) is the following.

COROLLARY 1. 4 45 close to B in X if and only if (4, B) =0 for
every gauge o on X. '

A proximity space X is metrizable if there exists a gauge g on X
such that g(4, B) > 0 for every pair of remote subsets 4 and B. Any
such gauge is called a metric on X.

The following properties (2.3)-(2.6) of any gauge p are easy con-
sequences of (2.1) and (2.2) and will be used in proofs throughout
this paper.

(2.3) g(4,B)<o(4,C)+o[C]+0(B,C) for all subsets 4, B, ¢ of X
with ¢ non-void.

(2.4) o(P, Q) < o[R]+o(R,8)+elS] f EOPDY and 850D 0.
(2.5) o[A Bl <o[A]+o[B] it A is close to B.
(2.6) o[A]= o[A4] for all A, where A is the closure of 4 in X.

A gauge o is totally bounded on X if for arbitrary positive & there
exists @ finite subset B of X such that o(Z, 2) < ¢ for every # in X.
Equivalently, ¢ is totally bounded on X if for arbitrary positive ¢ X can
be covered by finitely many subsets of o-diameter less than e.

LevmMa 1. If o and o are gauges on a proximity space X and o is totally
bounded on X, then g-F-o i3 a gauge on X.

Proof. The triangular inequality (2.1) for ¢+ ¢ results from addition
of the corresponding inequalities for ¢ and o.

Let A be close to B in X and let ¢ be any positive number.
To prove (2.2) for ¢+ o we must find ¢ in 4 and » in B such that

(2.7) ela,b)+o(a,b)<e.

Since o is totally bounded, there exists a finite covering {8y, S, ..., Su}
of X with g[S} < $sfor k =1, ..., n. Since 4 is close to B, there exist j
and % such that 4 ~8; is close to B~ S;. By (2.2), we can choose 4 in
AnS;and b in B~ S, with

(2.8) o(a,b) < je.
By (2.5),
o8 8] < o8]+ o[8] < e
Henece
(2.9) o{a,b) <3¢,

Adding (2.8) and (2.9) gives (2.7).

im Completion of proxinity spaces 203

Lemma 2. Let X be a non-empty subspace of a proximity space X'.
Let a gauge ¢ on X have an extension to a gauge o' on. X'. Then o' is unique
if and only if X 4s dense in X',

Proof. Let o’ be an extension of p. If there exists a point z in X’
with z remote from X we can construct an extension = of p which is
distinet from o’ as follows. By the Urysohn lemma there exists a proximity
mapping f of X’ into the closed unit interval [0, 1] with fX = 0 and
fz = 1. Define a gauge o on X' by letting o(z, y) = |fo—fy|. Let 7 = o' +o.
Since o is totally bounded, 7 is a gauge on X’ by Lemma 1. Moreover,
o, y) = 0 for all « and y in X. So 7 agrees with p on X. But for zin X
we have 7(x, 2) = ¢'(%, 2)+1. So 7 is distinet from o’ on X’. Thus, if o'
is unique, X must be dense in X'

To prove the converse let X be dense in X'. Tet ¢ and 7 be any
extensions of g to gauges on X'. We contend o = . It suffices to prove
¢ <t since interchanging o and z throughout the proof will yield the
reversed inequality.

Consider any points = and y in X’. For an arbitrary positive ¢ let 4
be the union of all points a in X such that o(a, ») < ¢, and B the union
of all b in X such that o(b,y) <e. Then p[A]<<2¢ and o[B]< 2
Moreover since o(X—A4,x) > ¢, X— A4 is remote from z, by Corollary 1.
A must therefore be close to # since X is dense in X', Similarly B must
be close to y. By repeated use of (2.3) we have, since ¢ and 7 are ex-
tensions of g,

(2.10) oz, y) <o(®, 4)+el4]+1(4, B)+e[B]+0o(B,y).
Since the first and last terms on the right side of (2.10) vanish via
Corollary 1, we have
(2.11) o(w,y) <4e+7(4,B).
Applying (2.3) again,
(2.12) ©(4,B) <t(4,2)+t(@,9)+7(B,y) <7(@:9).
From (2.11) and (2.12),
(2.13) o(z,y) <dstr(z,¥).
Since e is arbitrary, (2.13) implies o(z,¥y) < t(2,¥). .
We can now prove the fundamental theorem on extensions of gauges.
TusorEM 1. Let X be a non-empty subspace of a proximity space X’
and ¢ be a gauge on X. The following are then equivalent:
(1) o has a unigue extension to a gauge on X'
(2) Bvery point in X' is close to subsets of X of arbitrarily small
o-diameter.
14*
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Proof. Given (2), define ¢'(w, y) for # and y in X' to be the supremum
of o(4, B) for all subsets 4 and B of X with A close to » and B cloge
to y. Congider any y in X’. By (2) there exists for arbitrary positive &
a subset 4 of X close to y with p[A] < e. Choose a in 4 and let R be
the union of all # in X such that p(a, ) < 2. Since E contains 4, R is
close to y. Since p(X— R, A) > ¢, X— K is remote from 4, hence from .
Thus every subset of X which is close to ¥ has its intersection with R
close to y. Therefore, in the definition of o(x,y) we can impose the
additional restriction that g[4] < & and o[B] < s

Given # and y in X' choose subsets B and § of X having finite
o-diameter such that R is cloge to #, X — R is remote from =, § is close
to ¥, and X — 8 is remote from y. Then, if 4 and B are subsets of X which
are close to x and y respectively, (2.4) implieg, upon setting P = 4~ R
and @ = B~ S, that p'(z,y) is finite.

Let « and y be points in X and 4 and B be subsets of X such that
A ig close to x and B is close to y. By Corollary 1, o(4,2) = o(B,y)= 0.
Thus by (2.3), (4, B) < o(4, @)+ o2, ¥)+o(y, B) < ¢(x, y). Therefore
o'{x,y) < olw, y). Since the reverse of the latter inequality is trivial,
equality holds. Hence o’ agrees with ¢ on X,

Given z,y,# in X', let 4 and B be subsets of X with A4 close to »
and B close to y. For arbitrary positive ¢ there exists, by (2), a subset ¢
of X close to # with g[C] < e Thus (2.3) implies g(4, B) < o(4, O)+
+ e+ ¢(B, C). Therefore p'(w,y) < o'(z, 2)+e-+o'(y, 2). Since ¢ is arbi-
trary, ¢ satisfies (2.1).

Let P and @ be non-empty subsets of X'. Suppose that there
exists a positive & such that o'(p,q) > 3¢ for every p in P and ¢
in @. We must show that P is remote from (. Let 4 be the union of
all subsefs B of X such that F intersects P and o[F] < s Similarly,
let B be the union of all subsets # of X such that & intersects @
and g[B] < e By (2), 4 contains P and B contains Q. To prove P
is remote from ¢ we shall prove A is remote from B by showing that
o(4,B) > ..

Given any point @ in A4, there exists a subset R of X such that R
contains &, ¢[R] < &, and B is close to some point p in P. Let B be any
subset of X close to p. Then ¥ is cloge to R, so ¢(#, R) = 0. Thus by (2.1),
e{E, a) < ¢(B, R)+¢[R]+ (R, a) < o[R] < &. Hence o'(p, a) < & Simi-
larly, given any b in B, there exists ¢ in @ such that 0'(q, b) < &. Since
¢’ satisfies (2.1), 3e < 0'(p, ¢) < o'(p, a)+0'(q, b)+0'(a, b). Hence 3s
< 2¢+(a, b). That is, e < o(a, b) for all 4 in 4 and all b in B. We have
thus shown that o satisfies (2.2). So o' is a gauge on X',

The uniqueness of o’ follows from (2) via Lemma, 2, completing the
proof that (2) implies (1).
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To prove (1) implies (2) let ¢’ be the unique extension of p. Given y
in X’ and a positive ¢, let B be the union of all & in X such that g'(x, ¥)
< }e Then o(X—B,y)>=e So X—B is remote from y. Since, by
Lemma 2, X is dense in X’, X is close to y. Hence B is close to y. More-
over g[B] <e.

LeMMA 3. Let ¢ be a yauge on a proximity space X and {%,, Y.} a net [3]
in X x X. If either (a) o is totally bounded, or (b) the net is a sequence, then
the following conditions are equivalent:

(1) If @ and k& are subsets of X such that (x,,y.) 48 in Q x B for
arbitrarily large a, then o(Q, R) = 0.

(2) limo (&, Ya) = 0.

Proof. That (2) always implies (1) is trivial.
To prove (1) implies (2) under either of the hypotheses (a) or (b),
guppose (2) fails to hold. Then there exists a positive & such that

(2.14) 0 (%a; Yo) > 3¢

for arbitrarily large «. Let J be the set of all « satisfying (2.14). If (a)
holds we immediately have

Oage i. There exists a subset S of X such that ¢[S8] < 2¢ and either
%, Or ¥, is in 8 for arbitrarily large a in J.

Given Case i, we may assume without loss of generality that z, is
in & for arbitrarily large « in J. Let @ be the union of all z, in S and R
be the union of the corresponding y,. By (2.14) and (2.3),

(2.15)  3& < 0{@a, Ya) < 0 (%, 8)+ o8]+ 0(8, ya) < 2e+0(8, 7).
From (2.153) we have ¢ < o(8, y.) for all y, in R. Since @ is contained in 8§,

(2.16) a(@,R) =¢.
So (1) is violated.

If Case i does not hold we have

Case ii. Given any subset § of X with o[8] < 2e, both , and ¥, are
eventually in X— 8. )

Given Case ii and condition (b), we can, by considering spheres §
of o-diameter 2¢ centered about each x, and each y,, inductively choose
a subsequence {&,, ¥a,} With o in J so that

(2.17) 0 (T Ya) > &

for all m and %. Taking @ to be the union of all @, and B the nnion of
all y,., (2.17) gives (2.16) which violates (1).


Artur


26 8. Leader

TeEEOREM 2. Let ¢ and o be gauges on a proximity space X. The
following conditions are eguivalent: )
(1) 0(@,R) =0 implies (@, R) = 0.
(2) For every positive & theve ewists a positive § such that o(z,y) < §
implies o(z,y) <e.
(3) Hm o¢[£]=0.
olE1-0

Proof. We shall prove only that (1) implies (2), since the other
implications are trivial. Consider any sequence {w.,¥,} in X x X such
that limg(#,, ¥s) = 0. To prove (2) we have the following chain of

n—>00

implications: (1) implies (1) of Lemma 3, which implies (2) of Lemma 3,
which in turn implies (2).

If any, hence all, of the conditions of Theorem 2 hold, ¢ is said to
be uniformly continuous with respect to o.

3. Small sets. A class of subsets of a proximity space is said to
have small members if for every gauge ¢ and every positive ¢ there exists
a member of the class with g-diameter less than e, The following con-

nection between proximity and small sets is an immediate consequence
of Corollary 1.

COROLLARY 2. 4 s close to B in X if and only if X has small subsets
which intersect both A and B. :

We can now give several characterizations of proximity mappings.

THEOREM 3. Let f map a promimity space X into a promimity space Y.
Then the following are equivalent:
(1) f preserves promimity: fA is close to {B whenever A is close to B.

(2) 1 is uniformly comtinuwous: Given an arbitrary gauge o on Y and
a positive e, there exists a gauge o on X and a positive & such that

(3.1) olfe,fy) <e whenever p(m,y)<§.

(3) f carries small sets into small sets: If a dlass {A,} has small subsets
A, of X, then {{A.} has small subsets of Y.

Proof. Given (1) and a gauge o on Y, the equation ¢(z, y) = o(fo, fy)
defines a gauge ¢ on X. Taking 6 = &, we obtain (2). So (1) implies (2).
Given (2), let I" be a class of small subsets of X. For o & gauge on Y
and & & positive numbper, choose p and § such that (3.1) holds. Choose
a member A4 of I’ such that o[A] < 6. Then (3.1) implies o[fAd] <e.
So (2) implies (3).
Let 4 be close to B in X. Then, by Corollary 2, the clags {C,} of
all subsets of X which intersect both 4 and B has small members.
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Given (3), the class {fC,} has small members. Moreover, since €, intersects
both 4 and B, fC, intersects both fA and 7B. Hence, by Corollary 2,
fA is close to fB. So (3) implies (1).

4. Local clusters and the completion of X. A cluster [4]
from & proximity space X is defined to be local if it has small members.
The class of all subsets of X close to a given point is clearly a local
cluster, since a point has diameter zero for every gauge. A proximity
space is defined to be complete if every local cluster has a point. (Note
the analogy between this definition and Theorem 2 of [4]).

THEOREM 4. 4 closed subspace of a complete provimity space is complete.

Proof. Let X be a cloged subspace of a complete proximity space Y.
Let ¢ be a local cluster from X. We must show ¢ has a point. By Theorem 3
of [4], ¢ is part of a cluster d from Y. Since ¢ is local and since. every
gauge on Y is, by restriction, a gauge on X, d ig local. Therefore, s.lnce Y
is complete, there exists a point ¢ in ¥ which belongs to d. Since X
helongs to ¢, hence to &, X is close to ¢ in Y. But X is closed in ¥. So X
must contain ¢. Finally, since ¢ is in X and belongs to d, ¢ belongs to e.

Using our definition of completeness we next prove the completion
theorem of Smirnov [11]. .

THEOREM 5. Bvery promimity space X is o dense subspace of a minimal
complete proximity space X*. The completion X* of X s t‘he largest
extension of X to which every gauge on X has a unique estension.

Proof. By Theorem 4 of [4], X is 2 dense subspace of & ef)mpagt
Hausdorff space X in which two subsets are close if and only if t].lelr
closures intersect. Let X* be the subspace of X consisting of those points
in X which are close to small subsets of X. Since X* containg X and X
is dense in X, X is dense in X*. Since, by Theorems 2 and 3 of [4], eYery
cluster ¢ from X is just the class of all subsets of X close to some point ¢
in X, every local cluster ¢ from X is just the class of a,ll. subsets of X
close to some point ¢ in X*. Thus, every complete extension of X mu.st
contain X*. So X* is minimal, hence unique. The second statement in
Theorem 5 follows from Theorem 1 and the definition of X*.

Because of the one-ane correspondence between local clusters from X
and points in X*, )X is complete if and only £ X = X*, Hen(.)e, to ShOW.X*
is complete we need only prove that X* = X**, But'thls follows im-
mediately from the second statement in Theorem B, smce*every gauge
on X is uniquely extendable to X* and from there to X,

5. Funnels, filters, and fundamental neilzs. A fu'rmeil F ff‘OE{.
a seb X is a class of non-empty subsets of X d.Jreetgd by mclusmg.
Given A and B in F, there exists some 0 in F contained in both A and B.
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Every filter is a funnel. Every funnel F can be extended to a filter p'
by taking F’ to be the class of all subsets of X which contain any members
of F. A maximal funnel is clearly just an ultrafilter.
A funnel from a proximity space X is local if it has small members,
The class of all neighborhoods of a point in X is clearly a local funnel,
‘We next investigate the connection between funnels and clusters,

THEOREM 6. Every ulirafilter F from a prozimity space X s a subclass
of a unigue cluster ¢ from X.

Proof. Let ¢ be the clags of all subsets of X which are close to every
member of F. Clearly ¢ confains F and every cluster containing F ig
contained in ¢. Hence we need only show ¢ is a cluster.

{a) If A and B belong o c, then 4 43 close {0 B.

Since F is an ultrafilter, for every ¥ in X either E or X —E belongs
to F. So both A and B are close to either B or X —F. Therefore, for
every B in X either 4 iz close to B or B iy close to X— B, By Axiom 4
of [4], 4 is close to B.

(b) If A is close to every C in c, then A belongs io c.

Property (b) is trivial since F is a subclass of .

(e} If A B belongs to e and A does not belong to ¢, then B belongs to c.

Given the hypothesis of (c), there exists a member E of F which
is remote from A. Then every member F' of F which is a subset of B is
close 50 4 « B, but remote from A. So F is close to B. Therefore F ig
close to B for every F belonging to F. That is, B belongs to e.

THEOREM 7. Every funnel from a prozimity space X is a subclass
of some cluster from X.

Proof. By the axiom of choice every funnel is a subclass of some
maximal funnel, that is, of some ultrafilter. Apply Theorem 6.

TEEOREM 8. Bvery local funnel F from a prozimity space X is a sub-
class of @ unique cluster ¢ from X. Moreover, ¢ is local and consists of oll
subsets of X which are close to every member of F.

Proof. Let ¢ consist of all subsets of X which are close to every
member ‘of the local funnel F. Clearly, ¢ contains F. So ¢ has small
members. Moreover, every cluster which contains F must be contained
in ¢. We need only show that c is a cluster.

Given 4 and B in ¢, let C be any member of F and ¢ be any gauge
on X. Sinee ¢(4,0) = ¢(B, ¢) = 0, (2.3) implies o(4, B) < o[(]. Since
e[ (] can be made arbitrarily small by a suitable choice of C, 0(4,B)=0.
Hence, by Corollary 1, 4 is cloge to B, So (a) holds for e.

Properties (b) and (¢) follow exactly as in the proof of Theorem 6.
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2

Let {z,} be a net [3] in a proximity space X. Let B, be the umion
of all 45 with £ > a. E, will be called an eventual range of {&,}. Sinee for
arbitrary indices a and f§ there exists y such that » is beyond both a
and B, the class of all eventual ranges of a net is a funnel. If this funnel
is local, we define the net to be fundamental. An obvious corollary of
this definition follows.

COROLLARY 3. 4 net {2} in a prowimity space X is fundamental if
and only if for every gauge ¢ on X, limo[E,] = 0.

Every convergent net is fundamental since E, is eventually in any
given neighborhood of the limit, and a point has small neighborhoods.
Another trivial result is the following.

CoROLLARY 4. A net {z.} converges to x if and only if for every gauge o,
limo (., ) = 0.
a—>00

We now characterize completeness in terms of funnels and nets.

THEOREM 9. The following conditions are equivalent:
(1) X s complete.

(2) Bvery local funnel of closed subseis of X has a non-empty inter-
section.

(3) Bvery fundamental net in X converges to some point in X.

Proof. Given (1), let F be a local funmnel of cloged subsets of X.
Let ¢ be the local cluster which, according to Theorem 8, contains F,
By (1), there exists a point z which belongs to ¢. Thus z is close to
every member of ¢, hence to every member of F. Since the membex"s
of F are closed, « is contained in every member of F. (Note that « is
unique).

Given (2), let {z,} be a fundamental net in X. Then the class {H.}
of all eventual ranges of this net is a local funnel. By (2.6), the closures
also form a local funnel {&,}. By (2), there exists some point z which
is in every E,. Given any neighborhood 8 of w, there exists & gauge o
such that o(w, X—8) > 0. Since {E,} is a local funnel, o[#,] < o(z, X—8)
eventually. So B, is eventually in 8. Hence, z, is eventually in 8. That
is, z, converges to .

Given (3), let # be any point in X*. To prove (1) we need only: gshow
that » is in X, Let {8,} be the clags of all neighborhoods of z in X*.
Define «a > B to be the funnel direction 8,C S;. Using the axiom of
choice, choose x, in X ~ 8,. Because of Theorem 1, {x,} is- & f@damental
net in X. Moreover, z, converges to ®. Since limits are unique in a H’s;l.us-
doxff space, (3) implies that 2 is in X. (Note that if the word “local” be
deleted, then (2) becomes a familiar criterion for compactness.)
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6. Local proximity and precontinuity.
TaworEM 10. Let 4 and B be subsets of a proximity space X. The
Jollowing conditions are then equivalent:

(1) There exists a local cluster ¢ from X to which both A and B belong.
(2) The closures of A and B in X* intersect,

(8) There exists a local funnel F from X such that every member
of F intersects both A and B.

Proof. Given (1), let ¢ be the point in X* corresponding to a local
cluster to which both 4 and B belong. Then ¢ is close to both 4 and B
in X*. Hence (2).

Given (2), let ¢ be close to both 4 and B in X*. Take F to be the
class of all infiersections with X of neighborhoods of ¢ in X*. Clearly F
is a local funnel and satisfies (3).

"Given (3), let ¢ be the local cluster which, according to Theorem 8,
containg F. Then (1) follows from Theorem 8.

We define A4 to be locally close to B in X if any, hence all, of the
conditions in Theorem 10 hold. Local proximity is & proximity relation
whenever X* is normal. A mapping f of a proximity space X into
a proximity space Y is said to preserve local proximity if fA is locally close
to fB in ¥ whenever A is locally close to B in X.

TrrOREM 11. Let | be @ mapping of a promimity space X into a promimily
space ¥. The following conditions are then equivalent:

(1) 1 carries local clusters imto local clusters: Given a local cluster ¢
from X, the class d of all subsets of Y which are close to fA for every A
in ¢ is a local cluster from Y.

(2) 1 has an emtension (necessarily wnique) to o continuous mapping
of X* imto Y*.

(3) [ carries local funnels into local funnels: Given a local funnel {F.}
from X, the class {{F.} is a local funnel from Y.

(4) f carries fundamental nets into fundamental nets: Given a funda-
mental net {x,} in X, then {fz,} is a fundamental net in Y.

Proof. Given (1) and any local cluster ¢ from X, let fec=d.
This agrees with f on X under- the imbedding of X in X* induced
by identifying points with the clusters to which they belong. Let P
be a subset of X* and ¢ a point in X* such that fs is remote from fP
in ¥*. To show fis continuous on X* we must prove that ¢ is remote
from P.

Choose § in ¥* such that § is remote from f¢ and ¥Y*—§ is remote
from fP. Let A be the intersection of X with f~§. By (1), A is remote
from ¢ and X— 4 is remote from every point in P. The latter statement
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implies that 4 is close to every point in P. That is, the closure of 4 in X*
contains P. Thus, since A is remote from ¢, P must be remote from e
So (1) implies (2).

Given (2), let {F.} be a local funnel from X. By (2) of Theorem 9,
there exists a point @ in X* close to every F,. By (2), every neighborhood
§ of fz in ¥* yields & neighborhood '8 of » in X*. Then, since F, is
eventually contained in f“l;S", fF, is eventually contained in §. Since
every point of ¥* has small neighborhoods relative to the gauges on Y,
{{F,} is a local funnel from Y. So (2) implies (3).

Given (3), let {w.} be & fundamental net in X. Let {E,} be the local
funnel of all eventual ranges of this net. By (3), {f&,} is a local funnel
from ¥. But {{H,} is just the class of all eventual ranges of {fz.}. Hence,
{fz.} is a fundamental net in Y. So (3) implies (4).

Given (4), let ¢ be any local cluster from X and let {S.} be the funnel
of all neighborhoods of ¢ in X*. Using the axiom of choice, choose =, in
the intersection of X with §,. With the funnel direction {z,} is a funda-
mental net, since ¢ has small neighborhoods. By (4), {fx,} is a fundamental
net in Y. By Theorem 9, fz, converges to some 4 in Y*.

Now & is independent of the cheice of z in X ~ 8,. For, given any
other net {y,} with ¥, in X ~ 8, let 2,;, = 2, and 2z, = y,. With lexico-
graphical ordering {2.:} i8 a fundamental net. By (4) and Theorem 9,
frax converges to some point in Y*. Since ¥Y* is Hausdorff and {fz} is
a subnet of {fz,x}, this point must be d. Since {fy,} is also a subnet,
fy. converges to d. Given any subset 4 of X belonging to ¢, choose any
net {a,} with a, in A ~ 8,. Then fa, converges to d. So f4 belongs to d.
Thus, (4) implies (1). .

A mapping satisfying any, hence all, of the conditions of Theorem 11
will be called precontinuous. The precontinuous mappings are just the
“s-mappings” of Smirnov [13], [14].

The following corollary is a consequence of (3) of Theorem 3 and (3)
of Theorem 11.

CorOLLARY 5. Hvery prozimity mapping is precontinuous.

The next corollary is a consequence of (1) of Theorem 10 and (1)
of Theorem 11.

COROLLARY 6. Every precontinuous mapping preserves local prowimaty.

7. Precompact spaces.

THEEOREM 12. The following conditions on a proximity space X are
equivalent:

(1) The completion X* of X is compact.
(2) Bvery cluster from X is local.
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(3) Bvery mapping [ on X into the real numbers which preserves local
proximity is bounded.

(4) Buery gauge on X i totally bounded.

(5) Bvery funnel from X is contained in some local funnel.

(6) Every net in X has o subnet which is fundamental.

Proof. The equivalence of (1) and (2) follows from the identitication
of X with the set of all clusters from X, and X* with the set of all local
clusters from X. :

Given (2), hence (1), let 4 be close to B in X. Then by Theorem 1
of [4], 4 and B.belong to some cluster. By (2), this cluster is local. 8o 4
is locally close to B. Thus, (2) implies the equivalence of proximity and
local proximity in X. Therefore, any mapping on X which preserves
local proximity preservesy proximity. Hence, by Corollary 5, f is pre-
confinuous. So, by (2) of Theorem 11, f has a continuous extension
mapping X* into the real numbers. Since X* is compact, its image fX*
is compact, hence bounded. So (2) implies (3).

Given (3), suppose that there exists a gauge ¢ on X which is not
totally bounded. Then for some positive ¢ we can inductively choose
an infinite sequence {#y, #,, &, ...} in X such that ¢(w;, ;) > 3¢ for i > j.
For & in X* define
(7.1) fe = Max kie— g (ax, )} .

E=0,1,...
Then f is continmous on X*, hence preserves local proximity on X. But
fy = ke, making f unbounded on X. This would contradict (3). So (3)
implies (4).

Given (4) and a funnel from X, imbed the funnel in a maximal funnel
{ultrafilber) by using the axiom of choice. We contend that such a maximal
funnel F is local. By (4), for an arbitrary gauge ¢ on X and any positive e,
there exists a finite covering {B,.., Hs} of X with o[E;]<e for
k=1, ..,n Since Fis maximal at least one B; must belong to F. 8o F
has small members. Hence (4) implies (5).

Let {m,} be any net in X and {&,} the funnel of eventual ranges
of this net. Given (5), this funnel is part of some local funnel F. Using
the axiom of choice, choose for each member F, of F some %, in F,.
This is possible because every F, intersects every H,. With the funnel
direction the net {@,} is a subnet of {x.)}. Since every I, containg an
eventnal range of this subnet and F ig local, the subnet is fundamental.
So () implies (6).

To prove (6) implies (1) we need only show that X is contained
in X* Given z in X, there exists & net in X converging to , since X
* is dense in X by Theorem 4 of [4]. By (6), this net has a fundamental
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subnet. This subnet must also converge to z. By (3)
in X* 8o (6) implies (1).

We call X precompact if any, hence all, of the conditions of Theo-
rem 12 hold. (Smirnov [13] calls these spaces “totally bounded”.) The
following three corollaries are immediate congsequences of Theorem 12.

of Theorem 9, 2 is

CorROLLARY 7. Proximity and local prozimity are equivalent in a pre-
compact prozimity space.

CoROLLARY 8. Hvery mapping on a precompact space which preserves
local prozimity is a proximity mapping.

COROLLARY 9. Hvery cluster which has a precompact member is a local
cluster.

THEOREM 13. Let X be a precompact prozimity space and f be a mapping
on X into a proximity space Y such that f preserves local proximity. Then
fX is precompact.

Proof. By Corollary 8, f is & proximity mapping. By Corollary 5,
f is also precontinuous. Let ¥ = fX. Then f has a continuous extension
which maps X onto ¥ and X* into ¥* But X = X* 8o 7 — 7 X = {X*
CY*CY. Hence Y = Y* That is, ¥ is precompact.

Levma 4. Let | be a mapping from a proximity space X into a proximity
space Y which preserves local promimity. Then f carries local clusters into
clusters. Moreover, f has a (necessorily umique) comtinuous extension 7
which maps X* into ¥,

Proof. The proof ig just the proof of Theorem 5 of [4] with “prox-
imity” in X replaced by ‘local proximity”.

TerorEM 14. Let X and Y be prowimity spaces such that either of
the following conditions holds:

(1) Y 4s precompact.

(2) Boery local cluster from X has a precompact member.

Then every mapping f on X into Y which preserves local proximity
18 precontinuous.

Proof. Given (1), the conclusion follows from Lemma 4.

Given (2) and a local cluster ¢ from X, there exists a precompact
seb A which belongs to ¢. By Lemma 4, ¢ is mapped into a cluster d.
By Theerem 13, f4 is precompact. Since f4 belongs to d, d is local, by
Corollary 9. This gives (1) of Theorem 11, hence Theorem 14.

Since metrizable spaces and spaces with locally compact completions
satisfy (2) in Theorem 14, we have two corollaries.

COROLLARY 10. Boery mapping which preserves local proximity on
& metrizable proximity space is Precontinuous.
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COROLLARY 11. Hwery mapping which preserves local promimity. on
o prowimity space with o locally compact completion 18 precontinuous.

CoNJECTURE 1. There ewist mappings which preserve local proxvimity,
but are not precontinuous.

8. Convergence of mappings. Let {f;} be a net of mappings
on an abstract set X into a proximity space Y. f, is said to conwverge in
prozimity to a mapping f if f4 remote from R in ¥ implies f.4 is even-
tually remote from R. f, is said to converge uniformly to f if, for every
gauge o on Y, o(f,&, f) converges to 0 uniformly for all # in X.

TEEOREM 15. Uniform convergence implies convergence in proximity.

Proof. Let [, converge uniformly to f. Let f4 be remote from R
in Y. Then there exists a gauge ¢ on Y such that o(f4, B) > 2¢ for some
positive e. Thus for every « in A4,

(8.1) 2e < o(fa, R) < o(fa, fat) + 0(fua, B) .

Since the first term on the right of (8.1) is evenfually uniformly less
than g, ¢ < ¢(f,a, B). That is, ¢ < o(f.4, B) eventually. By Corollary 1,
f.4 is eventually remote from R. So f, converges in proximity te f.

THEOREM 16. Convergence in provimity s equivalent to uniform con-
vergence under either of the following conditions:

(1) The image space Y 1is. precompact.

(2) The net of mappings is a sequence.

Proof. In view of Theorem 15 we need only prove that convergence
in proximity implies uniform convergence, given either (1) or (2). To
prove uniform convergence it suffices to prove that for every net {z,}
in X corresponding to {f,} and gauge o on ¥,

(8.2) limo(f,, fa®) =0.
A==00

Let @ and R be any subsets of Y such that (fz,, f.2,) is in @ x B
for arbitrarily large a. We contend that @ is close to R. For, if Q were
remote from R, f,f @ would be remote from R eventually, since f, con-
verges in proximity to /. But 7,7 @ intersects R for arbitrarily large a.
Sinee @ is close to R, o(@, R) = 0. Since (1) and (2) give (a) and (b) of
Lemma 3, respectively, (8.2) follows from (2) of Lemma 3.

CONJECTURE 2. Convergence in proximity meed mot imply uniform
convergence.

THROREM 17. Let {f.} be o net of promimity mappings on a proximity
space X into a prozimity space X. Let f, converge in prosimity to a mapping f.
Ther | is a proximity mapping.
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Proof. Let 4 be close to B in X. We must prove 74 is close to /B
in ¥. Suppose that fA were remote from fB. Then there would exist
a2 subset B of ¥ with f4 remote from R and /B remote from Y- R.
Since f, converges in proximity to f, 1,4 would be eventually remote
from R and f,B eventually remote from Y- R. Hence, f,.4 and f,B
would be remote eventually, confradicting the hypothesis that fa pre-
serves proximity.

TaEOREM 18. Let {f,} be a net of continuous mappings on a topological
space X into a prozimily space Y. Let f, converge in prozimity to a mapping f.
Then | is continuous.

Proof. Apply the proof of Theorem-17, taking B to be a point z
and using the fact that f, preserves proximity between points and sets.

THEOREM 19. Let {f.} be a net of precontinuous mappings on a proximity
space X into a prowimity space X. Let f, comverge uniformly to a mapping .
Then | is precontinuous.

Proof. Let F be a local funnel from X. By (3) of Theorem 11 we
must show that f maps F onto a local funnel, given that each f, does so.

Given a gauge ¢ on Y and a positive ¢, we need only show there
exists a member § of F with

(8.3) o8] < e.

Since f, converges uniformly to f, we can choose o such that

(8.4) o(fum, fo) < te
for all » in X. Since f, is precontinuous, there exists a member § of F
such that

(8.5) offu8] < te.

By (2.1) we have for all # and y in §,

(8.6) o(fo, fy) < o(fo, futt) + o (fu®, fuy) + o (fay , Jy) -
Since, by (8:4) and (8.5), each term on the right side of (8.6) is less than
te, (8.6) gives (8.3).
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On superpositions of simple mappings
by
K. Sieklucki (Warszawa)

1. Introduction. K. Borsuk and R. Molski considered in [4]
a class of continuous mappings called simple mappings. A continuous
mapping f of a space X onto the space ¥ is of order <k if for every
point y ¢ ¥ the set f~'(y) contains at most % points (cf. [8], p. 52). The
mappings of order <2 are said to be simple mappings. In [4] the authors
raise the following question (p. 92, No 4): does there exist a continnous
mapping of a finite order which is not a superposition of a finite number
of simple mappings?

The purpose of this paper is to prove that every continunous mapping
1 of a finite order defined on the compact space X of a finite dimension
is & superposition of a finite number of simple mappings. On the other
hand, we shall construct a compact infinite dimensional space X and
a continuous mapping of a finite order f defined on X which will not be
a superposition of a finite number of simple mappings.

2. Auxiliary definitions and notations.

Definition 2.1. A collection of subsets of a space X constitutes
a decomposition W of X if the sets of W are disjoint and non-empty,
and if they fill up X. The decomposition B is said to be upper semi-
continuous if for every closed subset 4 of X the union of all sets of I8
intersecting A is closed in X (see [8], p. 42).

P. Alexandroff ([1] and [2]; cf. also [8], p. 42) has proved the follow-
ing theorem: In order that a decomposition W of & compact space X be
upper semicontinuous, it is sufficient and necessary that there exist a space Y
and a continuous mapping f of X onto ¥ such that the sets belonging to I8
are the same as the sets f'(y) where y e Y.

Let {43} (¢=1,2,..) denote a sequence of subsets of the space X
and let Lim 4; be defined as in [7], p. 241-245. We shall use the following
importaﬁtmproperties of the notion of this limit:

(i) The generalized Bolzano-Weierstrass theorem. If the space 18
separable, then from every sequence of its subsets we can choose a convergent
subsequence (may be to the empty set) (see [7], p. 246).
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