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Cartesian products of Baire spaces
by

J. C. Oxtoby (Bryn Mawr, Pa.)

1. Introduction. Following Bourbaki ([2], p. 75), a topological
space is called a Baire space if every non-empty open set is of second
category. Thus a Baire space is one which is of second category at every
point, or equivalently, one in whieh the Baire category theorem is true.
If Y is either an open or a dense subset of a space X, and if ¥ C Y, then
the category of E relative to Y is the same as the category of F relative
to X. Hence if Z is dense in an open subset U of X then Z is a Baire sub-
space of X if and only if Z is of second category (relative to X, U, or Z)
at each of its points.

A family B of non-empty open sets in a topological space will be
called a pseudo-base if every non-empty open set contains at least one
member of B. A pseudo-base B is called locally couniable if each member
of B contains only countably many members of B.

We shall denote Cartesian products by X XY and by P{X.: ae A}
If EC X = Y the section of E corresponding to any z ¢ X will be denoted
by E(x) = {y: (x,y) e B}.

The following proposition was proved by Kuratowski and Ulam [9]
for metric spaces. In the case of the product of two intervals the result
had already been noted by L. E. J. Brouwer ([4], footnote p. 218).

(1.1) If X and Y are topological spaces and Y has a couniable pseudo-
base, and if B is nowhere dense (resp. of first category) in X x ¥, then E(x)
is nowhere dense (resp. of first category) in X for all x except a set of first
category in X.

Proof. Let {T'x} be a countable pseudo-base in ¥, let & be a dense open set In
X ¥, and let Hy be the X-projection of (X xVy) ~ G (n =1, 2, ...). Then Hy is open
and dense in X. For any « « ( H» each of the sets G(z) ~ Vr is non-empty, hence &(x)
is dense open in ¥. By taking ¢ disjoint to E the principal statement follows. The paren-
thetical statement is a corollary.

The following generalization of another theorem of Kuratowski and
Ulam is due essentially to Sikorski [14].
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THROREM 1. Jf X and Y are topological spaces, if at least one of them
has a locally countable pseudo-base, and if AC X and BC Y, then

(1.2) 4 B is of first category in X x Y if and only if A 48 of first
category n X or B is of first category in ¥, and

(1.3) A xB is of first category at (x, y) if and only if 4 is of first cate-
gory at @ or B is of first category at y.

Proof. Suppose that ¥ has a locally countable pseudo-base B, that 4x B is
of first category, and that A is of second category. For each Ve B, A% (B A V) is of
first eategory in X x V. Since ¥ has a countable pseudo-base, it follows from (1.1) that
for some e d, (AX (BAV))(#) =B~V is of first category in ¥ and therefore in ¥.
Hence B is of first category at each point of the set U {V: V e B}, which is dense in .
By the Banach category theorem [1] it follows that B is of first category in F. Similarly,
if X has a locally countable pseudo-base, if A x B is of first category, and if B is of second
category, then A is of first category. Conversely, if either 4 or B is of first category
then 4 X B is of first category, without any restriction on X or ¥. Thus (1.2) is proved.
(1.3) is a corollary.

The following theorem is an immediate consequence of (1.3).

THEOREM 2. If X and Y are Baire spaces, and if at least one of them
has a locally countable pseudo-base, then X x Y is a Baire space.

The essential content of Theorem 1, namely the “only if” parts of
(1.2) and (1.3), can also be deduced from Theorem 2, with the help of
the Banach category theorem and our earlier remarks about relativization.
For, under the hypotheses of Theorem 1, suppose that both A and B are of
second category, Then there exist non-empty open sets U and V such that 4
1s of gecond category at each point of U, and B is of second category at
each point of V. Hence 4, = A ~ U and B, = B ~ V are Baire subspaces
of X and Y respectively, and at least one of them has a locally countable
pseudo-bage. Assuming Theorem 2, it follows that A, xB; is of second
category relative to itself. Since 4, x B, is dense in the open subset U xV
of X x ¥, it follows that 4, x B,, and therefore A X B, i3 of second category
in X x Y. Thus the “only if" part of (1.2) is re-obtained, and that of
(1.3) follows.

In connection with Theorem 2 it should be noted that a product
8pace can be a Baire space only if each of the factors is a Baire space.

Theorems 1 and 2 generalize easily to products of finitely many spaces
each of which has a locally countable pseudo-base. But, as Kuratowski and
Ulam remarked, Theorem 1 does not generalize to infinite products, even
when each space has a countable base. (For example, let X be the interval
[0,1] and let 4 be the interval [0, 4]. Then 4% is nowhere dense in X%,
but 4 is of second eategory at each of its points.) Nevertheless, in this
case Theorem 2 can be so generalized, despite the fact that it is essentially
equivalent to Theorem 1.
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THEOREM 3. The Cartesian product of any family of Baire spaces,
each of which has a countable pseudo-base, is a Baire space.

This result may be compared with a theorem of Bourbaki ({3}, p. 4,
ex. 7), aceording to which the Cartesian product of any family of complete
metric spaces i3 a Baire space. The two theorems overlap, but neither
includes the other. In § 3 we make use of Theorem 3 to obtain a category
analogue of the zero-one law. In §5 we shall consider a generalization
of Bourbaki’s theorem.

In (1.1) the hypothesis that ¥ has a countable pseudo-base cannot
be relaxed even to a locally countable base, as Kuratowski and Ulam
showed by a simple example. It is much more diffieult to show that the
countability hypothesis in Theorems 1 and 2 cannot be omitted. Never-
theless, assuming the continuum hypothesis, this question is gettled in § 4,
where we construct an example of a Baire space whose square is not
a Baire space. Whether Theorems 1 and 2 are true for arbitrary metric
spaces still remains an open question (cf. [14]).

Before proceeding fo the proof of Theorem 3, let us make a few re-
marks about the notion of a pseudo-base. It is obvious that any base
is a pseudo-base, and that if a space has a countable pseudo-base then
it has a countable dense subset. The Stone-Cech compactification of the
space of positive integers furnishes an example of a space which has
a countable dense set of isolated points, and therefore a countable pseudo-
base, but no countable base [13]. An uncountable set X in which a subset
is defined to be closed if and only if it is either finite or equal to X is an
example of a space which has a countable dense subset but no countable
pseudo-base. The property of possessing a countable pseudo-base is there-
fore logically intermediate between that of having a countable base and
that of having a countable dense subset. For metrizable spaces all three
properties are equivalent. It is easy to show that if a space X has a count-
able dense subset D, and if the first countability axiom is satisfied at
each point of D, then X has a countable pseudo-base. The first example
above, however, shows that even such a space need not have -a count-
able base.

2. Proof of Theorem 8., From the proof of (1.1) we can also
draw the following coneclusion.

(2.1) If X and Y are topological spaces, and ¥ has a countable pseudo-
base, then for any sequence {Gn} of dense open sets in X X ¥ there exists a set X,
of first category in X such that for any x € X— X, each of the sets Gn(x
(n=1,2,..) is dense open in X. .

(2.2) If each of two spaces X and Y has & coundable pseudo-base, then
80 does X x Y. '
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Proof. Obvious.
Now consider any sequence {X;} of spaces, each of which has a count-
able pseudo-base. For any 0 < m < n write

P X;.

=R+l

i3
P X, Y=

t=m1

my _ kid (m,n)
X = P Xi ’ X =
i=1

As usual, we shall identify product spaces that arise from different
groupings of factors. For example, X™ = X x X" anq x™ o yim
=X™x YY", for 0<m<n. As a result of this convention we can make
the following assertions.

(23) If weX,yeY, and GCXxYxZ, then G(z)(y)= G(w,y)
={&: (2,y,2) e G} If {y} XxZC G{x) then {(x,y)}xZCG.

For any fixed m, the following result follows from (2.2) and Theorem 2
by induction on #.

(24) If 0 <m < n then X™ has a countable pseudo-base. If each

of the spaces X; is a Baire space then so is X™™,
(2.3) The space X = P X; has a countable pseudo-base.
i=1

Proof. By (2.4), X™ has a countable pseudo-base, say {U(n, )},
for each n. The sets U(n, ) x ¥™, where » and ¢ are arbitrary positive
integers, constitute a countable pseudo-base in X.

We are now prepared to prove Theorem 3 for denumerable prod-
ucts [11].

(2.6) IF each of the spaces X; is a Baire space then so is X = }o; X;.
i=1

Proof. Let {6} be a decreasing sequence of dense open sets in X,
and let & be any non-empty open set. We need to show that G~ Mén
is non-empty. Choose n, so that G~ @, contains a basic open set U, x Y™,
where U, is & non-empty open subset of X™. By (2.4), U, is of second
category, and by (2.1) applied to X x Y™ there exists a point 2, ¢ U,
such that (u(z) is dense open in ¥™ for every m. Moreover,

XY™ CU XY™ CGAG.

Proceeding by induction on k, let us suppose that we have defined
integers 0 = 5, <y < ... < n; and points z; e X2 (j =1 s +.-y k) sUCh
that

(@) {21y s 2)} X T™ C G~ Gy, and

(b) Galzy, ...y 2) is dense open in ¥™ for n=1,2,....

Then for some integer sy, nz the set Grra(#y, ...y 2) contains a set of
th(ei form Uyyy x Y™, where Ur+1 18 a non-erapty open subset of
X By (21) applied to X™emd y YD there evists a point
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#r41 € Upsr such that each of the sets Gulz, ..., @) (2e1) (n=1,2,..) is
dense open in yren, Henece, by (2.3), condition (b) is satisfied with %
replaced by k+1. Moreover, s} x T C Uy 5 T C Grpylaa, oov, 20)-
Hence, by (2.3), {(#1; o, )} X T C Gy By hypothesis (a), the
left member of this is also contained in ¢. Hence (a) is satisfied with &
replaced by k+1.

Therefore sequence {n;} and {z;} can be so defined that (a) is satisfied
for every positive integer k. Such a sequence {z;} defines a point # ¢ X
such that z e G Gy for every k. Hence G~ () Gy is non-empty.

Now consider an uncountable family {X,: a e .4} of spaces each of
which has a countable pseudo-base, and let X denote their Cartesian
product.

(2.7) Any disjoint family of basic open sets in X is couniable (*).

Proof. For each ae A let D, be a countable dense subset of X,.
Agsign positive weights with sum 1 to the points of D,. For any set EC X,
let u(F) be the sum of the weights of the points of D, ~ E. Then g,
is a measure defined for all subsets of JX,. Moreover, p(X,) =1, and
#(U) > 0 for every non-empty open set U in X,. Let (X, u) denote the
product of the measure spaces {{X,, so): ae A} ([7], § 38 (2)). Then u is
defined and positive for every basic open set in X. Since u(X) =1, it
follows that any disjoint family of basie open sets in X is countable.

To complete the proof of Theorem 3, assume now that each of the
spaces X, is a Baire space and let {G,} be any sequence of dense open
sets in X. For each nlet {Upm: m =1, 2, ...} be a maximal disjoint family
of basic open sets contained in Gy. (By (2.7) such a family must be count-

able.) Then the set Hp =1J Unm I8 an open set contained in &, and
m=1

dense in X. Uy, I8 a cylinder set based on a product of finitely many of
the X, say on P {X,: aed,n} Let 4, denote the countable set () Apm-
nm

Put Xy = P{X,: aedy}, and Yy= P{X, ae A—4,}. Then each of
the sets H, is a cylinder set based on X, say H, = K, x ¥,. Since H,
is dense open in X, K, is dense open in X, for each n. From (2.6) it follows
that (M) K is dense in X,,. Hence () Hn, and therefore (M) G, is dense in X,
Therefore X iz a Baire space.

3. A category analogue of the zero-one law. Let X be the
Cartesian product of a family {X,: ae A} of sets. A set EC X will be
called a tail set if whenever z = {w,} and y = {y.} are points of X, and
Zo =Y, for all but a finite nuwmber of values of o« then ¥ contains

(*) Tor an alternative proof, not depending on measure theory, see E. Marczewski,
Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947),
pp. 127-143. .
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both # and y or neither. This definition can be cast in a more con-
venient form. For each finite subset J of 4 let X(J) = p {Xa: aed}and
Y({J)=P{X,: ae A—J). Then F is a tail set it and only if for each finite
set J C A there is a set BC ¥ (J) ‘such that B = X(J)xB.

The zero-one law of Kolmogoroff in the theory of probability states
that in the product of any family of normalized measure spaces, any
meastrable tail set is of measure zero or one ([7], § 46 (3)). (The theorem
is usually stated for the product of a sequence of spaces, but is easily
seen to hold more generally.) A subset E of a topological space is said
to have the property of Baire if I can be represented in the form G+ P,
where G is open, P is of first category, and “-4> denotes symmetrie differ-
ence. In 2 Baire space the complement of a set of first category is called
residual. In view of the well-known analogy between measure and cate-
gory, the following theorem (announced for sequential produets in [11])
may be described as a category analogue of the zero-one law.

TeporeM 4. If X is the Cartesian product of a family {X,: aed}
of Baire spaces, each of which has a countable pseudo-base, then X is a Baire
space, and any tail set having the property of Baire in X is either of first
category or residual.

It has already been shown that X is a Baire space, hence it suffices
to prove the following lemma. Note that in this lemms the spaces X,
are no longer assumed to be Baire spaces.

(3.1) If X is the Cartesion product of a family {X,: ae A} of spaces,
each of which has a countable pseudo-base, and if B is any tail set having
the property of Baire in X, then either T or X —E 4s of first category in X.

Proof. Suppose that X—F is of second category. Then there exists
an open set G of second category and a set P of first category such that
X—F = G+P. Let {6;} be a maximal disjoint family (countable by (2.7))
of basic open sets contained in & Then G— |_J@; is nowhere densge. Since &
is of second category, at least one of the sets G: must be of second eategory,
say G;= UxY(J), where U is an open subset of X(J). U must be of
second category in X(J), by (1.2). By definition, the tail get ¥ can be
represented in the form & = X(J)xB, where BC Y(J). Hence B~ &
= (X(J)xB) ~ (U x Y(J)=UxB.But E~AG:CENG=En (X—B)+P)
= E ~ PC P, Therefore U xB is of first category in X (J)x ¥ (J). Since
X(J) has a countable pseudo-base, and U is of second category, it
follows from (1.2) that B is of first category in Y (J). Hence B = X (J) xB
is of first category in X,

4. A Baire space whose square is not a Baire space. The
following regult shows that Theorems 1, 2, 3, and 4 cannot be proved
without some restriction in place of the countability hypothesis.
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THEOREM 5. Assuming the continuum hypothesis, there exvists a com-
pletely regular Baire space whose Cartesion product with dtself is of first
category.

Let I denote the unit interval, M the field of Lebesgue measurable
subsets of I, NV the class of nullsets in°M, and 4 the Boolean algebra M/N.
Let m denote Lebesgue measure on either M or 4. Let X be the Boolean
space corresponding to 4. X is a compact Hausdorff space, therefore
a Baire space. Let ¢ denote a Boolean isomorphism of 4 onto the field F
of eclosed open subsets of X. The set function mi{p=(4)) is countably
additive on F, hence it can be extended to a measure u on the o-field
generated by F. It is easy to verify that u(X) =1, and that p(d) =0
implies that A is nowhere dense. Moreover, any set of first category
in X is nowhere dense ([10], [8], [12]). For any set B C X xX and any
zeX let us now denote the two sections of F determined by » by
By ={y: (#,y) ¢ B} and E" = {y: (y, ) e B}. Let D = {(2,9): &=y}

(£.1) There ewists an F, set E of first category in X % X such that (i)
DCE, and (ii) for each x ¢ X, B, and E* differ from X by nowhere dense
sets.

Proof. Let @ be an open subset of the square I X I with the property
that if 4 and B are any two subsets of I with m(4d)> 0 and m(B) > 0
then (m x m)(G ~ (4 XB)) >0, and such that (m xm)(&) < e (It suftices
to take a dense open subset W of (—1,1) with m(W) < e and define
G={x9): 0<2<l,0<y<l,z—yeW} ([6], Th. 1).) Represent @
a8 a disjoint union of rectangles In XJ». Let v be the mapping of M onto
F obtained by composing the canonical mapping of M onto 4 with ¢.
Put Uy =vy(I,) and V, = y(Jy). Then the set H =1 J(UnxVs) is an

n
open subset of X xX with (ux u)(H) < e. To show that H is dense in
X xX consider any two non-empty closed open sets U and V in X.
Choose A and B in M such that p(A)=U and y(B)=7V. Then m(4)> 0,
m(B) >0, and therefore (m X m)((LnXJn) ~ (4 xB)) >0 for some n.
Since HA(UXV)D(UnXVp) A (UXV) =(Up U)X (Vo V), it follows
that (ux p)(H ~ (UXV)) 2 p(UnnU)-2{Van V) = m(Inn A)-m(Jn~ B)
= (m xm)((In XJu) ~ (A x B)) > 0. Hence H is dense in X x X. Let {H;}
be a sequence of dense open sets in X x X such that (u x u)(H;)->0. Then
F=(XxX)-MNH; is an F, set of first category in X xZX, W%th
{u X u)(F) =1. By Fubini’s theorem there exists a set N CX with
#(N)=0 such that u(F.)=u(F*)=1 for every ¢ X—~N. Hence X—F,
and X—F° are nowhere dense for every ¢ X — N. Since N is mowhere
densze in X, both of the sets ¥ xX and X x N are closed and nowhere
dense in X x X. The set D is also closed and nowhere dense in X ><X_,_ since
X hag no isolated points. Hence the set B =F o (N xX)u (X XN)w D
has all the properties required in (4.1). ‘ i
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To complete the proof of Theorem 53, note that 4 and F have
power ¢, Hence, assuming the continnum hypothesis, there exists
a mapping y—~W, of the ordinals 0 <y < 2 of first and second class onto
the class of all non-empty closed open subsets of X. Assume also a well-
ordering of X. Let @, be the first element of W,. Then (x,,2,) ¢ B. It 0 < y
< 0 and if z, has been so defined for 0 < « < v that the condition

(B)) zeWa and (w,ap)eB forall O0<a<y,0<<p<y,

Is satisfied, let , be the first point that belongs to the set W,
A ) (By,w B™). (Note that this set is of second category, therefore

no(;f:l;lpty.) Then condition (Py,) is satisftied. Hence m, is defined hy
transfinite induction for all 0 <y < 2, and the set Z = {z,: 0 < y < 2
is a dense subset of X such that ZxZ CB. Z is of second category at
every point, since only nowhere dense sets are of first category in X.
Therefore Z, considered as a subspace of X, is a completely regular
Baire space. Because Zx Z is of first category and dense in X xX it is
also of first category in itself.

5. Products of complete spaces. A topological space is called
quasi-regular if every non-empty open set contains the closure of some
ngn-empty open set [12]. It is convenient to introduce also the following
definition: a topological space X is called pseudo-complete if X is quasi-
regular and if there exists a sequence {B(n)} of pseudo-bases in X with
the property that whenever U, eB(n) and U,D U,.; then M\ Un #£ 0.
Evidently pseudo-completeness is a topologieal property of X,

Any complete metric space is pseudo-complete. (Take for B(n)
the clags of all spherical neighborhoods of radius < 1/n.) Likewise any
locally compact Hausdorff space is pseudo-complete. (Take for B(n)
all non-empty open sets with compact (= bicompact) clogure. Note that
a locally compact Hausdorff space is regular and therefore quasi-regular.)
Hence both parts of the usual statement of Baire’s category theorem
([2], p- 76) are included in the following formmulation:

(51) Any pseudo-complete space is a Baire space.

Proof. Let {Gx} be any sequence of dense open sets, and let G be
any non-empty open set. Since the space is quasi-regular, there exists.
a set Uy e B(1) such that U, C @ ~ ¢, Having chosen Uy_, let U. be
s0 chosen that U, eB(n) and U,C U,_, ~ G, Then MUn # 0. Sinee
UnC G ~ Gy, it follows that GAM Gy #0.

According to Cech [5], a space is called topologically complete if it is.
homeomorphic to a &, subset of some compact Hausdorft space. Cech
showed that any complete metric space is topologically complete, and
that any topologically complete space is a Baire space. The latter resulf.
ig also a consequenee of (5.1) and the following lemima.
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(5.2) Let Y be a quasi-regular space with a pseudo-base B consisting
of sets whose closure is countably compact. Then any dense Gs subspace X
of Y is pseudo-complete.

Proof. As a dense subspace of a quasi-regular space, X is quasi-
regular. Let X = (1) Gp, where Gx is open in Y. For each # let B(n) b.e
the class of all sets of the form H ~ X, where H ¢ B and H C &,. Evi-
dently B(n) is a class of non-empty open sets relative to X. Any non-
empty open set relative to X has the form & ~ X, where @, and there-
fore @& ~ Gn, is non-empty and open in Y. Since Y is quasi-regular, there
exists a set HeB such that HC G~ G,. Hence H ~ X ¢ B(n) and
HAXCG~ X. Thus B(n) is a pseudo-base in X, for each .

Suppose that U, e B(n) and that UpD Upsr o X (= the closure of
Upnya relative to X), for each n. Leb Uy == Hp~ X, where H, eB and
H,C Gy. Since Un2 Unyr, {Ua} is a decreasing sequence of non-em.pty
closed subsets of the countably compact set H,. Hence {1 Uxn # 0. Since
H,CG,, we have U,C Gn, and therefore MUsC N Gn = X Hence
NI N Turi ~ Xy = (Unta) n X = MTa # 0, and so X is pseudo-
complete, ' )

On the other hand, a compact T)-space is not necessarily a Baire
space. For example, in a countably infinite set X define a subset to be
closed if and only if it is either finite or equal to X.

THEOREM 6. The Cartesian product of any family of pseudo-complete
spaces is pseudo-complete.

Proof. Let X be the product of a family {X,: ae A} of pseundo-

n
complete spaces. Any basic open set U in X is of the form U= (i fl U)x%,

where U; is a non-empty open subset of X, (i=1,..,%) al"ld
¥ = P{Xa: aed—{ay, .., a,.}}. Since X, is quasi-regular, there exist
non-empty open sets V; in X, such that V;CU; (¢ =1, ..,n). Hence

( ﬁV,-)xI’ is a non-empty open set in X whose closure is contained
i=1

in U. Thus X is quasi-regular. )
Let B,n) be a sequence of pseudo-bases in X, with the property
that Uln) € Byn), Tyn)D U n-1), implies (M Tdn) #0. We may

n
assume that X, eByn) for all » and . Let B(n) denote the family of
all sets of the form P {U.: ae A}, where U, eByn) for every aed, an.d
U, = X, for all but a finite number of values of a. Evidently B(n) is
a pseudo-base in X, for each n. Suppose that Uy ¢ B(n)and that Und Unps
for every n. If Un= P{Uc(n): ac A} then P{Udn+1): aeA}CUnpr
C U= P{Uyn): aecAd} It follows that Uy (n+1)C Udn) for a},]l n and a.
Hence, for each ce A, there exists a point x, ¢ Q Uu(n). The point @ = {%a}

belongs to [ Up.
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The theorem of Bourbaki mentioned in § 1 is an immediate eonse-
quence of this theorem and the preceding lemmas, as is also the following
more general result.

COROLLARY. The Cartesian product of any family of spaces topologi-
cally complete in the sense of Cech is a Baire space.
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Sur un probléme de la logique a » valeurs

par

W. Sierpifnski (Warszawa)

Dans la logique & # valeurs chaque proposition admet une des =
valeurs 0,1, 2,...,n~1 et chaque fonction logique d’un nombre fini %
de propositions peut &tre déterminée par une fonction f(ay, @, ..., xx)
de % variables, définie pour @ =0,1,..,2—1 (i=1,2,..,%) et ne
prenant que les valeurs 0,1, ..., n—1. Désignons par ¢(z, y) et p(z, )
des fonctions de deux variables, définies powr 2=0,1,..,n2—1,
y=0,1,..,n—1 comme il suit: @(z,y), vesp. w(w,y) est le reste de
la division du nombre z--y, resp. ay par le nombre n. (Pour n =2
ces fonctions déterminent la somme et le produit logique.)

Le but de cette Note est de trouver quel doit étre le nombie naturel
n > 1 pour que toute fonction logique d’un nombre fini de propositions
dans la logique & m valeurs se réduise (par superpositions) aux trois
fonetions

(1) 1), elz,y) et vz, y).

Je démontrerai notamment que, pour qu’il en soit ainsi, il faut et il suffit
que n $0it un nombre premier.

En langage mathématique ce théoréme peut étre exprimé comme
i suit:

TeEoREME. Pour que foute fonction d'un nombre fini de variables,
définte pour les valeurs 0,1, .., n—1 de ces variables, ol n est un nombre
nafurel > 1, et ne prenant que les valewrs 0,1, ..,n—1, puisse ére
exprimée (par superpositions) & laide des fonctions (1), il faut et il suffit
que n soit un nombre premier.

Démonstration. Soit # un nombre premier. Désignons.par FyY

la famille de toutes les fonctions f(z},, ..., @) de k variables définies
pour w;=0,1,..,n—1 (i=1,2,..,%) et ne prenant que les valeurs
0,1,..,n—1. La famille F{” est évidemment formée de n»* fonctions
distinetes. D’autre part soit Py’ la famille de tous les polyndémes en

(1) C'est-a-dire la fonction dont la valeur est le nombre 1 pour @ = 0, I, ..., n— 1.
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