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Arithmetization of metamathematics in a general setting
by
S. Feferman * (Stanford, Calif.)

1. Introduction

The method of arithmetization, as developed by Gédel [10], exploits
the possibility of defining within a formal theory G, or in arithmetical
theories closely related to G, various syntactical and logical notions
concerning ‘G. In broad terms, ‘the applications” of the method can be
classified as being extensional if essentially only numerically correct
definitions are needed, or intensional if the definitions must more fully
ewpress the notions involved, so that various of the general properties
of these notions can be formally derived.

The following are some results of extensional type: incompleteness
theorems (Gddel’s first underivability theorem [10] Satz VI, Rosser [29]
Theorem IIL); non-definability of predicates in formal theories (Tarski [31],
Kleene [15] Theorem XTII); undecidability of various theories {Rosser [29]
Theorem IIT, Tarski, Mostowski and Robinson [32]); and degrees of
ungolvability of various theories (Myhill [25], our [7]). Among the in-
tensional results we have the following: unprovability of consistency
statements (Godel’s second underivability theorem [10] Satz XI), com-
parison of theories by relative consistency proofs (Novak [26], Wang [36],
[37], Shoenfield [30]); and ordinal logies (Turing [33], our [8]). A result
of mixed character is the arithmetization of Gédel’s completeness theorem

* The results reported in this paper were obtained while the author was a student
of Professor Alfred Tarski at the University of California, Berkeley. A more complete
presentation of them has been given in the author's thesis [4]; announcement of the
results has also been made in [5] and [6).

We are indebted to Professor Tarski for a number of helpful suggestions regarding
this resedreh; a8 well a8 to Professor Leon Henkin for his kind guidance ‘during the
period 1955-56 when Professor Tarski was on leave. We wish also to thank Professors
John Myhill and Georg Kreisel, both for a number of stimulating conversations, and
also the latter for his helpful comments on a draft of this paper.

Finally, thanks are dune to Professor Steven Orey for his interest in widening the -
range of application of our work, as will be evidenced at various points in the text.

This paper was prepared under Contract DA-04-200-ORD-997 for the Office of
Ordnance Research, U.S.A.
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for first-order logic (Hilbert-Bernays [14] v. II, Wang [34]) whereby
every (recursively axiomatizable) theory G is interprefable in arithmetic
when the formal statement of the consistency of T has been added.
Finally, the proofs of non-finite axiomatizibility of various theories G
obtained by showing ‘G to be reflexive, i. e. that the consistency of every
finite subtheory of G is provable in & (Mostowski [23], Kreisel and
Wang [19], Montague [21], [22]), are instances where intensional methods
are used to deduee purely extensional results.

The relative freedom with which one can choose the formal definitions
in extensional applications, providing only that they are numerically
correct, has had two consequences. The first is that it has been possible
to obtain results thereby of very great generality (cf. Mostowski’s
treatment of incompleteness and non-definability theorems [24], and
the book Undecidable theories [32]). The second is the possibility of wsing
intensionally incorrect definitions to obtain improved extensional results.
Such is the case with the Rosser construction [29], starting with a given
numerical definition Prig(x, %) of the relation “y is a proof in G of &7,
of a new definition Prig(z, y) as

Prig(@, y)n A ~ Priz(og(z), 2) .
o<y
Of course, Prig{w, y) does not express the proof relation in G butb rather
the relation “y is a proof in G of # and for all 2Ky, # is not a proof
in G of the negation of z”. Similar constructions are used by Kleene
(symmetric form of Godel’s theorem, [15], Theorem XV) and by the
author in [7]. .

Corresponding developments, of full generality and of useful varia-
bility of definitions, have so fax been lacking in the treatment of intensional
Problems. A formal arithmetical statement Cong expressing the con-
sisteney of a theory G is only determined when we have been presented
with a description of the set of axioms of G from which we will be in
& position to see that the given statement Cong is intensionally correct.
But when the set of axioms is regarded as being extensionally given,
as simply being ‘“‘there’’, no general criterion seems to be available for
seeing whether one among many possible sentences Cone correctly ex-
Presses the consistency of G. Hence the generality of the following
statement of Godel’s second underivability theorem—if T is sufficiently
strong and consistent then Cong is not provable in T—is only apparent
when regarded from the extensional point of view.

That the ability to deal with consistency statements in some
generality would be useful can be seen in connection with Turing’s
treatment of ordinal logics [33]. For example, one might want to discuss
a series of recursively axiomatizable theories G, £ a congtruetive ordinal
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notation, where Ty, is obtained from G, by adding Cong, as a new axiom.
But just how these statements Cong, are to be found is not at all clear,
for we do mnot see how to determine them without first having been
presented with an intensional description of G:, and we do not know
how to obtain such a description without first knowing how to determine
the associated consistency statements. Turing, though he realized the
difficulty, simply left the matter up in the air. In general, such difficulties
have mostly been avoided in the literature, with regults that are often
ambiguous ().

The situation is even less satisfying regarding manipulation of
intensional definitions, in analogy to the Rosser construection. For
example, if G is consistent, we can construct a numerically correct
definition of proof Priz(x,y) as

Prig(x, yJA A A /\y~[Prf7;(W,Zl)/\Prf‘z;(ng(W),Zz)];

7IRY <Y W

then we can prove in arithmetic the statement Con%, taken to be

A A A ~[Pri(x, y1) APri(ng (x), )] .

X Y1 V2
But Prfz(x,y) is intensionally incorrect, so we can ascribe no clear
intensional meaning to the result. On the other hand, since we cannot
formally derive other properties of provability in terms of the definition
Prix(x, y), we see no results of extensional interest which follow from
the proof of Confg, in contrast to Rosser’s use of such definitions.

One approach to the treatment of intensional problems in a general

setting could be by means of the three derivability conditions set down
for a proof definition Priz(x,y) by Hilbert and Bernays in [14], Vol. IT,
p. 285-286. These are shown to be sufficient for the proof of Godel’s
second underivability theorem (loe. cit. p. 286-288). On the other hand,
we see how to verify for familiar theories that the intensionally correct
proof definitions satisfy the given conditions (for example, for the
arithmetics Z, and Z, cf. loc. cit. p. 289-328). Then it is sufficient, in
o variety of intensional problems, to assume that one is dealing with
such. a proof definition, without needing to give it explicitly. The elegant
possibilities in this direction are well demongtrated by Lob’s solution.

(*} We shall not try to livt examples of such; the reader will not have to go far
into the literature in this area to discover many instances of careless or vagus formu-
lations of intensional statements. We do not, by any means, contend to be the first
to have questioned such treatment. As just one example, in & review (Journal of
Symbolic Logic 16 (1951), p. 142) of one paper, Mostowski has written: “Full pres-
entation of [the] results should be based on more exact definitions... of the proposition
Con (8). ...there are many non-equivalent propositions of arithmetic which might be
regarded as expressing the consistency of S”.
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in [20] of a problem of Henkin’s (). A similar assumption is used by
Kreisel and Wang in [19].

This approach suffers several limitations. First of all, there is no
simple method of seeing whether a given proof definition satisfies the
derivability conditions. Further, the third derivability condition is peculiar
to theories which contain a sufficient amount of arithmetic; it is thus
not relevant to other problems of arithmetization, for example the
treatment of Gddel's completeness theorem. On the other hand, the
first two derivability conditions are rather too weak to be usged by
themselves with such other problems; it simply happens that they are
sufficient (when accompanied by the third condition) to be used for
the proof of the second underivability theorem. Finally, one does not
see clearly from the conditions what are the possibilities of manipulating
those proof definitions which satisfy them.

The purpose of this paper is to present a systematic approach to
intensional problems in a general setting which does not suffer these
limitations. This is done for axiomatic theories framed within a fixed
system of logic which, for purposes of definiteness, we take here to be
first-order predicate logie with identity. Then the proof relation for
a theory is completely determined by the set of (non-logical) axioms
of the theory. With a given theory T we can associate the clags of all
formulas v(x) which numerically define the set of axioms of G. Then,
by formally copying our notion of logical proof, we can associate with
each such formula 7, in & uniform way, a formula Prifx, y) and, in turn,
a sentence Con.. It will he evident from the construction (§ 4). that
Pri(x,y) correctly expresses that y is a proof of X, via the first-order
logie, from the set of axioms defined by 7. In other words, whenever
a formula 7(x) can be recognized to express correctly that x is an axiom
of G, the associated sentence Con, will be recognized to be a correct
expression of the proposition that T is consistent. In this way all
intensionally correct statements of consistency for familiar theories can
be obtained as special cases.

It will be shown in §4 that a large body of propositions from
“‘general” metamathematics can be formally derived when one uses the

(*) It may happen that a problem which appears at first sight intensional, can
be seen to have purely extensional significance. For example, if one considers the
sentence ¢ which expresses that it is not provable in G, the question of provability of ¢
1:11 T turns out to be independent of which definition Prig(z, y) is used, as long as it
is numerically correct (Godel’s first underivability theorem). Henkin’s question concerns
the sentence y which expresses that it 4s provable in T; in contrast to the preceding,
the question can be answered in two ways by suitable choice of proof definibion. Thué,

the latter problem remains intensional. This point has been discussed in more detail
by Kreisel in [17].
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formulas Prix,y) no matter what the formula 7 is; the first two .
derivability'conditions of Hilbert-Bernays are just very special instances
of these propositions. The investigation beyond this basis then proceeds
in two ways. Generality is achieved for various metamathematical prop-
ositions by finding those classes of formulas z(x) for which they are
valid. Useful variations are obtained by changing the proof definitions
from the “‘inside”, by taking different choices of formulas v(x) for a given
theory G; this is in contrast to changes from the “outside” as in the
Rosser construction, which are, in effect, changes of the notion of logical
derivation.

Following these lines, we find a large class of formulas, the so-called
RE-formulas, for which Godel’s second underivability theorem can be
obtained in quite general form, roughly as follows: if G is a sufficiently
strong conststent theory and ©(x) is an RE- formula which defines the axioms
of G then not ¢ Con, (5.6). (A version of the third derivability theorem
used in this proof is found in 5.5.) On the other hand, we show some
limitation on x(x) is necessary for sufficiently strong reflexive theories;
for example, we construct a definition =*(x) of the set axioms of Peano’s
arithmetic £, for which 2Con,. (5.9, 5.10).

Because the formulas Prf,(x, y) accurately reflect logical derivability
they prove to be especially useful in connection with problems of
interpretability. Let us write G = & if G is relatively interpretable in &
(in the sense of Tarski [32]). Then the arithmetized version of Godel’s
completeness theorem takes the following form (roughly): if <(x) 48 any
formule which defines the set of awioms of a theory G then G < P+ {Con.}
(6.2). In contrast to the second underivability theorem, there are
essentially no restrictions on v here; under -certain simple vestrictions,
it is possible to replace P by some finitely axiomatizable theory & in
the above (6.3). Because of the freedom to choose 7, this theorem. is very
close to being extensional; however, the fact that the 'structure of the
statement Con, is intensionally correct with respect to logical derivability
is essential in its proof.

By a systematic exploitation of statements of the sort for which
@ Con,x, it is possible to obtain clear extensional results of the follow-
ing sort: -

(1) if every finite subtheory of an amiomatizable theory G is = P then
G <P (6.9; communicated to us by $. Orey); .

(2) P is not only not finitely axiomatizable, but it is also wot inter-
pretable in any of its finite subtheories (6.8).

We further obtain the following results of mixed (extensional and
intensional) type;

(8) for any RE-formula = defining the amioms of L, P+ {~ Cong}
< P (8.6);
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(4) for any RE-formula n defining the axioms of
£ P (8.3).

It G is a theory with a finite set of axioms, there is @ natural de-
finition v (x) of this set, obtained by listing the axioms; we denote thig
formula by [G](x). It has the further property that if v’ is any other
formula which defines the axioms of % then

P, P+ {Oon,}

|- Con, — Conyg; .

Hence if we define v <1’ by |o Con.—Con,, the natural deseription
of G is a minimum in the partial drdering' <. It should be intuitively
clear that there is no natural or favored description = of an extengionally
given infinite set of axioms. However, it may still be conceived that
there is one favored way of expressing the consistency of G, i.e. a choice

_ of definition  which is & minimum in the above ordering. We show in 7.4
that this is in general not the case, for T a reflexive theory. Thus
a thoroughgoing intensional approach to problems for arbitrary theories
T is not possible. § 7 concludes with a discussion of similar difficulties
which are connected with any attempts to make general statements
about formal relative consistency proofs. § 8 shows how the results of
§§ 5-7 can be extended to theories which do not contain the symbols
of arithmetic directly.

The reader will find that in general the material presented in §§ 2-4
is quite familiar; we have thus omitted most proofs there. However,
we have stated all notions and results precisely, as a necessary pre-
requisite to dealing with their arithmetized versions, The explicit in-
troduetion and treatment of the classes of PR- and RE-formulas in § 3
is apparently new. So also is the system of notation for arithmetized
concepts presented in § 4; we hope it will be found more manageable
than the systems presently available in the literature. Proofs are given
for all essentially new results in §§ 5-8.

We have tried to piteh our Presentation somewhere between the
level of an informal exposition and of g treatise in which all supporting
details would be worked out {®). It should be found quite adequate ag
a basis for further investigations. In particular, a detailed study of

ordinal logics based in the present methods (along the lines described

in our abstracts [8]) will follow in the near future.

. () Work is underway on a monograph, being written in collaboration with
Richard Montague, on the method of arithmetization and some of its applications.
It is intended that this monograph sh

] i ould contain a completely detailed presen-
tation of the work discussed here, as well as of the research of Montague in [21]
and [22].
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2. Some preparations

2(a) Mathematical notions and notation. We shall primarily
be concerned here with certain functions on and relations in the set w
of natural numbers 0,1, 2,... All unspecified mathematical variables
will be presumed here to range over w. We shall occasionally use a few
logical symbols in our informal discussion, for convenience of abbreviation.
These are )
=, (dz), and (T&)s<q

(if and only if, there exists an x, and there exists an » with @ < a), with
the quantified variables ranging over natural numbers.

We denote by w® the get of all ordered n-tuples {a,, ..., a,_,> where
for each i < n, ;e w. We take <(a) = a, 80 that o' = w. We call B an
n-ary relation if B C o™ and also write Rfay, ..., ay—y] if <@g, ..., ap_1> € R..
For n-ary relations R and 8, Ru S, R~ S and R— 8 are taken in their
usual meaning. The empty set (and n-ary relation for any ) is here
denoted by 0. The set consisting of just ay, ..., @ is denoted by {a,, ..., az}.
By an n-ary function or operation we understand an (#+1)-ary relation 7
such that for any ay, ..., @n—1 there is a unique y, for which Flay, ..., @n—1,%];
the unique such y is denoted by F(ay,..., @y—). If R is an (n-+1)-ary
relation the equation

ey U1, Y]

defines the function which has as value the least y < b such that
Rlag, ooy p—y, y] if (Ay)y<pR[ay, ---5 @n—-,y], and otherwise has va,lue- b.

‘We take as known the theory of primitive and general recursive
functions and relations; Kleene’s book [15] will serve as a standard
reference here, as well as on other general questions of metamathematics.
We shall also refer to certain relations as being recursively enumerable,
namely those which can be defined in the form

(Hg/)S[ao, ceey In—1, f’/]

where § iy recursive (or, equivalently, primitive recursive). ‘

The function P which enumerates the primes, starting with 2, In
order of increasing size, is primitive recursive; we shall write p; for P(3).
We can then introduce a primitive recursive function (a); of two
variables a and 7 such that for any @ s 0, (a); is the unique % for Whi‘ch
pf;‘]a but p?*‘l'ra. We shall say that & represents a sequence, and write
ae8q if @ 5 0 and whenever p;|a and § < 4, then p;/a. Let L(a) denote
the highest # such that p,_.|a, if a> 1, and let L(1)= 0. Then any
a € 8¢ corresponds in a natural way to the sequence of non-zero numbers
{@)oy «ry (B r@—1y (the empty sequence if L(a)= 0). The set Sg¢ and
function L are primitive recursive.

F(agy ooy tney b) = (py)y<s Bl ay,
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2(b) Syntax. We restrict our considerations here to theories
formalized within first-order classical logic with identity. It will be clear
to the reader how to extend the methods developed to clasgical theorieg
with variables for higher types, either directly or by reduction. We start
by describing a general language from which all our theories can be
constructed. This is a language only in a generalized sense of the word.
Its basic elements are taken to be numbers, rather than symbols or
expressions, and the logical connectives will correspond to certain oper-
ations on numbers. By this device, every expression will be directly
identified with what is usually called its Godel-number, and we thus
avoid the constant passage back and forth Dbetween expressions and
numbers.

To be definite, we can set out, as a basic list of symbols:

2

&

Vp=8n+25, Cp=8r+3, TI,,=38 [ﬂt@r)-—————(n tmtl) +m|+5,

fn,’m =8 [(7L+7)Z)(Ig+m+l)“+m]+77

rveferred to respectively as the (n-+1)-st variable, (n-+1)-st constant,
(m+1)-st (n-+1)-placed relation and the (m-+1)-st, (n+1)-placed function,
symbol. In the following we shall also fix x, v, z to be Vo, V1, Vg respectively.
The set of all v, is denoted by Vr. The set of constant, relation and
funetion symbols is referred to as the set of non-logical constants, denoted
by Const. We then define three operations on numbers, ~a = 2*. 3%
a->b=2°3%5" and {l\ b=2"-3%5" In terms of these, oﬁeration;

avb, and, a—b, \t{ b can be defined in'the usual manner: Ag a way of

conveniently describing the construction of terms and atomic formulas
we make the abbreviation ’
arboy eeey bﬂ] = Pgu' p?“ ]73"4-1 “
We farther abbreviate
Pioldy, b1 by

In the following, unless otherwise specifi i
] > 5 se specified, K will represent
arbitrary finite set such that 7 prosent mn

by=b, .

T K C Const.

By tt-le set of terms in K, Tmg, we understand the smallest set which-
containg all variables, all ¢, e K and such that whenever it containg
Egyeeny E’f and whenever f,,, ¢ K it also contains Taml&oy oy Enl. The set
of atomic formulas in K, dig, is the set of all m;.mbe’rs 1’" [5' &l
where &, ..., & ¢ Tmg and Tnan € K. The set of formulas ofn;n'f, Olz’mf:, 11‘%
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the smallest set which contains 4tz and such that whenever it contains
@,% also contains ~¢, ¢—>p and Ap. It is easily seen then that the
¥n

sets Tmg, Aix and Fmg are primitive recursive. Furthermore, it results
from our particular construction (as it would from any similar con-
struction) of the basic symbols and operations that every term and
formula of K is uniquely “readable”, i.e. has a unigue grammatical
structure.

In this way we can continue to develop syntax in the usual fashion
but at the same time strietly as a branch of number theory. Among
other concepts needed ave that of a variable being free in a formula, that
of the set of free variables of @, Fv{p), that of the set of sentences in K,
Stg, and that of one formula ¢ being obtained by generalization (preceding
by universal quantifiers) from another y. We also assume to be defined
an operation Sbiy, to be read the substitution of (the term) £ for (the
variable or congtant) a at all free occurrences of @ in (the term or for-
mula) y. It shall be understood that this operation is always performable,
with bound variables being renamed in vy, if necessary, to avoid collisions
(cf. [14], Vol. IT, p. 378). More generally, for &= PR PR, 6= P8 .. PaT,
we assume available a simultaneous substitution operotion SSb(E, a,y),
ordinarily to be written

Oy Uy

8b Y,
o in

which reduces to the preceding operation in case # = 0. In particular,

we shall write
'V Vp
Y(&ny ooy &) TfO¥ Sb( )y.

& n

Thus writing “p(v,)”’ or “p(x,y)”, for example, denotes the same as
writing “¢”’, and does not imply any commitment regarding the set of
free variables of @. All of the relations and operations described here
are primitive recursive and their basic properties can be deduced by
ordinary number-theoretical arguments, including mathematical induction.
Incidentally, it is useful to observe that the ordering < of natural
numbers automatically provides us with an ordering of all our syntactic
entities,

2(e) Logic (*). As the set Aag of logical axioms in K we take the
set of all generalizations of all formulas @ ¢ Fmg Where ¢ satisfies one

(*) The systematization of logic presented in this section follows closely one used
by Professor Tarski in his course in metamathematies given in Berkeley 1951-1952.
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of the following conditions, for some 0,9,y elmg, &eTmg, and
weVr:

i) ¢=[0>(p>p)]>0-p)>(0—>2)];
(i) o =0->(p>0);
(iii) ¢ =0—(~0->p);
) ¢ =(0->p)>[(~0->p)>p];
(V) o= /\(0—>w)—>({1\0—>,§w);

n

) g=A p—>8bg v;
(vil)

p=yp—=>Ay (u not free in p);
u

(vili) @ = A (x=x);

x

(ix) g=A . A(VimVp—>Ex= 803, 8), where i <n and

Vo Vn41
& =Tam[ Vo, oy Val;
(x) ¢= ‘{} «--v/\ (vim V> {p e 8b3,.w)), where i < n and
L

Y= Lo Voy ooy V]

Clearly Azg is a primitive recursive set.

We wish next to describe the basic proof-theoretic notions relative
to a set of non-logical axioms A in a language with symbols from K.
We shall be primarily interested in the case that A is a sef of sentences
in K. We shall call a system = <4, K> an axiom system or axiomatic
theo‘ry if 4 C Sig. Tt is technieally convenient to deal with a more general
potlon; we call any system HA = (4, K> a pseudo-system or pseudo-theory
}f A CFPmg. The system Lx = <0, K> wil corregpond to the pure logi(;
in K. Given any =, let 4]'n be the set of ped with p<n and let
Aln=<AT n,K); A n is thus a certain finite subsysﬁem of A.
For any A = (4, K} and ¢, ..., gu s Fmg, we define A+ {p,, ..., pu}
=4 o {py, ..., pa}, E>. We assume that F = {4, K> is an az’*bit;'arv
pseudo-theory in the following. ’

By Prfs.z we understand the binary relation sueh that: for any ¢, ¥,
(ngi[;;, i’{] ZZ ;wgt ;;Z-ly tf ¥e8q and ¢ = (¥)gw-1 and for each i < L(¥),

(i) (Phedog,
or (ii) (¥)ed,
or (iii) for some §, k<4, (¥), = (F);—(¥);.

In other words Prigle,
mulas - giving a proof of
formulas of A4, using mod

¥] holds if ¥ represents a sequence of for-
@ from the logical axioms, together with the
us ponens as the only rule of inference. The set
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of formulas provable in A, Prg, is taken to be the set of all ¢ such that
for some ¥, Prig[p, ¥] (5). We shall also write

tap  for pePra.

It is easily seen that the relation Prfg is primitive recursive in A and
that, moreover, it is recursively enumerable whenever A is; the latter
also holds true of Prg.

The development 'of logic nnder this notion of provability is standard,
with one exception. While we have allowed formulas to be nsed as axioms
in arbitrary pseudo-theories A, we have not provided a rule of gener-
alization. In fact it is easy to give examples of a system A, formula ¢
and variable u such that e but not —x A p. However, we can say

the following for any pseudo-theory &, and any given variable u:
2.1. TIf for each ye A, u is not a free variable of v, then for any ¢ e Fmg,

Fale if and only if  Fagp.
u
Thus variables which are free in some formula of 4 act as constant

symbols with respect to provability from &H. This special technical

feature of our notion of provability will be found useful in later develop-
ments (2.5, 2.8, 2.9). It is seen that when A is an axiom system, i. e. 4 is

a set of gentences, the present notion of logical derivability accords with

the usual one.

Among the familiar results concerning provability, we mention here
but two. First, we have the Deduction Theorem.

2.2. For any g, ..., Pr, ¥ e g,

if and only if (o A ... A @r)>peDlrag.

Secondly, we express (in part) the usual result about deducibility
from finite subsystems by the statement:
2.3. For any ¢ e Fmg,

Y € Praipg.mp

pePry if and only if, for some n, @ePrara.

The notions of being closed (under logical deduction), comsistent,
and complete, as applied to a pseudo-theory A, are explained respectively
in the following definitions:

(*) In extensional problems it is often unnecessary to distinguish & theory from
its set of provable formulas (or sentences); such are, for example, the theories in standard
formalization of [32]. However we may not be able to recognize by given mathematical
means that two axiom systems A = <4, K> and A’ = ¢A’, &) determine the same
theory in this sense, i. e. that Prag= Prav. Hence it is essential, for intensgional problems,
1o distingnish between different axiom systems at the start. )
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2.4, A< CLif and only if Pra C 4;
A < CON if and only if for each @ eFmg, either not —gp
or not |- g ~p;
AeOM if and only if A e OL~ CON and for each ¢ ¢ Fmyg,
either |—g@ 07 — g ~p.
It is easily seen that for any fixed ¢, e Fmg,

A CON if and only if not g @o A ~y.

Thus, this definition of consistency accords with any usual one. On the

other hand, the definition of completeness given here is much more

restrictive than the usual one; for example, if A is an axiom system

and A e CM, it follows that for any p e Fmg, cither g A or —g A ~q.
u u

(From this it is seen that any axiom system which iy complete in the
sense of 2.4 would be the theory of a one element domain.) Actually,
we shall only be interested in applying this notion to the case of certain
pseudo-systems (in. which case we cannot apply generalization). In this
connection, we introduce one further type of completeness, which we
refer to as quantificational completeness; we pub

2.5. AeQCM if and only if A « CM and for each p e Fmy and u e Vr,

—a Ao if and only if, for oll weVr, o Shhe.
u

Since CM C CL, it makes no difference for A « CM whether we write,
for any given ¢, bag, pePrg, or ped.

Coneerning these notions, we obtain first, easily,

2.6. A CON if and only if for each n, A ne CON.

Next, though the notion ¢ of completeness does nob coincide with
the usual one, we see that Lindenbaum’s extension theorem still holds,
namely:

2.7. If A « CON then there exists B = (B, K: such that BeCM
and A CB.

. Im?eed, it is useful to observe that such a set B ean be constructed
which is also arithmetically definable in terms of 4, as follows. Put
0« B if-and only if there exists @ eS¢ and » such that

(1) L(®) =n-+1 and 6 = ()a;

(u) for each 7 < n, (B); e Fmg and (D)< (D)< ... < (D)

(iii) ~((®Yy A .. A (P)n) ¢ Pra;

(iv) %f yeFmg and p < (), then ~yePrg;

(M it yeFmg, i<n and (O);<p< (P)isr then () A ... A (D)—
>~ e _P‘J'_tx .

Tl.1e proof then proceeds in the standard way (ef. [32], p. 15). Another
extension theorem which will be of use to us is essentially due to Henkin
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and Hagenjaeger (cf. [12] and [13]), and concerns quantificationally
complete systems. We do not state it in its most general form here.
28. If A cCON and A C Sty then there exists C = {C, K such that
CeQCM and A CC.
The proof depends on the observation that if a pseudo-theory
D = (D, K is consistent, ¢ e 'mx, n, w are variables such that w # u,
and w is not free in any formula of Do {p}, then D+ {Sdhg—~ Ag} is
1

congistent. Thus if F is a function which enumerates all formulas of the
form A @, F(n)= A gn, we easily construct a sequence of variables wy
n u,

1
guch that the system A’ = {4’, K>, where

A=A U BB pg A Gy ey SHRE P> ‘{\ Py o) s
g n

ix consistent. Then by 2.7 we can extend HA' to a complete system C
which is then of necessity, quantificationally complete. We see that
A’ is recursive in 4 and hence, again, €' is arithmetically definable in
terms of A. ‘

We say that a system A is finitely aziomatizable, or recursively
aziomatizable, it there is some system C = (C, K> such that Pre = Prg
and C is finite, or recursive, respectively (%). .

Given two systems A =<4, K), B=<B,L), B is said to be an
extension of FA, and HA a subsystem of B, in symbols ACRB, if KCL
and Prs C Prg; we shall say that A is a finite subsystem of £ if, in
addition, A is finite. We shall say that £ is an extension of & with the
same constants (or, without new constants) if AC B but K = L. Finally,
we shall in general put A v B =<AdvB, Kol

2(d). Models and interpretations. We ghall make use of
semantical notions as a guide to certain parts of our discussion and as
a simplifying. device in some proofs. However, it will be seen that all
non-constructive methods ecan be eliminated from our treatment of
problems of arithmetization, if desired.

We shall illustrate our use of the semantical notions by reference
to a simple special case, namely when K = {rio, r11}. If we get 8§ =Tu,,
we would say, in usual terms, that we are dealing with a system with
basic symbols ==, §, where § is a binary relation symbol. By a K-model
we understand a system MM = (M, @ where M 0 and G is a function

(*) By the result of Craig [1], S is recursively axiomatizable if and only if there
is & C= <G, K> such that Pre = Prz and O is primitive recursive (recursively
enumerable). Thiz will not, of course, keep us from distinguishing whether a given
axiom system A is primitive recnrsive, recursive, or recursively enumerable (cf. (%))-
We shall prove a stronger result than Craig's in 4.13.
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on K which assigns to each m-ary relation or function symbol of K an
n-ary relation or function, resp., on M; in our case, & C M2 —moreover
always <a,b) e Gy, if and only if a=b. By an assignment W in M,
we mean simply a sequence W e M”. W ig said to satisfy a formula in 9
under the usual conditions (cf. [31]), stated for our case ag follows:

(i) W satisfies v[Vn, Vo] = {W{n), W(m)) ¢ &,, for each rcK;

(i) if @, p e P'mx then W satisfies ~g = W does not satisfy @, and W
satisfies g—p =W does not satisfy @ or W satisfies ;
if @ e Fmg then

W satisfies A @ = for every W' such that W'(j) = W(j)
" for all § #14, we have W' satisfies o.

(i)

A ugeful trapsformation of condition (iil) can be made when W i
an assignment whose range is M. In this case we have

(iif)"  4f ¢ e Fmx then

W satisfies A ¢ =W satisfies 8byio for every k.
vi

If peSig, ¢ is said to be #rue in M, and D is called a model of ¢,
if some assignment W satisfies ¢ in M.

The main theorem connecting semantical notions with logical notions
is the following: o .

2.9. If A eOON and A C Stg then there exists a model M = <M, G
(with M C ) such that every semtence of A is true in M.

The proof makes use of the strongly complete extension C of K
obtained in 2.8. We can define an equivalence relation between natural
numbers 7, p by the condition

@

Then I ¢an be taken to be the set of all equivalence classes. Alternatively,
we can take M to be a set of natural numbers, with

Vnzvp€0.

peM =for all n <p, Vam=vyé 0.
To construct the model for our particular K we then take
(2) (for m,mneM).
It W is defined by
3)
we see that W is an assignment with range M. It is then eagy to verify,

comparing conditions (i), (i), (iii)’ above with the fact that ¢ eQCM,
that MM is a model for A. In fact, it is seen that for any ¢ ¢ Pmg,

{4)

<My, n) € Qs =3[V, Vale C

W(n) = (up) (Vo= vy € 0)

W satisfies ¢ in M=gpe(.

icm

Arithmetization of metamathematics 49

As we know, the Theorem 2.9 has as an immediate consequence
the completeness, for the deduction of all sentences true in all models,
of our formalization of logic (7).

The formal analog of the notion of model is that of interpretation.
We take the notion, A is relatively interpretable in B, which we shall
write A < B, as explained by Tarski in [32], p. 20-21, 29, Tt is easy to
gee that this relation is the same as that to be described in the following;
we again illustrate by considering the particular I = {rip,1;,}. Con-
sider A= (A, K>, B={(B,L: Let v, be a fixed formula of L with
Fo(ys) = {x,7}; let 6 be a fixed formula of I with Fv(d) = {x}. Let I
be the primitive recursive function uniquely determined on Pmg by the
following conditions:

(i) For any n,m
I (vame Vi) == (V== Vi)
and
L(8[va, Vi) = ¥s(Va, V) 5

(ii) for any ¢, yeFmg, I{~p) = ~I(p) and
Iig—>y) = I(@)~>I(y);

(iii) for any ¢ e Fmg and any variable u
(A @)= A ((0)=>I(g)) .
n u

We then write A< B if -2V 6(x) and for each ged, al{p).
T 4

Then, if A is an awiom system, A=< B if and only if there is an I fmch
that A < B. In such an interpretation we can say that we are “modeling”
7

A in B with “domain’ obtained by relativizing quantifiers to 4. (In
case K contains funection symbols, the formulation needed above becomes
slightly more complicated. For example if K contains a single unary
funetion symbol g, we find I{p) by first constructing ¢’ logically equi-
valent to g, such that every atomie formula in ¢’ involving g has the
form g[vy]~ v, and we then set I(p) = I(¢"). In particular, I(gva]~ Vm)
= Yu(Vn, Vi), Where

- A {8() =/ [0(y)Apelx, 1A A () sl 2)—>y=1l|}.)

¥

(") The completeness theorem is due to Godel [9]. The present proof is ba}i?d
on a simplified version, found by Hasenjaeger [12] and independently by Henkin
(ef. [12], footnote 3), of the proof given by Henkin in [13].

Fundamenta Mathematicae, T. XLIX. 4


Artur


50 8. Feferman

It is a direct matter to see that:

2.10. If A, B, C are awiom systems then:
{) if AC B then A=< B;

(i) if ALB and B=2C then A=< C;

(ili) if ALB and BeCON then H e CON.

Several other relations comparing theories which have been discussed
in the literature are closely related to <. Among these we may mention
the notions of translatability introduced in [35], [36]; these also satisty
the result 2.10, in place of <. However, we have found that these other
notions are much less satisfactory to deal with in connection with the
method of arithmetization (further remarks on this will be found in § 7).

3. Number theory and certain of its extensions

Let Ko = {cy, fo, f10, f10}. For any &,n we shall set & = f,,[¢],
Etn="1tolE, 7], and &en=1;[£, 5. In other words, K, provides the
basic symbols of arithmetic. We ghall speak of K,-systems and X,-
pseudo-systems, A = (4, K,>. The syntactic notion of numeral is in-
troduced for such systems by the recursive condition 0 = ¢,, (n +1) = (n)".
Further %, g, < are counted as abbreviations in the following sense;
=~ (E=n), E<n = V (E+va=n), where v, is the least variable to

Vu
oceur neither in £ nor in #, and £ < n =& < nALE.
Two particular K,-theories in which we are interested are @ = @, Ky
(“Robinson’s system”) and P = (P, K,> (“Peanc’s” or “classical” aritl-
metic). The sets @, P both contain the following six sentences:

ANE=Y-xmy),  AX#0),  Ax+0=x3),

X x
ANE+Y=EHYY), ARO0=0), A A (xeym(xey)+).
Y x X v
In addition, @ has the single axiom

/x\ (x7# 0 \/ x=y'),

while .P has, instead, all sentences which are generalizations of the
following, for some ¢ e Fmg,:

#(0) A A (p(x) o)~ A o(x).

Clearly QC 2.

icm
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In (@ we can obtain the following elementary arithmetical results:

3.1, (i) Fe@+Bn+m and |—a e« Wn-m, for all n,m;
(i) g mFE W whenever n +# m;
(iit) Fox€Aeoxm0vxrly ... VT
(iv) Fex<A VAL,
As is well known, all recursive functions and relations are definable
in @, and in all its extensions (%). The precise meaning of this statement
will be formulated in the following terminology:
3.2, DerNirioN. Let A be o K-system, where K,C K. Let R be an
(n+1)-ary relation (in o) and ¢ a formula of K with Fo(p) = {vy, ..., Va}.

(i) ¢ is said to numerate B in A if for any Ky, ..., kn

Blkyy oy bon] == @lkgy weey Fn) 5

({i) ¢ is said to bi-numerate B in A if ¢ numerates R in A and ~¢
numerates w*— R in HA;

R is said to be numerable or bi-nwmerable in A if there is a formula ¢
which numerates it or bi-numerates it in A, respectively. Each formula ¢
of A with free variables vy, ..., v4 is said to be a numeration of the
relation R defined by the equivalence (i); ¢ is said to be a bi-numeration
if, in addition it bi-numerates that B. The notion “bi-nnmerate’’ coincides
with what has been expressed elsewhere by “define” (of. [4], [24], [32]),
“gtrongly define” or “strongly represent’’ (cf. [11]) and “numeralwise
express” (cf. [18]), in the case that HA is a consistent theory. The use
of numerate coincides with the use of “represent” (ef. [3], [4], [25]),
‘weakly represent”, or ‘“‘weakly define’ (®).

The notions introduced above will also be used to connect functions
and formulas, by regarding each (n+1)-ary function F as an (n+2)-ary
relation. For example, we will say that a formula ¢ with free variables
Vo, ooy Va, Vnyy Dumerates F in A if ¢ numerates F' as a relation, i. e. if

for each ky, ..., kn, P
F(kyy oy bn) =p = *"%‘P(Tcm ey ]—“'ny p).
If ¢ has the form &(v,, ..., Va)= Vay1, this also implies that ¢ bi-numerates

F in HA. Stronger notions of definability of functions have been found
useful in the literature, but we shall not need them here.

(%) It is also well known that a weaker theory than @ (the theory B defined in [32],
p. 52.53) also has these properties. However, the finiteness and simplicity of Q give
it a very useful role in our investigations.

(*) We believe the new terminology, as against the weight of past usage, recom-
mends itself on the grounds of uniformity, relative simplicity, and adaptability to
a variety of means of expression (“numerate”, “-ates”, “-able”, “-ation”); moreover,
it immediately suggests the notions involved.

4%
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The construction of numerations of primitive recursive funetions
and relations can be carried out most directly in certain extensions of P
involving new logical eonstants, and new axioms which correspond to
the defining equations for primitive recursive funetions. This is presented
in precise terms as follows.

3.3. DERINITION, @' = {(P', K> is said to be a p.r. emtension of P if
there is a sequence of distinet function symbols go, ...y &ny Of Mo -+1, o0y iy +1
places, respectively, and a sequence of sentences wy, ..., Ym sueh that:

(i) For each i < m,there are £, n € T'myg,, where K; = Kou{gy, ..., 24},
for which Fv{£) C{Vy, ces Vny—r}y F0 (1) C {5y eery Vaysr} and
= A e AL Voy ey Vg1, 01 (Vo) ey Vigm1)
Vo o Vpi1
A A BilVay vy Vi1 Vil = 9 (Voy -ony Vugy Bl Voy vy Vay—mrs Vg1,
Vg

and

(if) K == K, and P’ consists of all sentences of P, together with vy, ..., yn,
as well as with all sentences which are generalizations of the following, for
some ¢ e Fmg:

p(0) A A (p(x) »p(x))— A plx).

The use of terms &, 5 in the description of the w; permits us to formally
express in one step the construction of new funections from given ones
by means of composition and by permutation and substitution of variables.
Thus we see that the following holds.

3.4, TEEOREM. (i) If F is an (n+1)-ary primitive recursive function
then there is a p. v. extension L' of L and o term & with Tv(&) = {Vq, ..., Va}
such that the formula £(Vy, ..., Vi) Vayy numerates F in @' (if 2 is con-
sistent); further, under these conditions, every such formula numerates
a primitive recursive function.

(i) If R is an (n+1)-ary primitive recursive relation then there are
L', £ as in (1) such that the formula £(¥y, ..., va)=0 bi-numerates R in P
(if ' is consistent); further, under these conditions, every sweh formaule
bi-numerates a primitive recursive relation.

To obtain numerations of these functions and velations in P, we
must make use of the elimination procedure discovered by Gidel and
presented in [10]. The details of this have been described clsewhere
(ef. [15], p. 243-245 and [13], Vol. I, p. 401-419). What we need to know
of it is as follows. With each p. r. extension 2’ of P and each formula ¢
of £ is associated a formula ¢ of P with exactly the same free variables.
The association is such that (~g)@)= ~p@), (p—>p)@)= @) >y@), and
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(A @EY = A @ for all formulas ¢,y and variables u. Also, for each
formula ¢ of P, @ =g,

Moreover, we have the following.

3.5. (1) If ¢ is a formula of D' then |—g @« g0,

(i) If ¢ iy a sentence of P then
=g if and only if e ¢
(ili) @' ¢ CON if and only if Pe CON.

Sinee the hypothesis that @ is consistent will be needed in a number
of theorems in this paper, we will for simplicity now assume it ontright.
The strictly finitistically inclined reader can easily return it to its role
as a hypothesis wherever nececessary. On this count we can drop the
conditions on &2’ written in parentheses in 3.4.

Specific to K -theories for which K,C K is the notion of w-con-
sistency. We say that S is o-consistent if there is no formula ¢ with
Fo(p)= {x} such that |-V ¢(x) and |-z ~¢@(7) for each n; we say that

A is weakly w-consistent i)% this is assumed to be true only for PR-for-
mulas ¢ (cf. 3.6 (i)). We shall assume directly that Q is weakly o-con-
sistent. This follows from known finitary consistency proofs of @ and
related systerns (cf. [15], p. 470, Theorem 53) (2. On the other hand,
the hypothesis of w-consistency of & will be explicitly introduced when-
ever needed.

The elimination procedure and the result 3.4 suggests the introduction
of two classes of formulas in 2.

3.6, DEPINITION. Lét @ e Fing,.

(i) ¢ is said to be a PR-formula if for some p.r. extension ' of £
and some term £ of P, ¢ = (=0

(il) @ 1s said to be an RE-formuln if for some PR-formula v and

variables oy ...y Up—1, ¢ =V .o V 9.
g Ug—-1

The elass of PR-formulas is thus seen to be a subclass of the class
of RE-formulas. Furthermore, it is not hard to see by inspection of the
elimination procedure that each of these classes is primitive recursive.

3.7. LEMMA. (i) If ¢y i8 @ PR-formula we can effectively find & PR-
formula @ such thai

e @~ .

(ii) If @1, @, are PR-(RE-) formulas we can effectively find PR-(RE-)

formulas ¢ and vy such that

Fepeo eVey, and Hepeo@Aps.

(1*) Kreigel has pointed out to us that in contrast, full w-consistency of Q finit-
istically implies the consistency of 2. Cf. his paper [16], especially p. 48-49.
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(i) If @ 48 o PR-(RE-) formula, w,w are variables, u + w, then

we can effectively find PR-(RE-) formulas ¢ and vy such that
Fepo A< wag), ond Feper V(U< WA Q).
u 18

Closer inspection of the elimination procedure also suggests the
introduction of the following classes of formulas.

3.8. DEFINITION. Let ¢ e g, .

() @ is said to be an elementary formula, ¢ « BI, if it belongs to the
least class containing each of the formulas =0, W= v, u+vw, nsvaw,
for w,v,w variables, and which is closed wnder ~ and -—;

(il) ¢ s said to be a bounded prencx formula, p e BPE, if ¢ belongs
to the least class containing EI and which contains with every formule @
also \/ @ and A (W< w—g), for u, w variables.

u u

Then it can be shown that every RE-formula is logically equivalent
to a formula in bounded premex form.:

3.9. Lemwma. With every RE-formula ¢ 1we can effectively associate
a y e BPF such that

e, 70w ()

An easy inductive proof, using the properties 3.1 of @ then serves to
gshow the following.

3.10. LeMMA. If ve BPF, Fo(w)C{vy, ..., Va—1} then for any Ky, ..., Ky

W(koy ovy Fur) 38 true implies |-qu(ky, oy Fnos) (12).

We can now combine 3.4, 3.5, 3.7, 3.9 and 3.10 to reach the following
conclusion.

3.11. THEOREM. (i) If ¢ is a PR-formula and Fo(p) = {vy, ..., Va}
then ¢ is a bi-numeration in Q of am (n-+1)-ary primitive recursive
relation B; further to each such R corresponds o PR-formada ¢ which
bi-numerates it in Q; ‘

(i) If @ is an RE-formula and Fo(g) = {v,, ..., va} then ¢ is o nu-
meration in Q of an (n-+1)-ary recursively enumerable relation Iy further
to each such R corresponds an RE-formaula ¢ which numerates i n Q.

‘(iii) The same results (i), (ii) apply to amy recursively amiomaticable
consistent extension KA of Q.

) 'If we loosen the requirement on provability here from Lr, to P, then we
can obta:m ¥ in somewhat more restricted form, according to the results of Davis [2]
and Robinson [28]. However, the fact of logical provability will be quite useful in our work
('*) This is closely related to Satz V of [10]. ‘ .

icm

Arithmetization of metemathematics 55

3.11 (i) is proved by considering the bounded prenex formulas ., v,
agsociated with ¢ and ~g.

Some remarks on this theorem: To avoid the concept of truth used
in 3.10, one must establish a restricted version of 3.5 (ii), namely: If ¢
is a sentence of D' of the form E(kg, ..., bn)=TF ond o ¢ then +—qp@)
(¢f. [15], p. 244). In any case, 3.10 can be avoided if we only apply 3.11
to @ and its extensions; it is the arithmetization of 3.10 which will mainly
interest us. Regarding part (iii) of the above theorem, observe that the
same formula which bi-numerates a primitive recursive relation in @
can be used to bi-numerate it in HA. On the other hand, it is by no means
evident that (i) extends to any but the (weakly) w-consisient extensions
of 3. The weakening of this condition to ordinary consistency has only
been made possible by some recent work [3]. However, it should be kept
in mind that in general the same RF-formula will numerate different
relations in A and @ unless A is (weakly) w-consistent.

‘We can also prove, using the representation of functions by terms

“in 3.4 (i), that every primitive recursive function is definable in the

stronger sense (for functions, described earlier) in Q. Hence, using Kleene’s
normal form theorem for general recursive functions (ef. [15], p. 288)
we can obtain the following.

3.12. THEOREM. 4 relation B is recursive if and only if it is bi-numerable
in Q. The same holds true of any consistent recursively amiomatizable
extension A of Q.

A simple diagonal argument shows that, in contrast with the classes
of PR- and RE-formnulas, the class of bi-numerations in & is not even
recursively enumerable, nor is any subclass of it which containg at least
one bi-numeration of every recursive set.

4, The arithmetization of general metamathematics

‘We wish to describe in this section the construction of a particular
1. 1. extension M of @ in which can be formalized various metamathe-
matical Tesults about arbitrary I -pseudo-systems, for any finite set K
of constants. We shall not attempt to specify all the symbols and axioms
of M. Rather, our effort will be directed to showing how, by a gimple
notational device, we can grasp the mathematical content of M.

Let us begin with a simple example. Consider the primitive recursive
function E(n,m) = nm To this function eorresponds in M a certain
two-placed function symbol gy, and the axiom:

A (golx, 012 TA A golx, y1= (go]x, Y1) +X) -
X Yy
We shall write

u¥  for  gofu, wl,
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5o that we can equally well describe the axiom as being:

/\ {X'O’::T/\ /\ x'“")z(x'y) o X},
X ¥

Then we see that for any n,m, a7~ (#"). Consider now the primitive
recursive function I(n,m)= n—>=m = 2°-3".5™. To this function cor-

responds in S) a certain term & with two free varviables x,y, namely

(39 + (8%) « (57)
we agree to wrife
u—-w  for  &(u,w).
Thus we see that, for example, for any sentences ¢, p,
a9 ).
Similarly, we would introduce the “(u-1)-st variable” by writing
vry  for 8. u+25

and then the set of variables would be defined by the formula Vr with
one free variable x, '
V (x=vry).
M .

Another, glightly more complicated example arises when we try to
formalize the notion of the set of termg of K, Tmz. Take, for example,

the case that K = {r,, e, f;0}. We might first introduce the term
F.nl’o by writing

Fnye  for (‘Z‘f-‘:’ «3%) .57,

We will have a certain one-placed function symbol g; which will be
used to represent the characteristic function of Tmg. Then Tmg will
be a ?ormula, with one free variable x, namely g[x]~0. Furilsher the
following statement involving Tmg should be provable in IH:
¢ Tmg(x) < Ve(x) Ve \/ V [y < XAz < xA Tmg(y)
vy 2 *
A Tmg(z) Ax~ Fpl,o(y, z)].
This corresponds directly to this statement:
feTmg =£ is a variable or & =¢, or
there exist 5, ¢ Tmy such that & = f10l7, 1.
Of course, g, is not introduced directly by an ordinary recursive definition,

but rather by a course-of-values recursion; but this, as we know, can be
reduced to a series of ordinary primitive recursive definitions.
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The general method should now be clear. With each (»-+1)-ary
primitive recursive funetion is assoelated a certain (n +1)-placed function
symbol g of M. With our ordinary mathematical notation for the function,
say “F” is associated a metamathematieal notation for the term
g[vo, .-y Val, obtained by adding a dot, say “F”. Then for any terms
Egy ooey En of M, according to our convention regarding substitution,

‘[.j‘(fn, o &a) s glE, . &

(Of course, due to the variety of our mathematical notations, this
procedure ¢annot be completely uniform.) Similarly, with each (n+1)-ary
primitive recursive relation we associate a certain (n +1)-placed function
symbol I in M, to correspond to the characteristic function of the relation.
Then with onr mathematical notation for the relation, say R, we associate
a metamathematical notation for the formula hfvy, ..., val=0, say “R”.
Then for any terms &, ..., &, R(&,..., &) “formally expresses’” that
the relation holds Detween the objects “designated’ by the terms. Since
we are dealing with a p.r. extension M, we will also have available
axioms or theorems corresponding to the defining equations or con-
ditions of the functions and relations involved.

With this procedure in mind, we shall now describe a partial list
of terms and formulas in M. Some of these will be followed by their
“mathematical .interpretation’, if it is not already clear. These are:
u—-w, u¥, ulw (‘“u divides W), pu (“the (u-1)-st prime”), (u), (“the
exponent of p. in w?), Sg(u) (“u represents a sequence”), L(u) (‘“the
length of the sequence reﬁresen’c.ed by u?), vry (“the (nu+1)-st variable),
Vr(u) (*u is a variable”), ~u, u—w, u/\\'v, wVw, U W, AW, VW,
i . . . . . - M

Fng,(u) (“the term formed from the (m-+1)-st 1-placed funetion symbol
followed by 1), Fnn(u,w) (“the term formed from the (m-1)-st
2-placed funetion symbol followed by u and then by W), ..., Tmg(a),
Rl m(u) (“the atomic formula formed from the (m +1)-st 1-placed relation
symbol followed by u’?), Rlju(n, w), .., u~rw(Rlu, W)), Atg(u) (“u is
an atomic formula in K, Fmg(u) (“u is a formula of K”). Fv(u,w)
(“n is a free variable of w’?), &jtK(u) (,»u is a sentence of K”), Gen(u,w)
(“u is obtained by generalization from w’’) Sbiw (,,the substitution of t
for u in w”’), 88b(t, u, w) (“the simultaneous substitution of each term
of the sequence t for the corresponding term of u in w)—also written

w[@Ws (Wi )
P ((t)~a T &

and Axg (“the set of logical axiorns of K''). Exampies of some formulas
provable in M are the following.
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¢ Vr (2) AFmy(y) A Tig(z) — Ax g ; y->8b;¥);

- AXg (A VIj™ vig);
N

kg Vr (x) AFma(y) A Tg(z) —8b;( ~y)= ~8byy;
b Vr (x) A Tinge(y) A Toge(w) A Tmge(z) - Sbi(y &~ 1) ~(Sbyy ~ 8bju)

(where u is a variable distinct from x,y, z).
In addition to the symbols listed above we shall want three symbols
specific to number theory: u” (F'no,o(u)), nmy (“the (w--1)-st numeral”),

and u <w. Thus, for example,
ac DME=eey ,
kg D~ (umyg) -
b~ o Stm(n}nx < nmy) .

After a little work with such examples it becomes evident how one can
cxpress and prove in M statements corresponding to every syniactic prop-
osition (referved to an arbitrary fized finite set of constants K ) which has
been proved mathematically within elementary number theory.

What is not as evident is how to express the logical notions associated
with that of provability from an arbitrary pseudo-system A = <4, K.
However, if we look back at the definition of Priz, we sce that the only
concept which enters in it which we may not be able to express in
is that of membership in 4. Bven if we know that 4 is recursive, or
primitive recursive, we are still faced with the further problem of choosing
one from among the many numerations of 4 in %. In order not to prejudice
the investigations, we therefore take the following initially non-committal
approach, Let « be a formula with one free variable x. We gshall define
a formula ]?’}'fu with two free variables x,y which will express, when
a(x) is read as expressing that x belongs to A, that y is a proof from
A=<4,K> of x.

4.1. DEFINITION. Let o be o formula of M, and let u,v,w be the first
ihree variables not free in o and distinct from x,y,z. We take

Prf,
o be the following formula of K,

(Sa(y)AL(y)#0 A Aw <L(y)>Fmg(y).)

A [A:XK((Y).H) v a((Y).u) VAVAY, (V <uAaw<u

v ow

AT = (9)r> (9]} A 22 (3).13) ™
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Properly speaking, Priu(x,y) should be written P{‘f@m(x, ¥); however,
it will always be clear which set K is intended.

We have allowed in this definition for the possibility that « may
contain some variables other than x free. This will permit us to discuss
provability from A, for arbitrary u, by the following device:

4.2, DeFINITION. Let a be a formula of M with Fv(a) = {x} and o
the formule a(X)AX 2z We put

Pl‘fapz
to be the formula
Pri, .

We shall be most interested, in the following, in dealing with
Prtf, and Prf,p., in the case that Fv(a) = {x}; in this case we have Fv(Pri,)
= {x,y} and Fo(Prisr,) = {x, ¥, z)}. We shall often be able to deal with
both cases by assﬁming that Fv(a) C {x, z}. .

In case A is finite we see one clear way of defining 4 formally. This
is expressed in our symbolism as follows.

4.2. DeriNiTioN. Let A be a finite set, A = {kq, ..., kn—1}. Suppose
that ky < ... < kny. By [A] we mean the formula X%, in case n =0,
and the formula _

xly Vool VxRl ,
if n> 0.

Thus Prfy,(x,y) will express the proof relation with respect tq .the,

finite set A in particular Prfg(x,y) corresponds to logieal provability.
Jearly every formula [4], for A finite, is logically equivalent to a bounded
prenex formula, and by 3.7 (i) is equivalent (in £) to a PR-formula.

The formal expression of provability is now a simple matbter.

4.3. DEFINTTION. For any formule o of SM, Pr, and Pr.p, are the
formulas of K, defined as follows:

1) Prox) =1V P'I‘fu(X, ¥)
- ¥

(il) Propy(x) =V Priar{x, y).
h 4

That the formal definitions of proof and provability are extensionally
correct is gunaranteed by the following theorem.

4.4. THEOREM. Let a e Pmg,, Fv(a) = {x}. Let °%.= (A, K> be an
arbitrary pseudo-sysiem and & = <8, K> a theory with ACS. Then
we have the following. ‘ .

G) If o numerates (bi-numerates) A in & then Pri, numerates (bi-
numerates ) Prig in &.

(ii) If o numerates A in S and S is w-consistent then Pr, numerates
Prg in J&.
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(iil) Z'he results (i) end (ii) hold if we take instead of P}'fa and P_rn the
formulas Pri,p,, Propy, respeciively, and instead of Prfg and Prg the
relations R‘[a,b,ﬂ?-]. and S[a,n] equtvalent, respectively, to Prfgpn[a,b]
and Prgp,al. *

(i) is proved most simply by distributing the superscript @0 in the
definition of Prf, in 4.1 over the connectives and guantifiers, and then
examining each part. (i) then follows -immediately. Because of the
assumption about -consistency in (ii), we shall generally attempt to
limit cur arguments to the use of (i) (or the corresponding part of (iii)).
In one respect, more can be said in case « is a PR- or RE-formula;
the next theorem is obtained from 3.7-3.9.

4.5. TororeM. Let o be a formula of Ky, I'w(a)C {x, z}.

(1) If a is @ PR- (RE-) formula then we can effectively find a PR-
(RE-) formule v such that

e P.I'fL1 >

and an RE-formula 6 such that
e Pro«6.
(i) If p is a formule in bounded prenex form, e BPP, for which
g, a8
then we can effectively find o v e BPF such that
= Lx, P}‘f,‘ Y.

The second part of this theorem, though slightly less informative,
is occasionally more useful, since it gives us logical provability.

Let us turn now to the intensional questions. It is immediately seen
that to any metamathematical statement of the form “for any pseudo-
gystem A ,..."" should correspond a class of sentences of M dependent
upon & choice of formula a—or, as we might put it more:briefly, a sentence
schema in «. Moreover, we should expect that for the clementary prop-
ositions about provability, each instance of such a schema should be
provable in Y. Thus, for example, the basic properties of provability
obtain the following arithmetization.

4.6. THEOREM. Let a be a formula of M, Fo(a) C {x, z).

(i) b-o Pr(x)—>Fmg(x).

(1) g Axg(x)—>Pry(x).

(it} b a(x) A Fmg(x) > Pry(x) .

(iv) g Pro(x) A Pro(x—y)>Pry) .
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(v) If ¢ is any formula of M, ye Fr(p) then
e\ [(Ax(2) 9 () Afa(3) A Emx(x) - ()]
A 4\ /y\ [Fmz(x) A F_IHK(}’)"\W(?)/\W(X =7 "'”P(Y)]'*{_\ (Pra(x)—w(x)) .

The first two derivability conditions of Hilbert-Bernays [14], vol. I,
D. 285-286 are easily seen to follow from 4.4, 4.6 for any choice of a.’
However, we would gain no advantage in our work by stating these two
special eonditions. Continuing along these lines we obtain:

4.7. THEOREM. Let a, i be formulas of M, Fv(a) o Fo(g) C {x, z}.
() o 4\ (B(x) A Fmg(x)->a(x)) - é\ (Prs(x) —Pro(x)) .

(i) Far Preg,(x) <> Pryx) . .

(i) If Fola) = {x}, Ha Bro(x) =V Prapu(x).

(1) F-ac Fang(x) A V2(0)A A (@(5)A Emi(y) > ~Fv (u, y))

[Pro A x)«»Pr(x)], (u is & variable = x,¥,z).
e .

(v) g Prio(x) —>Pro(x) .

We see that 4.7 (iii) corresponds to the statement 2.3 and 4.7 (iv) to 2.1.
Also the deduction theorem 2.2 can be arithmetized; for example, for
the case k& = 0, this can be stated as follows.

4.8. TuroreM. Let o be a formule of M, Fola)C {x, z}.

(i) Let B = av(x==u), where u is a variable distinet from x,y,z.
Then g Fog(y)—> (Pry(x) <> P.ra(u—_>-x)) .

(ii) Let B’ = aV(X=g,), for any particular ¢, e Fmg. Then |- e Prp(x)
> Pro(fy—X) .

We are now in a position to diseuss the arithmetized versions of
the notions of closure, consistency, completeness and quantificational
completeness.

4.9, DEFINITION. Let o be a formula of M, Fo(a)C {x, z}, We set:

(i) Clo= A (Pro(x) e a(x));

(i) Con, = A [Fma(x) — ~Pr,(x) Ve Prfm x)%0
(iif) Cm, = C; ACong A i\ [Fmg(x) > Pry(x) v Prq T’X)]m’ ,
(iv) QCm, = Cm, A A A {Fmg(x)AVr(u)—
e [Bro( A ) o A (V2(w) > BroSPE )] [|7,

(where n, w are distinet variables #X,2).
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{x} then Cl;, Con,, Cm,, QCm, are sentences

We see that if Fo(a) = ) (
a) C {x, z} they are formulas in K, with at most

in K,, and that if Fo(
z free.

One easily obtains the following as a formalization of simple statements
about consistency. It is sufficient to our-purposes, from now on, to con-
sider only the case Fo(a) = {x}.

4.19. THrOREM. Suppose that
=Fy(f) = {x}.

(i) For any particular g, e Fmg,

a, B are formulas

of M, Fo(a)

f—a anaHNP‘ra(au £ "f’ao) .
(i) g Cong= A Congypy .
(i) g A\ (f(x) AFrng(x)—a(x)) - (Con,—Cony) .

The arithmetization of the extension Theorems 2.7 and 2.8 is less
immediate, but also not very difficult. It is possible, as in such cases,
to formalize a statement that for each set A of a certain type there
exists another set B of a certain type whenever we are able to show that
in the cases under consideration, the set B exhibited is (uniformly)
arithmetically definable in terms of 4.

4.11. TEEOREM. Let a be a formule of M, Fv(a) = {x}. We can
effectively construct a formula § of M, Fv(p) = {x}, such that

Fat Con,— A (a(x)A Fmg(x)—>B(x)) A Cmg.
: A ; .
The construction of # here can be formally described as follows. Let

Onj(y, u) correspond in M to the primitive recursive function Cnj (D, )
= (@) A ... A (D). Then we set 8 equal to

V {8a@ALz)#on Alb <TF) =T ((3)1 < (7)) A Frnge((y)u)]
A~Pra(~ Cnj(y, Ly) =1} A A TFmx(z) Az < (y)5->Pro ~2)]
AN A6 <L(y)~TAFmE(D)A ()i < 272 < (y)0—
~Pr, (Cnj(y, t) >~z)] AX ~ (F)p-3) -

Similarly, by following the proof of 2.8 we obtain:
4.12. THROREM. Let a be a formula of M, Fo(a) = {x}. We can
effectively consiruct a formula y of M, Fo(y) = {x}, such that
Fa Cong— A\ (a(x)/\StK(x)—->y(x)) AQCm, (13).
A 2 .

() It is hard to see how the Theorems 4.11 and 4.12 could he simply formulated

in the previous treatments of the problems of arithmetization. These already indicate
the simplicity and flexibility which can be obtained by using formulas Cong, Cmq, ete.

icm
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Note that the first part of the conclusion here corresponds to the
hypothesis 4 C Stx of 2.8. .

We wish to conclude this section with two special observations which
are needed upon occasion in the following.

Though many times a result about formulas Prf, can be obtained
when a is an RE-formula, thus including the case when a is a PR-formula,
it is occasionally necessary to carry through a proof under the more
restrictive conditions. This is made possible by a device used by Craig
in [1], which we modify slightly in the following.

4.13. THEOREM. Let A = {4, K> be an aziom system with A re-
cursively enumerable. If o is an RE-formula which numerates 4 in @
then we can construct a PR-formula o, and an aziom system Ay = (A,, K>
such thot:

(i) o bi-numerates A4, in @;

(11) Prg = P’I‘g{l;

(i) e Pro(x) > Pro(x);

(iv) if & is any w-consistent amiomatic theory with PC & and a; any
(RE-) formula which numerates A, in & then we can find an (RE-) formula
o which numerates A in & for which

b Pry(x) e Pro(x) .

Proof. It should be recalled that when & is assumed w-congistent,

an RE-formula o numerates 4 in & just in case it numerates it in Q.

The only effect of the use of & in (iv) is that we can consider arbitrary

numerations aj, ¢’ which are not necessarily RE-formulas. It is sufficient

to consider a(x) = \/ 0(x,y) where 6 is a PR-formula, and let B be
¥y

the relation which 6 numerates in @. By 3.7 we can find a PR-formula
a, such that

o a(x) eV V [2 <xXAY <xXAB(z, T)AXRZA A iy & VIy] .
vy 2 ' Fy
Let A, be the primitive recursive set which «, numerates in @ (the same
a8 in M, by the consistency of SM). Then a sentence ¢ of K belongs to

4; if and only if ¢ =9 AA (va=Vvn) for some y,m where R[y,m].
Y
It follows that if ¢ e 4, then ¢ =y A A (Vp=~va) for some y e d; con-
Vi

m

versely (since @ is weakly o-consistent), with each v e 4 is associated

an m such that 9 A A (V= Vi) € Ay, Bub g, A V& Vam, S0 that
m Ym

Prg =Prg,. Since

J=at Prig(/\ vry~ vry),
SO
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it is seen that

b-ar a(z)—>Pro(z) and  ar aqx)>Pry,(x) .

Hence by 4.7 (i) we obtain (iil). Also, if ¢ is any numeration of 4, in &,
when we set
)(J'l)

a(x) =

\/ a1(X s /) Ty A VIy
Iy

it follows Dy w-consistency of & that «' numerates 4 in § and, by the

same argument as just given,

e I"l‘a'(X) - :E')ru;(x)

« is equivalent in @ to an RE-formula whenever o; is an EFE-formula.

A particular case in which RE-formulas cannot be used in the same
way as PR-formulas is in connection with the formulas Prf,;,. Even
though Prfalxz is & numeration of Prfz ., in a theory where « numerates 4,
we do not necessarily have Prfa,\n(x ¥) provably equivalent to Prippm(x X,¥)
for any ». The reason for this is that we may not be able to show

a(X)AX < % provably equivalent to [4 ]n](x); for if this were true for
every n, a would be a bi-numeration of 4. In fact, it is just for bi-
numerations that we can obtain this result. The proof is clear.

4.14. LevmA. Let A =<A, K, and & be axviom systems with P C S.
Suppose a bi-numerates 4 in &. Then for any n,

Fsa)ax LA [A Pa](x) .

and hence

s P{‘fa pal(X, y)er P}‘f[A pur (X, ¥) and s CQHa [ and C(}H[A;\ nl

5. The Goéde! underivability theorems in a general setting

Up to now we have dealt with the arithmetization of the syntactical
and logical notions relative to an arbitrary set of constants K. We now
vestrict attention to the case that K, C K. Moreover we shall deal prima-
rily with theories A which are extensions of @ or of 2, i, ¢. with theories
which are “suitably strong®.

As we remarked in § 1, the first Godel underivability theorem, about
the incompletencss of certain theories, has a purely extensional formulation
and has been proved in full generality. We shall, however, consider such
a proof, since it will inform us, to a certain extent, about the proper
formulation of the second underivability theorem.

Basie to these proofs is the construction, by a diagonal argument,
of “self-referential” statements. This can be formulated as follows.

icm
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5.1. LmMma. Let y e Fmg,, Fo(p) C{x}. Then we can effectively find
¢ e Fmy, such that -
Fap—y(@).

This is proved by taking y to be the formula, with free variable x,
J V.I"
x =V Uy=Sho )% Ap(y).

Then we set ¢ = x(7) = Sbv“ ().
5.2, DDFINITION. For each oeFmy,, with Fv{a)C{x} we take v, to
be the sentence associated with v = ~Pr, in 5.1, such that

=g Yy > I{I'a(;a) .

One half of the first underivability theorem can now be stated as follows
(not in its most general form, but sufficient for our purposes).

5.3. THEOREM. Suppose that A =<4, K>, ACS8tg, QC A and that
A is consistent. Suppose that a numerates A in S, where QC S C A. Then

not =gt Voo

This follows immediately from the fact that Prf, numerates Prfz in )
(4.4 (1)). Hence, if for some ¥, Prfa[v,, ¥], we would have —a Prf Vay D),
and thence [—g Pruv,), i. . —g~v,.

To obtain a result about non-derivability in HA of ~w,, one would
have to restrict A to being w-consistent (cf. [10], Satz VI). However,
if one is interested in such incompleteness results, the use of Rosser’s
method instead serves to remove this restriction (cf. [29] Theorem IX
or [158], p. 208-209).

Since there exists at least one a which numerates 4 in @ if 4 is
recursively enumerable, it follows from 5.3 that there exists such a sentence
v, which iy not provable in &, for consistent recursively enumerable
extensions A of @. For our considerations, it is a bit more informative
to look at the proof of 5.3 in the case that « iz (logically) equivalent to
a bounded prenex formula. Then we know by 4.5 (i) that so also is Prf,.
Hence, by 3.10, if Prf,(n,, ¥) is true then |—q Priy (., ). The formalization
of 3.10 is essential to showing that, under this restriction on a, the
Theorem 5.3 can itself be formalized.

5.4, TumorEM. Suppose that w « BPF, Fv(yp) C {v,, ...,
be distinct wariables other than v,, ... Then

F2e8q(6) ASg () AL(t)= L(a) AL(t)=RA(6)¢ =DMy, A - A (6)3=1 A DMy,
Au)g= VIGA ... vy V1) e'ZI?l‘[Q](SS.b (t, u, E)) .

Va-1}. Lét t, 10

4 V’n'-l .

Ala)gz i~vrnm1/\1p(vo, .

(%) The construction of p in this lemma is an obvious generalization of Gddel’s
diagonal construction in his proof of Satz VI of [10].

Fundamenta Mathematicae, T. XLIX. 5
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Ag suggested in § 4, we can also indicate this by writing
N
) nl:n"n—l l)) ’

A proof of 5.4 wounld follow very directly the mathematical proof of 3.10.
5.5. COROLLARY. Suppose that ¢ e Six, is such that for some pe BPF,

VTG
o p(Voy vy Va1) "’I.‘r(Q](S_b (D}nw

Fagey.
Then ~
2 ¢ —>Prig(p) .

This follows from 5.4 and the fact that |-g P.r[m(t‘ﬁ«:—»i,i‘), henee

t- ¢ Prigy($) < Prigy ().
In most applications we shall want to show that

o <P—>P_fn(¢) )

for a certain formula «; this will be possible whenever we can show
e [Q1(x) > Pry(x), by 4.7 (i) (*).

5.6. THEOREM. Suppose that A = <A, K} is a consistent axiom system
with @C A. Suppose that a is an RE-formula which numerates A in &,
where QC SC A. Then

I‘—a Cona Yy
and hence )
not g Con,.

Proof. First observe that ~w, is equivalent in ¢ to Pru(v,) and
hence is equivalent by 3.9 and 4.5 (ii) to & bounded prenex formula.
Then, by 5.5,

2 ~ va—>Prigi(~¥a) .

Since each ¢ @ is provable in A and @ is finite, it follows that

s [Q1(%) > Pr,(x).
Hence by 4.7 (i), (i)
b5t ~ 70> Pr~ 7).
This gives ’
b= Oona/\"”‘u"*"’]?_ra(;;) ’

g CongAm v—v, ,

(%) 5.4 and 5.5 take the place in our work of the third derivahility condition of
Hilbert-Bernays [14], Vol. I, p. 286; for a proof of that condition in Zu, cf. loc. cit.
p. 309-313. The remark of the text shows that the condition applies to every proof
definition Prfy for which a “provably contains” Q.
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which shows that
—a Con,—v,.

(Actually, it can be seen that by 2 Con,—»,.) On the other hand, clearly
o ~Pry(v;)— Con,, so
I—ﬁ’ 1'u_>00na -

The desired conelusion is then obtained by 5.3.

Thus we see how to state and prove Godel’s second underivability
theorem under guite general conditions. Moreover, it is easily seen that
this theorem comprehends all known particular instances as special cases.
For example, the formulation of the axioms of £ as a finite set of axioms
and axiom schemata quickly leads to a PR-formula z which bi-numerates
P in Q ('%).

The theorem could further be strengthened by showing that 5.4,
5.5 and all the statements in the proof of 5.6 involving provability in 2
can be obtained for a certain finitely axiomatizable subtheory of @
(independent of £A), and hence that there is a certain finite subtheory
F of v P which can be used in place of K in 5.6.

The main feature of 5.6 which we wish to bring attention to is that,
in contrast to 5.3, it is not stated for arbitrary numerations a of 4 in @,
let alone of 4 in any subsystem of A. Indeed, our next main step will
be to show that under certain circumstances, it is not possible to obtain
such improvements. In order to see why this is so, we must first intro-
duce a new concept.

5.7. DEFINITION. Let A = <(4,K>, K,C K. A is said to be reflexive
if for each finite ¥ C A,

- G(.)Il[p] .
It is readily seen that HA is reflexive just in case

for each n, g Conpupm .

The following theorem has been proved in {23] by Mostowski.
5.8 (i) P is reflemive;
more generally,

5.8 (ii) Fvery consistent ewtension F -of P, with the same constants
as P, is reflemive.

(%) By begging the question as to exactly what an axiom schema is and what
a “natural” formal definition of such is, we can say that for any system 4 of finitely
many axioms and axiom schemata, the natural definition a of A is equivalent to
a PR-formula o' which bi-numerates 4 in Q.

5%
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This result has also been proved by Kreisel and Wang in [19]. It
follows immediately from 5.6 that no consisient reflexive theory is finitely
aziomatizable; indeed this was the main motive of Mostowski’s work.
We shall obtain a stronger result in 6.8 (ii). Formulation of the notion
of reflexivity for a wider class of theories than in 5.7 will be given in § 8,
together with a deseription of another class of reflexive theories discovered
by Montague, At any rate, it is already seen that the notion applies to
a wide class of theories.

5.9. THwoREM. Suppose that A = (4, K) is a consistent, reflemive
axiom system with LC A. Suppose further that A is recursive. Then there
is an o* which bi-numerates A in A for which

e Congs ().
Proof. By 3.12 there is an « which bi-numerates 4 in @, and henee

in A. Set o to be the formula, with one free variable x,

(1) a¥(x) = a(x)A A\ (5 < x->Congp ) ASEE(x) .
Suppose neAd. Then

s a(7) A SH(7)
and, by 4.14 and the reflexive property of A,

s Oonaps A .o AConaps;
hence
b-a o*(W) .

On the other hand, it is clear that
i -g~a(@) then g~ a*(®).

Thus o* is also a bi-numeration of 4 in A. To obtain the desired result,
=2 Cong, we can work in P as well as P. First, we use the fact,
established in 4.10 (ii), that

(2) l_ﬂn C.Ona(’—) /\ G?na\"z .

Hence

(3) i—mNGC.)Da—*V [NCODdI\Z/\ /\ (Y<Z—>00napy)] .
% * ¥ *

Now, by 5.8 (i), I~ Congy, so we see that (g Con,ps.

("} The corresponding Theorem 3 of [5] was incorrectly stated, as was Theorem 3
of [6] (we can only say that a* bi-numerates 4 in &, not in P —however, the theorems
agree with 5.9 when HA = @),
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Thus we can modify (3) to
{(4) Fac~ Cong—V [~ Congppr A A (¥ 2->C0ong 1y)].
% M v .

But then it is seen from (1) that

(3) ac~Cona—\/ [Congpy A A (a¥(x) « a(x)Ax< 2)],
so that ' i

(6) ¢~ Cong—\/ [Congppa A (Pras(x) < Prop,o(x))] .
But then ’ :

(7 t=s# ~ Con,—Cong .

On the other hand, it follows from (1) that

(8) Far A {a*(x) AFmg(x)—>a(x)),
hence by 4.10 (iii),

9) o anu—> Ogna. .

Thus

(10) = Congs

whieh is the degired result by 3.5 (18).

In particular, 5.8 (i) and 5.9 show that
5.10. CoroLLARY. There is a m* which bi-numerates P in P for which

o Conyx .

Rather than contradicting Godel’s second underivability theorem,
5.9 and 5.10 show the importance of a precise method of dealing with
congistency statements, at any rate for theories with infinitely many
axioms. We have maintained that insofar as a formula « expresses
membership in A, the formula Pr, expresses provability of A in HM(P)
and the sentence Con, expresses the consistency of FA in 9N and 2.
Thus, one particular conclusion we can draw is that the formula ¥,
although it extensionally corresponds to A4, does not properly express
membership in . Indeed, inspection of the proof of 5.9 reveals that
it expresses membership in a certain subsystem of A which, independent
of the consistency of A, is always consistent.

(*%) Suppose that A4 is recursively enumerable and that ¢ numerates 4 in HA.
Construct a* as in (1) above. Then (10) still holds but, as we saw in the remarks leading
to 4.14, we cannot expect that o* numerates 4 in . S. Orey has communicated to
us an interesting technique for modifying the proof 80 as to obtain such o*. By this
means, several theorems below, in particular 5.11 and 6.6, can be obtained in more
general form.
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A first reaction following such realizations might be to restrict
attention to a certain class of “natural” formulas « in problems of
arithmetization; 5.6 suggests that the class of RE-formulas or some
subelass of it might be appropriate for this purpose. However, we shall
obtain in § 6 results through the use of arbitrary formulas a which should
be of interest even to those who would otherwise thus restriet attention.
There is nothing “wrong” with the use of arbitrary formulas «; rather,
the guniding consideration should be to investigate how different ve-
gtrictions on the choice of « affect the results by arithmetization.

Let us return to the proof of 5.9. Although the arguments on the
grounds of expressibility give us one way of seeing why the theorem is
possible, we should also ask why it is not possible to carry through the
proof of :

Ogna*-+wu.,

as in 5.6—otherwise contradicting the non-provability of v, in. A obtained
in 5.3. One answer is that there occurs an unbounded universal quantifier
appearing in the part Con,n, of the definition of o*; hence, we cannot
expect to find a bounded prenex formula equivalent to Prf.. Then we
cannot hope to prove that )

~ Y —>Pra*(~17;:) s

which corresponds to the essential step in the proof of 5.6. Nevertheless,
by the remark following 5.5, we shall be able to prove

~ Vg Pros{~7) ,
when « is an RE-formula. This, when eombined with 5.3 and 5.6, leads

to the following statement.

5.11. TemorEM. Suppose that A = <A, K> is a consistent, reflevive
axiom system with 2 C A and that 4 is primitive recursive. Suppose that
a 48 a PR-formula which bi-numerates A in A, and let B = 4 w {~Con,}.
Then there is a f* which bi-numerates B in H for which '

= C?Dﬁ* .

Proof. Let «* be the formula constructed in the proof of 5.9,
statement (1), from the given «, such that -2 Con,. Asin 5.6, we see that

(1) e~ va—>Prig( ) -

Let A’ be PranmFmg, and A’ = (4, K); thus also P C A’ Sinece
Pri,. numerates Prfg in S, and thence in A', and since @ is finite, we
see that

(2) b [Q1(x) > Pre(x),
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lience, by 5.5,

(3) b s g ~ va> Plos (~7,) .
But -z Cong. Thus

(4) s omt ~ Yo~ P_ru* ('V;r) .
By definition (5.2) of »,, this shows

(5) Faoat P‘ra' (E)”"‘N}?ra('"—a) .

On the other hand (8) of 5.9 and 4.7 (i) shows that

{6) o P_r,l.(ﬁ,,)—?fl:.‘ra(i,,) .

Trom (5) and (6) it follows that

(1) b st~ Plas (7).

We see from 5.6 that for some finite subsystem & = F, K, of 2,
(8) ’ g Cong > %,

and hence

(9) Fae Prom (Cong <) .

But then we see, by the same argument as in (2) and (3), that

(10) Farus Pre (Cong < 73),
and hence, from (7),

(11) = avom ~Pre (Cony) -
Thug if we set

(12) B*(x) = a*(x) v~~~ Gon,
we obtain

(13) FaumCong. .

From this it follows by 3.5 that, since the set of constants of A’ is K?,
b~ Cong., i.e. pg Cong. That g* is a bi-numeration of Bin A is
clear from (12) and the fact that «* bi-numerates 4 in A.

The usefulness of this Theorem 511 will become apparent in the
next section, especially in connection with Theorem 6.6.

6. Applications to problems of interpretability

The method of arithmetization is connected with problems of inter-
pretability in at least two ways. In the first of these we consider the
relation of interpretability between theories which number among their
axioms some arithmetized statements. For example, what is the relation
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between A and A+ {Con,} or A+ {~ Con,}, for various choices of «?
The second connection with interpretability is less evident on the face
of it; it is involved with the arithmetization of the semantical part of
the proof of the completeness of predicate logic. However, these con-
siderations lead to important results (based on earlier work of Hilbert-
Bernays [14], Vol. IT and of Wang [34]), which can in turn be used with
problems of the first type. For this reason we treat the latter material first.

The main results to which we have just referred are stated ag follows.

6.2. TEHEOREM. Let A =<A,K) and & be axiom systems, where
PCS. SBuppose that a numerates A in S. Then

AL S+ {Cony}.

6.3, THEOREM. Lot A = (A, K) be an awiom system, and suppose
that o numerates A tn some finite subtheory of L. Then for some other finite
subtheory F C P,

A= F+{Cony}.

It is seen that each of these is an immediate corollary of the following
theorem, which we thus mumber “6.1. Its proof is closely related to
the proof of the semantical Theorem 2.9 (which associated with each
congistent axiom system A a model in a subset of w).

6.1. TerOREM. Lot A = <A, K) and & = (8, K'> be awiom systems,
K, CE'. Suppose thai a numerates A in $. Then for some finite axiom.
system FC P,

AS(Sw F)+ {Cong} .

Proof. We have seen in 4.12 that we can construct a formula y
of M such that

M s Con—> A\ (a(x) AStx(x) - »(x)) A QOm, .

If y is not already a formula of &, we can obtain such by forming ¢@0;
hence we assume this to be already done. It follows that there is a certain
finite subsystem &, of £ such that

(2) g, C(_)nuva A (a(x)/\S_th"’ (X)»y(x)) /\Q(.‘}mV .

We shall now proceed to show that there is a certain finite subsy stem
%, of P such that

(3) AZ(S F)+{A (a(x)ABE (x) >y (x)) A QOm, ) .
Then our theorem will be proved when we take

{4) F=F,0F.
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To prove (3), let us restrict ourselves, for simplicity, to the case
K = {110,011} (just as in the proof of 2.9). Let u,v,w be distinct
variables, all different from x,y,z. We claim that there is a finite
subsystem @, of M for which

(8) each of the following is provable in D+ {QCm,}:

V‘I‘(Il

V_r(u

Vr(u) AVr(v) AVR(W) Ay(ua V) Ap(Vaw)—y(URw),
)

Vr(n)—>V [ylvmmu) A A (pivremu)—z < w)|,

)y (umu),
)

AVE(W)Ap(urm W) >y (W u)

Frag(x) AVE(w) AVE(W) A p(amw) Ap(x) >y (Sbhx),
Pr(x) +(x),

Fing(x)—>[y{~x) > ~y(x)],

Frog(x) A Fmg(y)— [y (x>y) < [y (®) 7))},
Fing(x) A Ve (w) - (AX) < A [Vr(w) > (SB3)]}

Tn addition we assume that certain elementary properties of the logical
connectives and substitution are formalized in Ql—l—{Qme}. To define
the desired interpretation I, we set, as usual, I{(x=y)= (X~y) and
then put

(6) I(rialx, ¥1) = y (Rl (vrs, 7)) ™

and for the “domain’® of interpretation we take the formula
(7) 8(x) = A [y (vreme ry) »x < y19°.
¥y

The interpretation I is then determined for all formulas of K by the
rules described in § 2 (d). The conditions (5) then guarantee that

(8a) Fosagm,) \ 8(%) 5

and in fact

(8b) ouraemy AV [8(xX) Ay (VExs® vy)].
gmy) (LY

The basic property which can be established in this theory is the following,
corresponding to (4) of the proof of 2.9.

(9) if geFmg and Fo(p) C {vo, ..., Vo) then

Vo VIn—1
= 21(Q0me 8 (Vo) A o A 8 (Vo) [I((p) (—-—)7/(8?3(‘}1_:0 “ vre 1 tp))] .

—1
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This is proved by induction on ¢, making use of the statements (5)~(8).
At the induction step, to A g, where Fv(p) C {vy, ..., Va}, We must reduce
Vn

[ vrg  vrp A\ vy vr,
Ma(vn)-w(sp(ﬁ%... o ¢))J to Qy(S_b(Yrva e (p))

as an equivalent; this is possible by 8(b). Then using the last of the
properties mentioned in (3), we can in turn reduce this, equivalently, to

VG VIRDT ____))

(10) Zf Qe StK then }-—_@”,(ngy} I((p) s y(@) .

From (9) we obtain

Let &, be a finite subsystem of P for which (g, 6™ for each 6 provable
in 9,. Then we have

(11) if @€ Six then —g.vqomy I(@) <>y (7).

We see that the choice of &, depends just on » and not on o. Only now

does & enter the picture. We have presumed that o humerates A in &.
Hence

(12) for each pe A, g A (a(x)/\E:tgﬂ)(x)»y(x))»y@) .

Combining (11) and (12) immediately gives the desired result (3).

Either of the main Theorems 6.2, 6.3 is a precise statement and
generalization of the theorems of Hilbert-Bernays ([14], Vol. I, p. 252-253,

for finite axiom systems) and of Wang [34] (%) (20). Applications of these

theorems will be found throughout the following, usually to obtain
certain positive results about the existence of interpretations.

(**) A discussion of the relationship of Wang’s proof in [34] to the proof of the
weaker theorem in [14] ean be found in our review of [34], Journal of Symhbolic Logic
20 (1955), p..76-77. '

(*°) Many of the same ideas used by Wang in [34] had also Deen explored hy
Novak in [26]. She deals there with theories (8%) and (8) related, roughly speaking,
as Gibodel-Bernays set theory is related to Zermelo-Fraenkel set theory. Her main resuli
is that “(3‘) has a denumerable consistent real model which is constructible in arithmetic
under the arithmetical assumption equivalent to “(8) is eonsistent'™ ([26], p. 108).
However, her notion of “real model” does not provide that quantifiers transform into
quantifiers, and it is not clear from her proof that this actually obtajns. Wang [34],
ou the other hand, cleardy obtains an interpretation in our sense.

A result analogous to Novak’s could be obtained here, but would require somewhat
more development, if it were to be done directly. Her result was used to establish the
relative consistency of (8) to (8). Alternatively, one could formalize Shoentields finitary
proof of relative consistency in [30] to obtain gz Congs) +Conygy). Then one can apply
6.3 to see that (8)is relatively interpretable in & + {Cong)) [F a finite subsystem of ).
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As a companion to these theorems, we want next to prove a .1emma,
which will be very useful in drawing negative conclusions .ambout existence
of interpretations. The general form of these arguments will be t’o asyume
of the given systems HA, B that B =, and then to obtain formal
conclusions which can be shown confradietory. Oune such fo%‘mal con-
clusion is that, for given «, f which numel“ate A, B respectively (sa:y
in @), Con,—Con, is true. However, there Is no reason to ezfpth- this
implie@tidn to be provable in P, for the verification that B = A W'hep
B is infinite may require a non-elementary argument. Neverifheless, it is
possible to show that for suitable choice of a, f this can be carried 1.:hrough.
‘A full discussion of the other logical possibilities connected with such
formal relative consistency proofs will be found in § 7. ‘

6.4. THEOREM. Suppose that A= <A, K>, B = (B', K’y are axiom
systems and that B =5 A. Suppose further thal B is recu;rswely e'n'mnef'able.
Then for any RE-formula o numerating A in P we can find an RE-formula
B numerating B in P for which

g Con,—Cong .
If, further, B is finite then
g C(_)nc—-)vCQIlug] .
Proof. Let a be given. Suppose 3?’%

I is a primitive recursive function determined,.e§senti:?,11y, by ibs
values on atomic formulas of B. For other formulas it is de.fmgd.b'y the
conditions that it preserve ~, — and /\ (the la,tt'er, at least, relatl‘wzed);
in other words, by construction, I preserves logical form. On this basis
alone we see that

(1) if ¢ emg and \—rp..@ then aI(p).

Thus we can obtain a p. r. extension N of £ such that M C N and such
that for a certain function symbol £ of &,

(2) f[x]~~y numerates the function I in N,
(3) oy Frge (x) £ ~xl=~£[x],
(4) t~ov B (x) AFmg (y) —>E[x>¥] ~{i[x]-+1y],

and, corresponding to (1),
(8) t-gv Py (x) > Pro(£[x1) -

Let B, be a fixed RE-formula which numerates B in .Z’. Then we can
find a formula p in P which is an RE-formula if a is and such that

(6) oy B(x) e Bo(X) APE{E[X]) -
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Since, by hypothesis, -x1(p) for each ¢eB, we see that f numerates
B in &, and hence also in P. Tt follows from (4)-(6), and the arithmetized
version 4.6 (v) of proof by induction on provable formulas of K', that

(7 o Pry(x)—Pr.(f[x]) .
Thus we see by (3) that
(8) o ana—>0(_m,g,

which gives us the desired result by 3.5. In case B ig finite we can, in
addition, apply 4.7 (i) to see that

(9) -2 Cong—Congg; .

In case we had a primitive reeursive translation I (in the sense of [35])
which is not an interpretation, we would not be able, in general, to verify
that it preserves full logical form, and would not be able to derive the
essential steps (4), (5) needed to carry through the induction for (7).
This will be diseussed further in § 7.

We can now obtain the following result.

6.5. THEOREM. Suppose that A = (A, K> is a consistent amiom system.

with LC A. Suppose further that a is an RE-formula numerating 4 in P.
Then

A +{Con} A A .

Proof. Let B = A+ {Con}. If B =B, K> is not consistent, we
certainly do not have <. Let us suppose, then, that B is consistent.
Suppose further that B3 HA. Then by 6.4, there is an RE-formula B
numerating B in 2, such that

e Cona~—>09nﬁ .
But this implies that )
- e O_Onﬁ ’
which contradicts 5.6.
In contrast to 6.5 we now obtain the following theorem.

6.6. THEOREM. Suppose that A = (A, K> is a reflexive axiom system
with A primitive recursive and PC HA. Let o be any PR-formula which
bi-numerates A in HA. Then

A+ {~Con} = A.
Moreover, the same holds if A is recursively enumerable, F is w-consistent,
and o is an RE-formula which numerates A in HA.

Proof. First consider the case that 4 is primitive recursive and «
is a PR-formula. Let B = A+ {~Con,}. If A is not consistent, it is
of course true that B < HA. If A is 'consistent, we know by 5.11 that
there is a f* whieh bi-numerates B in HA for which

t—s Conge .
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By 6.2, B A+ {Cong}, hence B<SA. Now consider the case that 4
is recursively enumerable and A is «-consistent; then o numerates A
in @. By 4.13 we can construct a PR-formula «; and a system
A, = (A,, K> such that ¢ bi-numerates 4, in @, Prg = Prg, and

- ]Sfr,,(x) > El'al(x) .
Then certainly . ana . anul -
By the preceding part of the theorem

H; + i~ Con,,} = Ay

hence we can obtain the desired conclusion for A.
We see in particular that if o is the “natnral’” definition of P we have

P+{~Con,) 2 2.

In other words, we can construct a ‘“non-standard model” of £ within
@ which, moreover, we can verify, axiom by axiom, to be a model of
P+ {~Con,} (3). .

So far, of the basic theorems 6.1-6.3, we have only apphed 6.2.
We now turn to some applications of 6.1, 6.3. If L is w-eonsistent then
we can obtain from 6.2, 6.4 and the reflexiveness of £ (5.8) that the
consistency of a system A is provable in arithmetic,

e Con,,

where o is an RE-numeration of 4 in @, just in case there ig a finite
subsystem & C @ for which A3 F. We obtain now the follt?wmg?r more
general result, without hypothesis of w-consistency, when 4 i3 primitive
recursive. .

6.7. TEEoREM. Let A = (A, K) and & be awiom systems with LTS
and A primitive recursive. Suppose further that & is reflewive. Then the
following three conditions are equivalent: '

(i) there is an RE-formula o which numerates A in some finite sub-
system of P for which

‘ s Cony ;

(i) there is an « which numerates A in some finite subsystem of &

for which
s Con, ;

(**) This result should not be completely unexpected. Loosely s.peakh}g, 6.4 and f6.1 6
guarantee g Cong —Cong.,  comy- Tn fact, and speaking precisely, it already fol-
lows from 5.6 that 5 Cona—>.~Pru(anu); however, this implication as it stands
would not be sufficient to prove 6.6 from 6.2.
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(iil) for some finite subsystem FC S,
A3F.

Under the assumption that P is w-consistent, the above are equivalent even
when A is recursively enumerable () (%).

Proof. Clearly (i) implies (ii). Suppose (ii). Let Ty be a finite sub-
system of § in which « numerates 4. By 6.1 there is a finite subsystem

&, of P such that
A3 (Fyw &)+ {Cona} .

The system on the right is a finite subsystem of &. Suppose (iii). To show
that (i) holds, we return to the proof of 6.4 and modify it slightly. We
are now considering “&* for “A” and “A" for “B” there. Let «ix) be
a PR-formula which numerates 4 in Q. Let a(x) be an RE-formula
such that :
For a(x) & ao(x) APrm (F[X]) .

Then for some finite subsystem Q' of 2, where QC @/,

o a(X) < a(X) A (Prom(Ex]) 7,
e a(®) e ayfx) A Y VIw = £7x1)™ A Prigm (w, ¥)] -
Then if ¢ ¢ 4, and 6 = I(p), where ﬂljfi, and Prfz[0, ¥1, we have

a @) A (8~ 3] AP (0, P)
hence _
o alp).

On the other hand if g¢ 4, o ~ayp) and then |-g ~a(p), so that
(by the consistency of %), a numerates 4 in Q'. The remainder of the
proof of 6.4 still holds, so that

e OOD[F]%COD,J .

() The implication, (iii) implies (i), was obtained for A finite and & = 2 by
Kreisel and Wang in [19], p. 108. .

(%) Wang argues ([36], p. 449) that the consistency Con(3) of every consistent
decidable theory is provable in arithmetic, but this is erroneous except on a completely
extensional understanding of the structure of Con(S)—from which no interesting con-
sequences could be obtained. This does suggest, though, the following interesting open
problem: is it true that for every decidable system A = (4, K) (4 recursively enu-
merable) there exists an EE -numeration a of 4 for which +, Con,? As our Theorem 6.7
shows (if £ is w-consistent), this is equivalent to the question: iy it true that every
decidable theory A is (relatively) interpretable in some finité subtheory & of 2%
Presumably, both conclusions hold for all known particular decidable theories; we
conjecture, however, that the answer to the general question ia negative.
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Since & is reflexive, this gives us the desired result (i). To obtain the
last vemark of our theorem, we need only modify this proof of: (iil)
implies (i). Take o to De an RE-formula which numerates 4 in @.
Then nnder the hypothesis of w-consistency, it will also numerate 4 in Q".
Hence, the same will be true of «.

This theorem has two interesting consequences. It allows us, under
certain circumstances, to extend the second underivability theorem to
arbitrary numerations in finite subsystems. It also allows us to sharpen
the results of Mostowski, Kreisel-Wang and Montague (cf. 5.8 £.) on non-
tinitizability to results of non-interpretability.

6.8. THEOREM. Suppose that A = (A, K, is a consistent, reflexive
axiom system with P C A. Thew we have:

() if A is primitive recursive and « is any numeration of A in any
finite subsystem of A then

not o C!Qllu;
(ii) for any finite subsystem & C A we have
ALT.

Under the assumption that P is «-consistent (1) holds even if A is recursively
enumerable. :

Proof. The proof of (i) is immediate by 5.6 and 6.7 (1), (ii). In (ii)
we are not assuming that A is recursively enumerable. Suppose, however,

A< F where FCA.
T

Let A’ consist of all sentences p of K such that
o Ip).

Then A’ is recursively enumerable and AC A’ = (A’, K, and clearly
A’ is consistent. Moreover, A’ is reflexive. For suppose D = (D,E)
is a finite subsystem of HA’'. Then by 6.4, from D3I F we can obtain

t-g Oongp—Congp, -

But, since A is assumed to be reflexive, \—z Conyp, hence |-z Conyp and

then g Congp;. Now by 4.13 there is a primitive recursive set of

sentences A such that, for HAi = (4i, K>, Pra = Pral. Then also
PC AL and HAj is consistent and reflexive. Now we can apply 6.7 (i), (iii)
to see that for some RE-formula of which numerates 4; in some ﬁmte
subsystem of P, sz Con,. However, this contradicts 5.6. )

Ag a concluding application of the methods developed here we wish
to present a theorem discovered by 8. Orey. The proof has not b_een
published elsewhere and is given here with his permission. Orey deseribes
it as being an “arithmetical compactness theorem”’.
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6.9. TarorREM. Suppose that A = (A, K> and § = (8, K'> are axiom
systems with A, 8 recursively enumerable. Suppose that § is reflexive and
PCS. Suppose, finally, that for each finite subsystem DC A we have
D3S. Then

- A3S.

Proof. It is seen by 4.13 that we can restrict ourselves to the case 4
recursive. We may assume o is consistent, for otherwise S < & is obvious.
Tor each n there is a finite subsystem &, = (Fn, K'> of & such that

AP Fn.
Then by 6.4,
2 Congpy —Conpypay,
hence

s O(_)ll[Arnj .

Let a bi-numerate 4 in . Then construct o* from a just as in the proof
of 5.9. That proof, applied to the present conditions shows that

{1) o* is a bi-numeration of A in §
and
(2) I~ anu. .

Hence A <SS by 6.3.

7. Relative consistency proofs in arithmetic

This section is devoted to a detailed investigation of two topies that
were touched wpon eaxlier. The first of these is connected with the problem
of selecting a single sentence of arithmetic to express the congistency
of a theory. The second of these is the problem of the relationship
between interpretability and relative consistency proofs. As we shall see,
these are closely tied together.

Let A= <A, K), where A is recursively enumerable. As we have
already suggested, 5.6 and 5.9 would seem to indicate that in a search
for the “natural” formulas « to be used in expressing membership in A,
one should restrict attention to, say, the RE-formulas. Moreover, one
might hope to provide a method of associating a single RE-formula o
with 4, which would be the “most natural’’ for expressing congistency,
or, at least, of associating a single such PR-formula « with each primitive
recursive 4. We believe the result 7.4 to be described below shows that
such hopes must be given up.

One way of comparing different numerations a, ¢’ of the same set A
is to ask whether the implication

Cony —Con,,

or its converse, is provable in a given system .
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7.1. DeriNitioN. Let B = (B, K>, K,CK,
eFing,, Fv(a) = Fo(d') = {x} We pui:

(i) e <gd« if -z Cong—Cong;

{i) a<ga if a<ga but @ Lga.

It is immediate that if B C G and « <g o then u =ed; however,
it may be that a <g « but only o e« On the other hand, if we show
a<ed, we have obtained more information than if we show o<z o

Our first result is to show that for finite sets A, the natural definition
[4] is minimal in the ordering «<g.

aid suppose that o, o

A, K and that A ds findte. If o iy
subsystem of P) then

7.2, LEMMA. Suppose that A =
any nwumeration of A dn D (ov any

[A] Seu'.

The proof is immediate from 4.10 (iii}, 3.5. It is not diffic-u.lt to give
examples of numerations o’ of 4 where o' <Le [4]; We shall obtain & more
general result in 7.5. We can derive the following from 7.2.

7.3. THEOREM. Suppose that A = A, K» is finitely axiomatizable.
Then there is an REB-formula a which numerates A in P such that for
any numeration o' of A in P (o any subsystém of L) we have

wspd .

To see thiy, let «, be any fixed RE-formula which numerates 4 in 2.
Let & = (F, K> be a finite subsystem of A with Prgz = Prz. Then take a
to be an RE-formula for which

o a(x) e a(x) A Prgm (X) .

For any other numeration o' of 4 in @ we shall be able to show by £.7 (i)
that —g Prym (x)—Pre (<), and hence g2 Ifra(x)—ﬁl’ru'(x).

7.2 and 7.3 show that for finite or finitely axiomatizable systems,
a “most natural” choice of numeration of 4 is a minimum in the relation
<g. However, this cannot be extended fo arbitrary A, as we now see
from the following theorem.

7.4. THEOREM. Suppose that FH = (A, K. is a consisten, reflexive
axiom system with @ C A. Then with ench u which 18 a IPR-jormz'tM
numerating A in P we can effectively associate a PR-formula o numerating
A in P for which

o <ga.l

Under the assumption that P is w-consistent, the above also holds trae with
“RE” instead of “PR.

-6
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Proof. 'Gonsider first the case that a is a PR-formula. Let B = 4 o
v {~Con,}. By 5.6, 8 = (B, K) is consistent. Construct a numeration i3
of B which is a PR-formula and for which

(1) 2 B8(x) < a(x)vx ~~ Con,.
Using the diagonal construction 5.1, determine ¢ such that
(2) Fa ¢« A[Pri@, z)—~~ Con,;,] .

: :

Suppose g ¢@. Then for some n, we would have }-g ~Con,ry, which
would make B inconsistent according to 4.14. Hence )

(3) not g .

Now construct a numeration o’ of 4 which is a PR-formula and for which

(4) e a(x) o ax) A N\ [y <x—>~Priyp, v)].
Clearly ¢’ <« and hence ’

() o Lga.

To show that a<{ % a’, we shall show that

(6) . Fe2~g—>Cony

but

(7) n0t g ~p—Con,.

«

In fact, (7) is just another way of stating (3). To prove (6), we see first.
from (2) that

(8) e ~p— \7/ [P{'fﬁ(ay Z)AC9HHP2A A (Y < Z“_)NP{‘fB(aa Z))] s
since . ’
o ana L2 Ay < z—>09na;y.

Hence, by (4), we have
(9) Fo ~e—V [Conaps A A (@(x) - a(x)Ax < 2)],

which immediately gives (6). To prove the theorem in case « is an
RE-formula, we apply 4.13, taking & = 2. Construct primitive recursive
4, and a PR-formula ¢, numerating 4, in @ such that Prg = Prg, and

(10) g C(_)nu <« Con, .

Now by the first part of our proof we can find a PR-formula u; such
that af <& o;. By 4.13 we can then find an RE-formula o such tha
a' numerates 4 in @ and '

{11) 2 Congy «~ Con, .

But then (10) and (11) show that o <z a.
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Of course, we could equivalently state the theorem in both cases
for numerations in @, but we have done it for £ as a basis for comparison
with 7.3.

Theorem 7.4 does not apply to arbitrary bi-numerations a, for we
know by 5.9 that (in ease 4 is recursive) there is such an o for which
{—g Con, — but then o is a minimum in the relation <e.

The example mentioned following 7.2 can be obtained from the
following theorem, according to which there is, in general, no maximum
in the <g relation.

7.5. THEOREM. Suppose that A = (A, K> is an w-consistent awiom’
system with @C HA. Then with each PR-formula (EE-jormula, bi-numer-
ation) « which numerates A in L we can effectively associate o NUMEration.
o of A of the same type for whick

a<ga.
Proof. Consider firgt the case that « is a PR-formula or hi-
numeration. Set B = 4 U {Con,}. Then B = (B, K is consistent. De-
termine 2 numeration § of B of the same type as o for which

2 (%)« a(x)vx ~ Con,.
By 5.3,
not g Vg .
Next determine a numeration o’ of A of the same type as o for which
e o'(x) o a(x) v FmZO(x) A V (¥ <X A PrigF, y) -
‘ Y

then it is seen that
-2 Cong —>g
sinee
o ~v—> VA [y <X AFmP9x)>a'(x)) .
Y X

On the other hand, by construction of A8,
not - b- g CONy—>vp -

Thus o <Lga. Clearly o <, so that a<gza'. Since A is presumed
w-consistent, we can also obtain the conclugion for RE-formulas, by
applying the same argument as at the end of 7.4. )

The moral of these theorems is not to reject the use of particular
numerations for known particular axiom systems HA; for example., we
still congider “natural” the definition = of P as a finite set of axioms
and axiom schemata. Rather, it is to reject the use, as a well defined
idea, of sentences Cong associated with arbitrary systems A.

6¥
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8. Orey has pointed out to us that the type of construetion used
in 7.5 can also be used to obtain the following unexpected theorem (4.
7.6. THEOREM. Suppose that A =<4, K> and B = <(B,K'> are
axiom systems with A, B recursively enumerable, wnd that B is consistent.
Then with each PR-formula (bi-numeration) B which numerates B in P
we can effectively associate o numeration a of A of the same type for which

-2 Con,—Cony.

Under the assumption that P is o -consistent the same holds true with “RE"
instead of “PRM.

Proof. Consider first the case that §is a PR-formula or bi-numeration
of B. Let o, be a fixed PR-formula numerating 4 in 2. Let @, be any
fixed K’ sentence. Determine a numeration « of A of the same type as A
for which

Fe a(x) o ax) VFmid(x) A V [y <xAPrhylgs A ~0, Y]

(That « is indeed a numeration of A follows from. the consistency of B.)
Then it seen again that the formal assumption ~Con, would lead to the

conclusion ~Con,. To obtain the result for RE-formulas we use the
same argument as at the end of 7.4. '

Thus it is seen that in one sense the relative consistency of two
theories can be proved even where there is no connection between the
theorjes. This returns us to the question concerning relative congistency
proofs raised prior to 6.4. Wang ([35], Theorem 1) suggests that if
a system B 3 A then we have

o Cong— Cong

(Cong, Cong being ambiguously determined); actually he states this is
even the case if B is translatable into . He then goes on to argue
(loc. cit., Theorem 2) that if PC A and A is w-consistent then

A+ {Cong} £ A;

for otherwise,
b 00113190011‘7{.”00“‘%; s
i e

b #+1Con gy CONarr (congy »
violating Godel's second theorem. If his first argument holds for trans-

latability as well ag -3, this should also show A + {Congz} not translatable
into A. Contrary to this, Kreisel has shown in [18] that every consistent;

() Several other interesting results connected with the material discussed in this
section and the preceding have been announced by Orey in [27].
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recursively axiomatizable theory ix franslatable into P; the proof will
be reproduced below. BEven for =, the first statement of Wang appears
doubtful, unless B is finite, and we can formally verify the existence
of the interpretation. (The other possibility is that it is intended to deal
with ‘“provable” translations and interpretations to begin with; in this
case the desired conclusions are true but trivial.)

The question arises as to what sense can be ascribed to such state-
ments as the above in owr framework. One such sense hag avh‘eady been
provided in 6.4, and, as we have seen in 6.5, this was just sufficient to
allow us to conclude that

T+ {Con,} £ A,

when « is an RE-formula (A as above). Another logical possibility ‘would
be to say that if B < A then there exist numerations o, § of 4, 8 in P

such that . .
[ (.pn,ﬁ» (_'(')ll/g .

Indeed, this is true, for the Theorem 7.6 just proved show.s it to. hold
without any assumption connecting B and A, except that B is cousistent.
It could thus not be used to obtain 6.5 (which would also he seen by
making an attempt to do so). ]

Tn order to proceed in this way to obtain a complete picture of the
logical possibilities, we shall now show that 6.4 fails When'w've take
instead of interpretability, one of the relations of translatability. We
shall say that an axiom system B = (B, K'> is translatadle (in the weak
sense) into A = {4, K> by the function F if:

(i) F is a vecursive function with domain Stx. and range a subsel of Sig;

(ii) ’Lf [2X3 Stgr ~ Prg then F((p) EP’I“%;

(iii) for each @ e Stg, F(~p) = ~F(p).
(That is one of the notions discussed by Wang in [35].) We would say
that we have ‘“provable” translatability of £ into A withu} a systen"ll S
if, in addition, arithmetized versions of (i)-(iii) are provable in &. Kreisel
deseribes a proof in [18] that every system @B is provably tra:nslz'\,table
into @ within @ if a certain relative consistency statement invelving $
and @ is provable in P. However, he has pointed out to us ‘chgt his
argument serves to give ordinary translatability in all cases, w1t.hout
these further assumptions. Namely, we have: If B is any consistent
recursively awiomatizable amiom system then B is translatable (in the weak
sense) into P. )

The proof of this, which is closely related to the ROster construction
and argument in [29], can eagily be described bere. By Craig’s theorem [1‘],
or 4.13, it is cleaxrly sufficient to carry it through for the case that. B is
primitive rveeursive. Let 8 be a PR-formula which numerates B in Q.
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Let UN be the set of all un-negated sentences of K’, i. e. all those

@ € Stg: such that ¢ %~y for all . BEvery sentence of K’ is logically

equivalent either to a sentence ¢ or a sentence ~q, where ¢ ¢ UN. For
pe UN set

Flg) = Y [Pres(@, y) A A (2 <y->~Priy~5,2))] .

F is then defined on Stg by repeated application of the rule F(~p) = ~F(p).
To show that (ii) holds, we need only show that for each pe UN,

(i) (a) if b-g¢ then o F(e)
and

(ii) (b) if |-g~¢ then -o~F(p).

That (i) (a) is true is clear from the fact that @B is consistent and
that Pri; bi-numerates Prfg in @. On the other hand, suppose —g~g@;
let Prig[~¢,n]. Then :

e AfE <y~ \/ (2 <y APrEs(~p, 2))]
and
e 4\ [y < i—~Priy(7, y)],

by the consistency of B. Hence

-2 /y\ [P.rfﬁ(ay y)—~ \z/ (Z < Y/\PFfﬁ("_’a’ z))] »

e ~F(p). u
Now if 6.4 were to hold for translatability (in the weak sense) as
well as 3, it would follow from Kreisel’s result that: if B = {B,K"
iy any consistent axiom system with B recursively enumerable, and =

is any RE-formula numerating P in 9 then there exists an RE-formula B
numerating B in £ for which

e C(_)n,,—>an,, .

We shall show now that this is not possible, under the assumption that
2 15 w-consistent. Indeed, let = be any fized RE-formula numerating P
in £. We wish to construct a theory B = (B, K;> such that B is
consistent, but such that for any RE-formula B numerating B in 2,

not g an,,»(}o.n,,.

In fact, simply take B = P+ {Con.}. B is consistent under the hypothesis
that £ 18 w-consistent. Moreover,

not g Cong

icm
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for any RE-formula B numerating B in 2, according to 5.6. T.hus 6.4
fails to hold for translatability in the weaker sense. (Whet].ler it hol(f%s
for other notions of translatability intermediate between this and <3 is
an open question.) . . .

Another possibility which might be considered to hold in general is
that if B2 A then for any numerations o, of 4, B in P we have

¢ Con,—Cong ;

we might further restrict this to RE- or PR-formulas. I_iowevel-", the
simplest possible counterexample to this, when 5{:_%, 1s.obtama.ble
from 7.4. For if A = <4, K) is any consistent, reflexive axiom system
with A primitive recursive and @C A (in particular, it A = &), then
we can find PR-formulas a, ' numerating 4 in & such that

not |—g anﬂf—>ana.

Without needing to go into any further details about other cases,
we can now summarize the various logical possibilities for relative con-
sisteney statements as follows. For A = (4, K) and B = (B, K" axiom
systems, 4, B recursively enumerable, let

(Va) (V) k-2 Con,—Con,
abbreviate ‘
for all numerations a of A in P and numerations § of B in £.,7‘J
o ana—+09nﬁ .
Similarly, we shall use (da), (48) when we wish to say that t}_lere .61.(1813
numerations « of 4 in @ or B of B in P, respectively. For simplicity,
assume 2 to be w-consistent.

(1) The statement “If B3 A then (Va)(VB) -2 ana»(}?nﬁ” 8 false,
even when o, 8 are restricted to the class of PR-formulas. (By 7.4.)

Similarly, we have: 7

(2) The statements “If B2 A then (Ha){Vp) e Con,—~Con,” and
“If B3 A then (HF)(Va) g Con.—Cong are false, even when a, f are
restricted to the class of PR-formulas. (The first from 7.5, by taking
HA=2B, “f” for “«” and “¢” for “«’”, and the second from 7.4, by
takjng ﬂ__:‘_%, o for “q” and uﬁn for “a’”.) ‘

(3) (8) The statement “If BSA then (Va)(Hp) g Con,—Cong” s
true, if «, f arve resiricted to the class of RE-formulas (By 6.4.)

(3) (b) The corresponding statement, when “B2A” is.replaced by
“R is translatable (in the weak sense) into A is false. (By Kreisel's result:)

(4) The statement “(VB)(Hda) o Co.nn»Co_nﬂ” is true whenever B 1is
consistent and a, B are restricted to any one of the three classes, PR-formulas,
RE-formulas, or bi-numerations. (By Orey’s result 7.6.)
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Henece

(5) The statement “(Hp)(da) o Con,—Cong” is true whenever § s
consistent and a, f are restricted to RE- fomn.uhs, and, for A, B primitive
recursive, if restricted to PR-formulas.

These possibilities show rather well how difficult it is to make any
interesting general statements about relative consistency proofs. In our
work the statement (3) (a) has turned out to be most valuable. As with
the problem. of seleeting particular sentences to express consistency,
the moral of these results is to treat with care any general statements
about relative consistency. However, they should by no means lessen
our interest in the question of relative congistency proofs g Con,—Con,
for specific axiom systems HA, B and specific numerations «, B. ’

8. Formulation of the results for systems which do not contain
arithmetic directly

In § 4 we deseribed the arithmetization of the general metamathe-
matics of arbitrary axiom systems H — {4, K>. However, the most
interesting results of our work, in § 5 and § 6, depended on dealing with
systemas which contain a significant amount of arithmetic. We wish to
show in this section how to formulate the corresponding vesults for those
systems, such as various set theories, which “‘contain arithmetic® only
via an interpretation. In most cases, the proper formulation is clear and
the proofs, which we shall omit entirely, are like the previous ones.
In fact, for the most part we can still work directly within arithmetic,
only passing to the desired system, by interpretation, at the end-points
of the arguments.

Let I be a function which is a possible relative interpretation of
@ system with basie symbols K, into a system with basic symbols K.
If § is any set of K,-sentences, we shall denote by I (8) the set of
K -sentences I(p) for ¢ S, together with the sentences \/6(x) and the

X

existence and unicity statements for function symbols (e. .g., if I{(x"~y)
=y(x,y), we take in I(8) the statement

A {5(X)~>y [B(y)Ap(x, 7)A A (B(z)Ap(x, 2)>y=2)]} ).
It & =8, Ky), we put [($) = KI(8), K>.
It A=<4,K)> and § = (8, K,> are axiom systems, & 3 A is equiv-
I

alent to I(&$)C A. On the other hand, given a set 4 of K -sentences,

we shall denote by I7(4), the set of all @ such that —4 I(p), and shall

write I™(A) = <I"'(4), K>. Then I™(A) 3 A and henee I 7)) C A
I
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Farther, if I{§)C A then § CITN(HA). We consider K and T to be fived

her, N 3
in the following. A . . ‘
. We begin with a diagonal statement, formulated in arithmetic, which
is useful in conneetion with such interpretations. It follows from the
faot that I is primitive recursive. .

8.1 (5.1) () LEMMA. Let y e Fang,, Foty) = {x}. Then we can effectively
ind ¢ e Stg, such that
/ " ey (L))

8.2. (5.2) DEFINITION, For cach aeFmg, Fo(a) = {x}, let p, be the
sentence associated with ¢ = /\-]?1‘(, e 7.1, sueh that

a Ho l—)f\d]?.llu(j (/;,,)) .

8.3 (5.3) THROREM. Suppose that A=A, K, is an am‘ovm sillstem,
I (Q)é HA and that A is consistent. Suppose that o numerates A in I (A),
or in some subtheory of I7N(FA). Then

not e I{p) .

8.4 (5.6) TurorEM. Suppose that A = {4, K is an axriom syste?r-z,
I{P)C A and that F is consistent. Suppose that a is aI% RE - formula which
smumerates A in T ), or in some subsystem of I™(A). Then

-2 Cong > g
d hence -
o nol |-g I (Con,) .

8.5 (5.7) DEFINITION. Lot A = (A, K. A is said to be reﬂe;m'm? (with
respect to I) if T(P)C A and if for each finite subsystem F=<F,Kyof A

F-a I (Congy) -

Montagre proved in his dissertation [21] that every ext.cfnsion, with
the same constants, of Zermelo-Fraenkel set theory is refllexwe. He ha:;
announced in [22] the improvement of this to all extensions of genera
set theory. ' - .

8.6 (5.9) Suppose that A = {4, K} is-a consistent and reflexive aziom
system and that 4 is recursive. T'hen there is an o* which bi-numerates A
in I or achich
" (7 - Congs
and hence

e I(Oo.n,,-) .

8.7 (5.11) Suppose that FA = (4,K)> is a consistent and Veﬂemque

axiom system and that A is primitive recursive. fet « be a PR-formula

(*) The numbers in parentheses Will refer to the nifnbers of the corresponding
statements in § 5, § 6.
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which bi-numerates A in I™(F). Let B
a B* which bi-numerates B in I A for wh;;h{ (Oomlk- Lhon there s

—a I(Oo_n,g.),

ShoulI:le’c us t(;lrn (’?ow to the results of § 6. It would seem in 6.1 that we
] consider & = (8, K'> and J where J is i nte
o s Ko vhe a possible interpretation
-system, in order to discuss interpretati
_ . . ' i t
Iﬁ :hKf ;ystgm chﬂ in certain extensions of . However, we sha.ﬁ iengftl;;];(f
€ tollowing how various of the desired conse ’
! / > des quences of such a th
can already be derived from the results of § 6 as they stand corem

8.8 (6.5) Suppose that H = (A, K> i )
! A= y B> is a consistent axiom system with
HP)C R. Suppose that o is an RE-formula which num erates A gv, 2 Tu;;:o’:

A+{I(Con)} A A .

Su Fo or 1;3 B = A+ {I(Con,)}; as before we can assume B consistent
SSuppose 2 A. Then by 6.4 there is an BE-formula numerati ;
in £ such that erating B
C

Hence =2 Con.—Con, .

. g I(Con
whick contradicts 8.6. 2 1(Com),
p?‘im?t.;;e(i;ziit rizﬁposedﬂ;;t A = (A, K is a reflexive aziom system with A

a,n : - . .
T, Then at a is o PR-formula which bi-numerates A in
A+ {~I(Con,)}3A.

The same holds if A is recursively enwmerable, I~ )
and a is an RE-formula which numerates 4 in I “YA).
For let B = A+ {~1I {Con,)}. Again we can assume A is consistent.

Consider first the case that 4 i imiti
. ; 18 primitive recursi i
B* which numerates B in I™(A) for which sonme: By 87 there s

8 - consistent,

F -y Cong. .

But PCI(A), 50 by 6.3, B3I
ut 2C 3, BITNA)+ {Cong), i. . B=T7? Si
I 1($>ﬁ$, we obtain B <3 HA. To it e ) e
4.13 as at the end of 6.6.
Finally, we mention th izati i
pactons th; e ¢ generalization of the arithmetical com-
8.10 (6.9) THEOREM. Su
! . ppose that A =< A, K. and = ¢8. K
. ] = K
are awiom systems with A, 8 recursively enumem,ble. Suppose thz;t ’eS’ ':9

reflexive. Suppose, finally, th i
D3S. Then o7 Y, that for each finite subtheory D C A we have
A=3S.

prove it in the second case we apply

icm
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Tor we see ag before that for each finite subsystem D =<D, K>
of S there ig a finite subsystem F = (F,K'> of & such that

) an[1a1—>0911[pl .
Henee, if J is the interpretation function giving J(2)C &,
b= -2y Conypy -
Then, by 6.7 (it IS easily seen that oJ (&) iy reflexive), we have

D3I7HS)

for each 9. Hence, by 6.9,
AT (S).

But JHS) 3 S, giving A2 S.

By such styles of reasoning all the other theorems of § 6 obtain
analogues for systems in which arithmetic is interpretable. Similarly
the results of § 7 could also be brought to a more general formulation,

if desired.
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Algebras which are independently generated
by every » elements

by

S. Swierczkowski (Wroctaw)

1. Preliminaries and results

By an algebra s{ we mean a pair (4, F) where 4 is a set and F is
a family of functions of finitely many variables defined on A and 4 -valued.
F is called the class of fundamental operations. The class of algebraic
operations is, by definition, the class of operations A generated by F,
i. e. the smallest clagy 4 such that 4 contains F, all identity operations
belong to 4 and A is closed with respect to composition. The subclass
of all algebraic operations of u variables will be denoted by A"™. The
above definitions are given in a more detailed form in [3‘]; we use here
the same notation.

Following B. Marczewski [3] we say that N C 4 is a set of independent
dlements if, for each sequence of n different elements ..., an ¢ N and
for each pair of operations f, g« A™, the equality

FlOyy ooy @) = glay, .ny n)

implies that f and g are identical in «l.

We shall eall the identity operations also trivial operations. More
exactly: An operation f(a, ..., %) is called trivial if, for a certain 1< k
we have j(@,,..,az) =& for all values of =z, .., o II all algebraic
operations are ftrivial then the algebra will be called trivial. For
A =1{a, .., a} and F = {f} we shall write (ay,...,as;f) instead of
(4, F). Two algebras, (4, F;) and (4, Fy), having the same clags of all
algebraic operations will be treated here as identical.

We say that a set BC 4 generates s{ if each @ ¢ A is the result of
an algebraic operation applied to some elements in .B. Let § denote
the cardinal of the set S. We then say that the algebra is iazdegendentl‘y
generated by every w elements if each set BC A satisfying B =mn is
a set of independent elements and B generates s{. In this paper we
show some properties of those algebras. The results were announced
in paper [4].
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