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Residue class fields of lattice-ordered algebras *
by
M. Henriksen, J. R. Isbell and D. G. Johnson (Lafayette, Ind.)

This paper is a continuation of [5], and is concerned with the structure
of the residue clags fields of the P-algebras introduced and studied in
that paper. These are archimedean lattice-ordered algebras with a multi-
plicative identity that is a weak order unit. The lattice-ordered ring C()
of all continuous real-valued functions on a topological space <Y/ is a P-alge-
bra, and it is shown in [5] that every ®-algebra A is isomorphic to a ring
of continuous functions from a compact space X into the two-point
compactification of the real line R such that every fe A is real-valued
on an {(open) dense subset of 9.

If 4 = C(), and M is a maximal l-ideal of 4, it is known that A/M
is a real-closed field that is either the real field, or an #;-set in its unique
ordering. We show that for any uniformly; closed @-algebra A4, the regidue-
class fields are real-closed. This result seems to be new even for P-algebras
of real-valued functions. Stronger assumptions must be made to guarantee
that if A/M is not the real field, then it iz an n;-set. We show that
if A is closed under countable composition (ie. if {f,} is a sequence of
elements of 4, and g e C(R™), then there is an ke A4 such that h(x)
= g(f,(@), ..., fa(®), ...) whenever all of the f, are real-valued), then A4
is closed under uniform convergence, and A/M is an m,-set if it is not
the real field. In fact, under this hypothesis, 4 is a homomorphic image
of C(Y), for some topological space Q.

It is shown also that every P-algebra A is a homomorphic image
of a P-algebra B of real-valued functions; moreover, B can be chosen
so that it is closed under countable composition, (finite) composition,
uniform convergence, or bounded inversion, provided that 4 is.

An example ig given of a uniformly closed @-algebra 4 that is closed
under (finite) composition, with a maximal l-ideal M such that A/M
contains B properly, and has a countable cofinal subset. This serves to
correct an error in [6].

The notation and terminology is that of [5]. An effort has been made
to keep the exposition reasonably self-contained.

* This research was supported in part by the Office of Naval Research (U. 8. A.).
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1. Residue eclass fields of uniformly eclosed D-algebras.
Recall from [5] that a @-algebra 4 is said to be cloged under bounded
inwersion provided 1/a ¢ A whenever a >1 in A.

L1. Levma. A @-algebra A is closed under bounded inversion if and
only if every mamimal ideal of A is an l-ideal.

Proof. If a>1 in 4, then ¢ is in no proper l-ideal of 4. Hence,
if every maximal ideal of 4 is an I-ideal, then A is closed under bounded
inversion.

For the converse, let M be a maximal ring ideal of 4 and suppose
bé M, |a|>b]. Since 4/M is a field, there is an » € 4 such that ba4-m =1,
Squaring, we obtain %24 m’ = 1, where m' = 2bwm-+m? ¢ M. Theon,
sinee b2 < a? and 22 > 0, we mugt have az*+m’ > 1. Tf 4 is closed under
bounded inversion, there is a ze.d such that (a%®+m')e =1, so that
o(aa*z) = 1(mod M). Thus a ¢ M. Hence M is an [-ideal of A.

As in [5], we say that 4 ig uniformly dlosed if every Cauchy sequence
of elements of 4 converges to an element of 4.

If X is any compact space, let D(X) denote the set of all continuous
functions defined on % with values in the two point compactification
¥B = [~ 00, 4-o0] of the real line B that are real-valued on a denge (open)
subset of . If lattice operations are defined coordinatewise, then D(X)
forms a lattice. Let 1,9 € D(X). If there is an h € D(X) such that h(x)
= f(2) +¢(x) whenever f(x) and g(») are real, we write } = f-+g, and
similarly for multiplication. In general, neither f+-g, nor f.g is define"
It is true, however, that every d-algebra 4 can be isomorphically repr
sented in D(V(4)), where W(A) is the gpace of maximal [-ideals of
with the Stone (= hull-kernel) topology. M(4) is always a compa
Hausdorff space ([8], Theorem 2.3). We will regard A as represented
this way whenever it is convenient to do so.

We will algo utilize the following, proved in [5], 3.2 and 3.7.

1.2. The following properties of a P-algebra A are equivalent.
(1) 4 is uniformly closed.

(i) A* and © (%(A)) are isomorphic.

(i) A 48 an order-convew subset of D(UM(4)).

From (ii), it is evident that every uniformly cloged P-algebra is
closed under bounded inversion.

If acd, let %(a):{w<97((A):]a(m)|<oo}, let Z(a)={weN(A): a(w)
=0} and let 9 (a) = N (A)~%R(a). Finally, let R(4)=NR(a). If R(A)
aed

is dense in 9UC(4), then 4 ig called an algebra of real-valued functions.
Let 4 be any P-algebra, and let g € O(B™). It, for every Fiy ey fne A,

there is an heA such that h(@) = g(fy(2), -y fu(®)), whenever » eﬁ R(fs),
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we say that A is closed under composition with g, or that 4 admits g. ET.'i-
dently & is unique; we shall write & = g(f,, ..., fa). Every @-algebra admits
the constant functions and the projection functions p;, where py(Ay, ..., An)
=L ({=1,2,..,n). . _

We let F'(4,n) denote the family of all g ¢ C(R") that A adn.ruts.
It is easily verified that F (4, n) is a P-algebra if operations are defined
in the usnal coordinatewise fashion.

If A is uniformly closed, so is F'(A4, n). For if {g;} is a Cauchy sequence
in F(4,n), then it converges to some ge C(R"). If fy, ..., fs € A, then
{gi(f1y ..., fa)} 18 a Cauchy sequence of elements of 4 whose limit must

be g(fyy ey fn)- i}
Tet A be uniformly closed and let p = (iZ{' p3%. Note that

R"CY(F(4,n)), and that R(p) = R™. Hence by [5], Lemma 3.5, every
g « C¥(R") has a continuous extension over (¥ (4,n)), so N(F(4,n))
and BR™ are homeomorphic. By 1.2 (iii), F(4,») is an order-convex
sub-®-algebra of C(R"™). Thus, we have established

1.3. LemmA. If A is a uniformly closed P-algebra, then, forn=1,2,..,
F(A,n) is a uniformly closed sub-P-algebra of C(R™) containing all. geC(R™
such that |g| < A(L-+p™™ for some AeR*, and some positive integer m.

Recall that a totally -ordered field F is called real-closed if every
@ € I'* has a square root and every polynomial of odd degree with coef-
ficients in F has a zero in F.

1.4. TeEOREM. If A is a uniformly closed P-algebra, and M e N (A4),
then A/M is a real-closed field.

Proof. Since 4 is closed under bounded inversion, Lemma 11
shows that A/M is a field. By [5] Theorem 3.8, every a € A* has a square
root, 80 we need only show that polynomials of odd degree with coef-
ficients in A/M have zeros. )

Let pi(w) = wmti4 Aum+ ...+ 4, denote a monic polynomial with
real coefficients of positive degree. Let ry(1), ry(1), ..., Ym+1(A) denote the
real parts of the complex zeros of p,(w) indexed so that (1) < r,(i)+1<
< m+1(4). This serves to define m -1 real-valued functions on R™. It
is known that each of these functions is continuous ([4]). Moreover, lzy [91,
P- 96, [7A)| < 14 |Ao|V|A| V... V|dm| for each A= (dg, ..., Im) eR’"*,_ajnd
it =1,..,m-+1. Hence, by Lemma 1.3, 4 is closed under composition
with Ti.

Let g(w) = w4 fyw+ ... +f, denote a monic polynomial of odd
degree with coefficients in A. By the above, $; = 7(fy; .., fen) € 4. Since g(w)

2n-+1 . .
has odd degree, for each x ¢ p R (f:), there is an ¢ such that g(s;)(2) = 0.
-
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Hence g(s,)q(82)...q(8m+1) = 0. Since M iy a prime ideal, there iy an 1y
such that q(s;) e M. Hence A/M is a real-closed field.

The argument just given enables us to reach the following slightly
stronger conclusion. If A is uniformly closed ®-algebra, and P is a prime
I-ideal of A, then every positive element of A/P has a square root, and every
monic polynomial of odd degree with coefficients in A/P has a zero in AlP,
Also, as we will show next, the assumption that P is an lHideal is redundant.

L.5. Lemma. Every prime ideal P of a uniformly closed d-algebra A is
an l-ideal.

Proof. Since [d* =% we know that ¢ <P if and only if [o| € P.
Thus, since |¢| = (Jc|A1)(je|v1), and since, by Lemma 1.2, 4 i8 closed
under bounded inversion, ¢ e P if and only if |¢[Al e P.

Suppose now that |b| < |a, and & € P. Then [b|AL < [a|Al € P ~ A%,
Buf, by Lemma 1.2, 4* and ¢ (Q?Z(A)) are isomorphie, and by [3], Chapt.
14, every prime ideal of the latter is an [-ideal. So [b|a1 € P, whence b ¢ P.
Hence P is an [-ideal.

1.6. REMARK. It is remarked in [3], Chapt. 18, that any totally
ordered field containing B properly in which exponentiation of positive
elements to real powers can he defined has degree of transcendency at
least ¢ over B. Tt follows that it A is a uniformly cloged P-algebra, and
M EC);% (4) is hyper-real, then A hag degree of transcendency at loast ¢
over R.

If 8 and T are subsets of a totally ordered get L, and ¢ < ¢ whenever
se8 and te T, we will write § < T.

1.7. THEOREM. Let P be a prime ideal of @ uniformly closed ®-algebra A.
If 8 and T are countably infinite subsets of AP such that S8 has no largest

element, T has no smallest element, and S < T, then there is an a e A/P
such that S < a < T.

Proof. Since, by 1.5, P is a prime I-ideal, 4/P iy totally ordered,
azid by 1.2 ff. we may assume that 0 <8 <T<1 By Lemma 1.2,
A* = O(I(4)). Kohls has shown that the conclusion follows in case
4 2= C(Y) for any space Y ([8], Theorem 2.6). Since

A* A* 4P
Prax=—p C4/F,
the conclusion holds in this cage a§ well.

A totally ordered set L is called an ny-set if whenever § and 7T are
gountable subsets of L such that § < 7, then there is an a ¢ L such that
su:g :t <T. In partlclﬂar, an 7,-8et has no couuntable cofinal or coinitial

. OEC‘{)r any topological space 9/, and any hyper-real maximal ideal M
of C(VY), it is known that ¢ (Y)/ M is an ;-set. Example 1.9 below shows
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strongly that no comparable conclusion holds for arbitrary uniformly
closed P-algebras.

Most of the remainder of the paper will be devoted to a discussion
of the extra hypotheses needed to conclude that A/M is an n-set.

A @-algebra A is said to be closed under (finite) composition if F(4, n)
= O(R") for n =1, 2,...; that is, if 4 admits every ge O(R").

Ag in [B)], 4 is said to be closed under I-inversion if {a) = A whenever
F(a) C A (b) for some b e A. (Recall that {a> is the smallest l-ideal of 4
containing a.)

1.8. LevMA. Let A be a PD-algebra.

(i) If F(4A,2)= O(R?) (in particular, if A s closed under compo-
sition), then A is closed under l-inversion.

(i) If A is closed under uniform convergence amd l-inversion, then A
is closed under composition.

Proof. (i) Let a,b ¢ 4, and suppose that Z(a) CIC(b). Let h=|a|v|b|,
let By={fed: R()DR(M)}, and let A= {(a(x),b(x)) e B » e R(h)}.
If (0, q) €%, then there is a sequence {z,} of points of R (k) such that
a(@y)—0 and b(@s)—g. Since N (4) is compact, {#,} has a limit point
@z ¢ N(A). Olearly a(z) =0, and b(x)= ¢, contrary to the assumption
that Z(a) C9(b). Thus, the function ¢ defined on 9~ by letting
g(p,q) =1/p is continuous. By the Tietze extension theorem, it has
an extension §e C(R?). Since F (4, 2) = O(R?), this shows that 1/a e 4.

(ii) Suppose that fi,..,faed, let h=|f|v..V[fal, and let
By = {a e A: R(a)DR(R)}. By [5], Theorem 5.8, since A is closed under
uniform convergence and [-inversion, B; and C (‘)Q(h)) are isomorphie.
Hence, for any g € C(R"), g(fyy ..., fu) € 4 (n =1, 2,...). Thus, 4 is closed
under composition.

In [6], Theorem 1.28, Isbell states that if A is an algebra of real-
valued functions closed under uniform convergence and composition,
and M e N (A) is hyper-real, then A/M is an #,-set. While he establishes
correctly the conclusion of Theorem 1.7 above, 4/M may have a countable
cofinal subset, as is shown by .the following. For a € 4, the image of a
in A/M is denoted by M(a).

1.9. ExAMPLE. There ewists a uniformly olosed P-algebra A, closed
under composition, and a hyper-real M e N((A) such that 4/ M has a count-
able cofinal subset.

Proof. Let 9 denote the space of irrational numbers in (0,1) with
its usual topology. Since pI is the largest compactification of 9, there
is a continuous mapping = of I onto [0, 1] keeping 9 pointwise fixed.
Let &y = a7%(0), and for 1 =1,2, ..., let J; = {1/p/ € (0, 1): p a prime;
§ a positive integer, § < ¢}, lot Z&; = &y v aY(c%), and let U = pI~Z;.
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Observe that 9C U, CY; for ¢=1,2,.., and let 4;= {fe D(p9):
R(f) D Ys}. Since Y; contains I, it is C*imbedded in A9, so 4, and

C(Y;) are isomorphic. Finally, let 4 ——:1[U1 As.

If {f»} is a Cauchy sequence of elements of 4, then (as iy noted in [8],
3.1) R(fs) = R(fass) = ... for all but finitely many of the f,. Thus we
may assume that {f»} C 4; for some 4, whence {f,} converges. Similarly,
any finite number of elements of 4 is contained in some 4;. Thus A is
cloged under uniform convergence and I[-inversion.

If every point of the compact space &, had a neighborhood meeting
only finitely many of the sets {Z;+1~Z;}, then Z, itself would have such
a neighborhood. But every meighborhood of 0 meets infinitely many of
the sets dyp1~cS;, so this cannot be the case. Hence, there is an veZ,
such that every neighborhood of x meets infinitely many of the sets
{Zi41~i}. By a suitable change of notation, we may agsume that every
neighborhood of # meets all such gets.

Now each Z; is the inverse image of a closed subset of a metrizable
space, and hence is a closed @,. Hence there iy an fie Af such that
W(fs) = Zi. Now, M,(f,) is greater than all the constant functions, so M,
is hyper-real. If g ¢ 4, there is an 1 such that N (g) C Z;. Suppose there
were an b e M, such that g--% > f;y,. Then N(fir1) CAN(g) w N (B), and
hence () D N (fi41) ~N(9) D Lipr~Z;. But this latter sob has @ as
& lmit point, contrary to the fact that % e M. We conclude that
{Ma(fi): i=1,2,..} is a countable cofinal subset of A/ M,.

2. O-algebras closed under countable composition. The
example of the last section motivates the consideration of a more re-
stricted class of @-algebras.

We designate a countable product of copies of R as R™.

Let 4 be'a @-algebra, and suppose that for every geO(R™), and
every sequence {fa: n=1,2,..} of elements of 4, there ig an hed

o0
such that k(x) = g(fl(w), «y Iu(®), ...) whenever we N R (fa); we say that A
A Naa]
18 closed under countable composition. By the Baire category theorem,

7Dl‘)(i(]‘n) 13 dense in W (4), so h is unique. We denote it bY 9(fisfay ey Fayonr)

Clearly, if A is closed under countable composition, it is closed under
composition, and hence, by Lemma 1.8, it is closed under [-inversion.
This motivates the consideration of the following concept.

A D-algebra A is said to be closed under countable l-inversion provided
that {g> = 4 for each g € A for which there is a sequence {fu: n =1, 2, ...}

of elements of 4 such that Z(g)C G N (fn).
Na=l
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The relationship between these two latter concepts is given by

2.1. THEOREM. A P-algebra A is closed under countable composition
tf and only if it is uniformly closed and closed under countable l-inversion.

Proof of necessity. Suppose that A is closed under countable

composition, and that Z(g)CQ%(]‘n) for some ¢, fi,..s fuy ... in A.

Lot g=fo, Y= () R(a) and defino y: Y -E> by letting u(y)
n=0 N

= (fo(¥)s F1(¥); -vvs Fuly), ...) for all y € Y. Liet 9 denote the closure in B™
of [Vl If @ = (@, @y, ..., B, ...) € ¥, then a, 7 0. For, otherwise there
would be a sequence {y.} of points of 9f sueh that »(¥n) converges to m.
Since W(A) is compact, {y,} has an accumulation point in 9(4), which

is a point of Z(g) not in Qf)z(f,,).

Hence the function 7: 9—R defined by letting »(z,, 2y, ..., @, ...)
= 1/w, i3 well-defined and continuous. By the Tietze extension theorem
([7], p. 242), r has an extension $ ¢ C(R™). Since 4 is closed under count-
able composition, s (fy, fy, ..., fa, ...) is an element % of A such that gh=1
on the dense subset 9/ of W (A). Thus  is the inverse of g, whence {g> = A.

_Suppose next that {f,}is a Cauchy sequence of elements of A, define @/
as above, define y: U/ —R™ by letting v(y) = (fl(y), wos Inl), ) for all
Y €Y, and let 9¢ denote the closure of p[/] in R™.

Since {fs} is a Cauchy sequence, for every &> 0 there is a positive
integer m such that for every » = (z,, Dy eeey Tny o) OF W[Y], |Bp—wg] < &
whenever p,g>m. For any ze%, if p,¢>m, then |#2p— 24| < &. For,
if not, for some such 2, p, and ¢, there is a 6> 0 such that |2p— 2| = &4 28.
Then {w e B*: |w,—2,| < 6 and |w,—2,| < 8} is a neighborhood of z in B
that contains no point of ¢[U], contrary to the fact that z e 9. Hence,
for each 2z ¢, {z.} is a Cauchy sequence. Define s: ¥R by letting
8(2) = lim #,. It is easily verified that s ¢ 0(%). By the Tietze extension

theorem, s has a continuous extension £ e (R™). Since A is closed under
countable composition, k = i(f,, fa, ..., fuy-.) € 4. Clearly {fs} converges
to h. This completes the proof of the necessity.

Before proving the sufficiency, we prove two lemmas that are of
independent interest.

Recall that a topological space < is called a Lindelsf space if every
open cover of f has a countable subcover,

2.2. Lepma. Let U be a subspace of a compact space X such that for
some countable family ¥ of closed subsets of X, for every pair of points
D €Y, e X~Y there is a set in ¥ containing p but not q. Then Y is @ Lin-
delof space.
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Proof. Let {U: ael'} denote an open cover of V. Tor each o el
let Re = Y~ W, da denote the closure of Ky in X, and lob V== X ~,.
COlearly V. ~ Y = Ua, and the sets V. cover XA ~"I, where I = M {cf,:
a eI} Clearly 9 iz a compact subset of X~ l/.

Let F denote the union of all those subsets of X that are disjoint
from %, and are finite intergections of elements of ¥. Then 7 iy o-compact,
and hence is a Lindeldf space. Thus, it suffices to show that 2/ C . But,
for each p ¢/, by hypothesis, the intersection of all the elements of ¥
containing p is ‘disjoint from 9 C X~Y. Hence some finite intorsection
of them is disjoint from 9. Hence I/ CF,

2.3. COROLLARY. Ivery subset of a compact space S that is in the
smallest family of subsets of X containing the closed subsets and closed under
countable union and intersection, is a Lindoldf space. In particular, for any
D-algebra A and any sequence {fn} of elements of A, ﬁ ‘Rfa) 8 & Lindelof

sm
space. "

Proof. Every closed subspace of S¢ satisfies the hypothesis of
Lemma 2.2, so it sufficies to show that if ¢, satisfies this latter condition
with associated countable family of closed sels ¥, for m = 1,2,.., then

00 oo .
s0 does ¥/ =”U1 Cny and F = mlc,,. It p e, g e X~ then p e &, for
= =
some 7, and ¢ ¢ Cq, 50 there iy an element of ¥, that containg p and not g¢.
Thus, U satisfies the hypothesis of Lemma 2.2 with agsociatod countable
family of closed sets | ¥,. The proof for & is similar.

n=1

24. LevMA, Let A be a uniformly closed D-algebra thathis closed under

countable [-inversion, let {fn} be a sequence of elements of A, let Y = ﬁ R{fn),
ond let B = {ged: Y CR(g)}. Then B and C(%Y) are isomorp;;;;}l.

Proof. Clearly B is a sub-G-algebra of 4. Since BO A*, W(B)

=P (4), and since A is uniformly closed, so is B. Since fs B for
n=1,2,.., R(B) =Y. B is also cloged under inversion of elements

without zeros in R(B). For, if Z(g) ~ R(B) = @, then Z(g) CQJ“‘)ZU%):

8o, since A iy cloged under countable Linversion, 1/g i8 in A and is
real-valued on Qf. By Corollary 2.3, 'Y is a Lindelét space, so by [B],
Tremma 5.3, for every h < 0(Y), there is a b « C*(M(B)) such that h=(0)
=Z(b)~Y. Tt follows from [5], Theorem 5.2 that B and 0('R(B))
are isomorphie. S ‘

The proof of sufficiency for Theorem 9.1 i§ now eagy in view of
Lemma 2.4. Tf {,} is any sequence of clements of g uniformly closed
P-algebra that is closed under countable Linversion, then, by Lemma 2.4,
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it U = ﬁ R(fa), then C(Y) is a subalgebra of A. So, for any ge O(R%),
n=1

G(fiy ory Fry o) i8 in A,
Before returning to hyper-real residue class fields, we prove

2.5. THEOREM. Every D-algebra A can be obtained as a homomorphic
tmage of a D-algebra B of real-valued functions in such a way that if A is
wniformly closed, or closed wnder bounded inversiom, or composition, or
countable composition, then so is B.

Proof. B will be defined as an algebra of continuous real-valued
functions on N (A4) x ) where U is the discrete space of positive integers.
Every element g of B will be regarded as a sequence {g,} of functions
on N (A), where gn(p) = g(p, n), for all p e W (A). B consists precisely
of all those {g»} which converge pointwise to an element of 4 on a denge Gy;
ie. those ge O(M(4)XN) such that for some fe .4, and for some dense
Gsset Y TN (A), for each p € Y, the sequence {g(p, n)} of real numbers
converges in yRE = [—o0, +oo] to f(p).

Since the intersection of two dense @s-sets is dense, each geB
converges to a unique i(g) € 4. Similarly, it is easily verified that B
is a @-algebra, and that A is a homomorphism of B into 4. Moreover,
if fed, and g, = (fAn)V(—n) for n=1, 2, ..., then ga(p) converges to
f{p) for all peM(A). Hence A(g) =/, s0 1 iz a homomorphism of B
onto 4.

Suppose that A4 is-closed under countable composition, that {g.}
is a sequence of elements of B, and that h e O(R™). For n=1,2,...,
there i a dense Gy-set Uy in W (A) such that for each p € Un, gulp, m)
converges to A(gn)(p). Let %/ denote the intersection of all the Qf, and
all R(A(ga)), for n=1,2,... Since W(A) is compact, this countable
intersection of dense Gs-sets is a dense Gyset. Moreover, each A(gn) is
real-valued on '/, and so is %(A(g1), ..., A(gn), ...) € 4. For each p e,
and for each #, the real numbers gs(p, m) converge to A(gs)(p). Then the
points {#,} of R™, whose n-th coordinates are ga(p, m), form a convergent
sequence in R, whose limit 2 has as n-th coordinate A(gs)(p). Since b is
continuous, #(#,)—>h(z). Thus, the well-defined continuous funection
h(giy ooy gn,y ...) in O(C??Z(A)x%) is in B, since it converges pointwise
on ‘If to h(i(gl), ey A(gn), ) That is, B is closed under countable com-
position. ‘

Simplified versions of the preceding establish the remaining as-
sertions.

In [1], 2.1, Corson and Isbell show that if an algebra A of real-valued
functions iy closed under countable composition, then it is closed under
composition for all higher cardinals. This fact may be used to establish
the following.

Fundamenta Mathematicae, T. L (1961) 9
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2.6. TaroreEM. Hvery D-algebra A closed under countadble composition
is a homomorphic image of C(Qf) for some topological space Q.

For, by Theorem 2.5, we may assume without loss of generality
that A is an algebra of real-valued functions. Let ¢/ denote the cartesian
product of ag many copies E; of R as there are elements f of 4. Lot ¢
denote the mapping of R(4) into ¥/ such that the f-th coordinate e(w),
of e(x) is f(#). Finally, let vg = g-e for each ge (/). By the result cited
above, since 4 is closed under countable composition, and hence unlimited
composition, 7g € 4 for all g ¢ C(¢Y/). Clearly 7 is a homomorphism of ()
onto 4.

In [2], it is shown that if M is a hyper-real maximal ideal of O(),
for some topological space @, then C(%)/M is an #u,-set. Ience, by
Theorems 1.4 and 2.6, we have immediately

2.7. CoROLLARY. If A is a P-algebra closed wnder countable com-
position, and M ¢ N(A) is hyper-real, then A/M is real-closed field that is
an 7,-set.

2.8. COROLLARY. If A = D(W(4)) is a O-algebra, and M e N((4)
is hyper-real, then A|M is o real-closed field that is an ny-set.

Proof. By 2.1 and 2.7, it suffices to ghow that the D-algebra
A =D{C)7Z(A)) is closed under countable linversion and uniform con-
vergence. The latter follows immediately from Lemma 1.2. Let {fa} be

a sequence of elements of A such that Z(g)C D%(fn). Then SZ(g) is
! n=1

nowhere dense and g cannot be a divisor of zero. Thus, by [5], Theorem 3.9,
1/ge A.

In [2], it is shown that all real-closed ne-fields of power s, are iso-
morphie, if «> 0. It follows from Corollary 2.8 that, if 8, = ¢, then all
of the regidue class fields of the D-algebra of all Lebesgue measurable
tfunctions on R, modulo the ideal of functions vanishing off sets of meas-
ure zero, are isomorphic. See [5], Corollary 3.10.
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