

Residue class fields of lattice-ordered algebras *

hv

M. Henriksen, J. R. Isbell and D. G. Johnson (Lafavette, Ind.)

This paper is a continuation of [5], and is concerned with the structure of the residue class fields of the Φ -algebras introduced and studied in that paper. These are archimedean lattice-ordered algebras with a multiplicative identity that is a weak order unit. The lattice-ordered ring $C(\mathcal{Y})$ of all continuous real-valued functions on a topological space \mathcal{Y} is a Φ -algebra, and it is shown in [5] that every Φ -algebra A is isomorphic to a ring of continuous functions from a compact space \mathcal{X} into the two-point compactification of the real line R such that every $f \in A$ is real-valued on an (open) dense subset of \mathcal{X} .

If $A = C(\mathcal{Y})$, and M is a maximal l-ideal of A, it is known that A/M is a real-closed field that is either the real field, or an η_1 -set in its unique ordering. We show that for any uniformly closed Φ -algebra A, the residue-class fields are real-closed. This result seems to be new even for Φ -algebras of real-valued functions. Stronger assumptions must be made to guarantee that if A/M is not the real field, then it is an η_1 -set. We show that if A is closed under countable composition (i.e. if $\{f_n\}$ is a sequence of elements of A, and $g \in C(R^{\infty})$, then there is an $h \in A$ such that $h(x) = g(f_1(x), \ldots, f_n(x), \ldots)$ whenever all of the f_n are real-valued), then A is closed under uniform convergence, and A/M is an η_1 -set if it is not the real field. In fact, under this hypothesis, A is a homomorphic image of $C(\mathcal{Y})$, for some topological space \mathcal{Y} .

It is shown also that every Φ -algebra A is a homomorphic image of a Φ -algebra B of real-valued functions; moreover, B can be chosen so that it is closed under countable composition, (finite) composition, uniform convergence, or bounded inversion, provided that A is.

An example is given of a uniformly closed Φ -algebra A that is closed under (finite) composition, with a maximal l-ideal M such that A/M contains R properly, and has a countable cofinal subset. This serves to correct an error in [6].

The notation and terminology is that of [5]. An effort has been made to keep the exposition reasonably self-contained.

^{*} This research was supported in part by the Office of Naval Research (U. S. A.).

- 1. Residue class fields of uniformly closed Φ -algebras. Recall from [5] that a Φ -algebra A is said to be closed under bounded inversion provided $1/a \in A$ whenever $a \ge 1$ in A.
- 1.1. Lemma. A Φ -algebra A is closed under bounded inversion if and only if every maximal ideal of A is an l-ideal.

Proof. If $a \ge 1$ in A, then a is in no proper l-ideal of A. Hence, if every maximal ideal of A is an l-ideal, then A is closed under bounded inversion.

For the converse, let M be a maximal ring ideal of A and suppose $b \notin M, |a| \ge |b|$. Since A/M is a field, there is an $x \in A$ such that bx + m = 1. Squaring, we obtain $b^2x^2 + m' = 1$, where $m' = 2bxm + m^2 \in M$. Then, since $b^2 \le a^2$, and $x^2 \ge 0$, we must have $a^2x^2 + m' \ge 1$. If A is closed under bounded inversion, there is a $z \in A$ such that $(a^2x^2 + m')z = 1$, so that $a(ax^2z) \equiv 1 \pmod{M}$. Thus $a \notin M$. Hence M is an l-ideal of A.

As in [5], we say that A is uniformly closed if every Cauchy sequence of elements of A converges to an element of A.

If \mathfrak{X} is any compact space, let $D(\mathfrak{X})$ denote the set of all continuous functions defined on \mathfrak{X} with values in the two point compactification $\gamma R = [-\infty, +\infty]$ of the real line R that are real-valued on a dense (open) subset of \mathfrak{X} . If lattice operations are defined coordinatewise, then $D(\mathfrak{X})$ forms a lattice. Let $f, g \in D(\mathfrak{X})$. If there is an $h \in D(\mathfrak{X})$ such that h(x) = f(x) + g(x) whenever f(x) and g(x) are real, we write h = f + g, and similarly for multiplication. In general, neither f + g, nor $f \cdot g$ is define. It is true, however, that every Φ -algebra A can be isomorphically represented in $D(\mathfrak{M}(A))$, where $\mathfrak{M}(A)$ is the space of maximal l-ideals of with the Stone (= hull-kernel) topology. $\mathfrak{M}(A)$ is always a compa Hausdorff space ([5], Theorem 2.3). We will regard A as represented this way whenever it is convenient to do so.

We will also utilize the following, proved in [5], 3.2 and 3.7.

- 1.2. The following properties of a Φ-algebra A are equivalent.
- (i) A is uniformly closed.
- (ii) A^* and $C(\mathcal{M}(A))$ are isomorphic.
- (iii) A is an order-convex subset of $D(\mathcal{M}(A))$.

From (ii), it is evident that every uniformly closed Φ -algebra is closed under bounded inversion.

If $a \in A$, let $\mathcal{R}(a) = \{x \in \mathcal{M}(A) : |a(x)| < \infty\}$, let $\mathcal{R}(a) = \{x \in \mathcal{M}(A) : a(x) = 0\}$ and let $\mathcal{R}(a) = \mathcal{M}(A) \sim \mathcal{R}(a)$. Finally, let $\mathcal{R}(A) = \bigcap_{a \in A} \mathcal{R}(a)$. If $\mathcal{R}(A)$

is dense in $\mathcal{M}(A)$, then A is called an algebra of real-valued functions.

Let A be any Φ -algebra, and let $g \in C(\mathbb{R}^n)$. If, for every $f_1, \ldots, f_n \in A$, there is an $h \in A$ such that $h(x) = g(f_1(x), \ldots, f_n(x))$, whenever $x \in \bigcap_{i=1}^n \mathcal{R}(f_i)$,

we say that A is closed under composition with g, or that A admits g. Evidently h is unique; we shall write $h = g(f_1, ..., f_n)$. Every Φ -algebra admits the constant functions and the projection functions p_i , where $p_i(\lambda_1, ..., \lambda_n) = \lambda_i$ (i = 1, 2, ..., n).

We let F(A, n) denote the family of all $g \in C(\mathbb{R}^n)$ that A admits. It is easily verified that F(A, n) is a Φ -algebra if operations are defined in the usual coordinatewise fashion.

If A is uniformly closed, so is F(A, n). For if $\{g_i\}$ is a Cauchy sequence in F(A, n), then it converges to some $g \in C(\mathbb{R}^n)$. If $f_1, \ldots, f_n \in A$, then $\{g_i(f_1, \ldots, f_n)\}$ is a Cauchy sequence of elements of A whose limit must be $g(f_1, \ldots, f_n)$.

Let A be uniformly closed and let $p = (\sum_{i=1}^n p_i^2)^{1/2}$. Note that $R^n \subset \mathcal{M}(F(A,n))$, and that $\mathcal{R}(p) = R^n$. Hence by [5], Lemma 3.5, every $g \in C^*(R^n)$ has a continuous extension over $\mathcal{M}(F(A,n))$, so $\mathcal{M}(F(A,n))$ and βR^n are homeomorphic. By 1.2 (iii), F(A,n) is an order-convex sub- Φ -algebra of $C(R^n)$. Thus, we have established

1.3. LEMMA. If A is a uniformly closed Φ -algebra, then, for n=1,2,..., F(A,n) is a uniformly closed sub- Φ -algebra of $C(R^n)$ containing all $g \in C(R^n)$ such that $|g| \leq \lambda (1+p^2)^m$ for some $\lambda \in R^+$, and some positive integer m.

Recall that a totally ordered field F is called *real-closed* if every $a \in F^+$ has a square root and every polynomial of odd degree with coefficients in F has a zero in F.

1.4. THEOREM. If A is a uniformly closed Φ -algebra, and $M \in \mathcal{M}(A)$, then A/M is a real-closed field.

Proof. Since A is closed under bounded inversion, Lemma 1.1 shows that A/M is a field. By [5] Theorem 3.8, every $a \in A^+$ has a square root, so we need only show that polynomials of odd degree with coefficients in A/M have zeros.

Let $p_{\lambda}(w)=w^{m+1}+\lambda_m w^m+\ldots+\lambda_0$ denote a monic polynomial with real coefficients of positive degree. Let $r_1(\lambda), r_2(\lambda), \ldots, r_{m+1}(\lambda)$ denote the real parts of the complex zeros of $p_{\lambda}(w)$ indexed so that $r_1(\lambda)\leqslant r_2(\lambda)\leqslant \ldots\leqslant r_{m+1}(\lambda)$. This serves to define m+1 real-valued functions on R^{m+1} . It is known that each of these functions is continuous ([4]). Moreover, by [9], p. 96, $|r_i(\lambda)|<1+|\lambda_0|\vee|\lambda_1|\vee\ldots\vee|\lambda_m|$ for each $\lambda=(\lambda_0,\ldots,\lambda_m)$ ϵR^{m+1} , and $i=1,\ldots,m+1$. Hence, by Lemma 1.3, A is closed under composition with r_i .

Let $q(w) = w^{2n+1} + f_{2n}w^{2n} + ... + f_0$ denote a monic polynomial of odd degree with coefficients in A. By the above, $s_i = r_i(f_0, ..., f_{2n}) \in A$. Since q(w) has odd degree, for each $x \in \bigcap_{i=1}^{2n+1} \mathcal{R}(f_i)$, there is an i such that $q(s_i)(x) = 0$.

Hence $q(s_1)q(s_2)...q(s_{2n+1})=0$. Since M is a prime ideal, there is an i_0 such that $q(s_{i_0}) \in M$. Hence A/M is a real-closed field.

The argument just given enables us to reach the following slightly stronger conclusion. If A is uniformly closed Φ -algebra, and P is a prime l-ideal of A, then every positive element of A/P has a square root, and every monic polynomial of odd degree with coefficients in A/P has a zero in A/P. Also, as we will show next, the assumption that P is an l-ideal is redundant.

1.5. Lemma. Every prime ideal P of a uniformly closed Φ -algebra A is an l-ideal.

Proof. Since $|c|^2 = c^2$, we know that $c \in P$ if and only if $|c| \in P$. Thus, since $|c| = (|c| \land 1)(|c| \lor 1)$, and since, by Lemma 1.2, A is closed under bounded inversion, $c \in P$ if and only if $|c| \land 1 \in P$.

Suppose now that $|b| \leq |a|$, and $a \in P$. Then $|b| \wedge 1 \leq |a| \wedge 1 \in P \cap A^*$. But, by Lemma 1.2, A^* and $C(\mathcal{M}(A))$ are isomorphic, and by [3], Chapt. 14, every prime ideal of the latter is an l-ideal. So $|b| \wedge 1 \in P$, whence $b \in P$. Hence P is an l-ideal.

1.6. REMARK. It is remarked in [3], Chapt. 13, that any totally ordered field containing R properly in which exponentiation of positive elements to real powers can be defined has degree of transcendency at least c over R. It follows that if A is a uniformly closed Φ -algebra, and $M \in \mathcal{M}(A)$ is hyper-real, then A/M has degree of transcendency at least c over R.

If S and T are subsets of a totally ordered set L, and s < t whenever $s \in S$ and $t \in T$, we will write S < T.

1.7. THEOREM. Let P be a prime ideal of a uniformly closed Φ -algebra A. If S and T are countably infinite subsets of A/P such that S has no largest element, T has no smallest element, and S < T, then there is an $\alpha \in A/P$ such that $S < \alpha < T$.

Proof. Since, by 1.5, P is a prime l-ideal, A/P is totally ordered, and by 1.2 ff. we may assume that $0 \le S < T \le 1$. By Lemma 1.2, $A^* \cong C(\mathcal{M}(A))$. Kohls has shown that the conclusion follows in case $A \cong C(\mathcal{Y})$ for any space \mathcal{Y} ([8], Theorem 2.6). Since

$$\frac{A^*}{P \cap A^*} \cong \frac{A^* + P}{P} \subset A/P ,$$

the conclusion holds in this case as well.

A totally ordered set L is called an η_1 -set if whenever S and T are countable subsets of L such that S < T, then there is an $a \in L$ such that S < a < T. In particular, an η_1 -set has no countable cofinal or coinitial subset.

For any topological space \mathcal{Y} , and any hyper-real maximal ideal M of $C(\mathcal{Y})$, it is known that $C(\mathcal{Y})/M$ is an η_1 -set. Example 1.9 below shows

strongly that no comparable conclusion holds for arbitrary uniformly closed Φ -algebras.

Most of the remainder of the paper will be devoted to a discussion of the extra hypotheses needed to conclude that A/M is an η_1 -set.

A Φ -algebra A is said to be closed under (finite) composition if $F(A, n) = C(R^n)$ for n = 1, 2, ...; that is, if A admits every $g \in C(R^n)$.

As in [5], A is said to be closed under l-inversion if $\langle a \rangle = A$ whenever $\mathcal{Z}(a) \subset \mathcal{N}(b)$ for some $b \in A$. (Recall that $\langle a \rangle$ is the smallest l-ideal of A containing a.)

1.8. LEMMA. Let A be a P-algebra.

- (i) If $F(A, 2) = C(R^2)$ (in particular, if A is closed under composition), then A is closed under l-inversion.
- (ii) If A is closed under uniform convergence and l-inversion, then A is closed under composition.

Proof. (i) Let $a, b \in A$, and suppose that $\mathcal{Z}(a) \subset \mathcal{N}(b)$. Let $h = |a| \lor |b|$, let $B_h = \{f \in A: \mathcal{R}(f) \supset \mathcal{R}(h)\}$, and let $\mathcal{H} = \{(a(x), b(x)) \in \mathbb{R}^2: x \in \mathcal{R}(h)\}$. If $(0, q) \in \mathcal{H}^-$, then there is a sequence $\{x_n\}$ of points of $\mathcal{R}(h)$ such that $a(x_n) \to 0$ and $b(x_n) \to q$. Since $\mathcal{M}(A)$ is compact, $\{x_n\}$ has a limit point $x \in \mathcal{M}(A)$. Clearly a(x) = 0, and b(x) = q, contrary to the assumption that $\mathcal{Z}(a) \subset \mathcal{N}(b)$. Thus, the function q defined on \mathcal{H}^- by letting q(p, q) = 1/p is continuous. By the Tietze extension theorem, it has an extension $\bar{q} \in \mathcal{O}(\mathbb{R}^2)$. Since $F(A, 2) = \mathcal{O}(\mathbb{R}^2)$, this shows that $1/a \in A$.

(ii) Suppose that $f_1, ..., f_n \in A$, let $h = |f_1| \vee ... \vee |f_n|$, and let $B_h = \{a \in A : \mathcal{R}(a) \supset \mathcal{R}(h)\}$. By [5], Theorem 5.8, since A is closed under uniform convergence and l-inversion, B_h and $C(\mathcal{R}(h))$ are isomorphic. Hence, for any $g \in C(\mathbb{R}^n)$, $g(f_1, ..., f_n) \in A$ (n = 1, 2, ...). Thus, A is closed under composition.

In [6], Theorem 1.28, Isbell states that if A is an algebra of real-valued functions closed under uniform convergence and composition, and $M \in \mathcal{M}(A)$ is hyper-real, then A/M is an η_1 -set. While he establishes correctly the conclusion of Theorem 1.7 above, A/M may have a countable cofinal subset, as is shown by the following. For $a \in A$, the image of a in A/M is denoted by M(a).

1.9. EXAMPLE. There exists a uniformly closed Φ -algebra A, closed under composition, and a hyper-real $M \in \mathcal{M}(A)$ such that A/M has a countable cofinal subset.

Proof. Let \mathcal{G} denote the space of irrational numbers in (0,1) with its usual topology. Since $\beta\mathcal{G}$ is the largest compactification of \mathcal{G} , there is a continuous mapping π of $\beta\mathcal{G}$ onto [0,1] keeping \mathcal{G} pointwise fixed. Let $\mathcal{E}_0 = \pi^{-1}(0)$, and for i = 1, 2, ..., let $\mathcal{G}_i = \{1/p^j \in (0,1): p \text{ a prime; } j \text{ a positive integer, } j \leqslant i\}$, let $\mathcal{E}_i = \mathcal{E}_0 \cup \pi^{-1}(\mathcal{G}_i)$, and let $\mathcal{G}_i = \beta\mathcal{G} \sim \mathcal{E}_i$.

Observe that $\mathcal{G} \subset \mathcal{Y}_{i+1} \subset \mathcal{Y}_i$ for i=1,2,..., and let $A_i = \{f \in D(\beta \mathcal{G}): \mathcal{R}(f) \supset \mathcal{Y}_i\}$. Since \mathcal{Y}_i contains \mathcal{G} , it is C^* -imbedded in $\beta \mathcal{G}$, so A_i and $C(\mathcal{Y}_i)$ are isomorphic. Finally, let $A = \bigcup_{i=1}^{\infty} A_i$.

If $\{f_n\}$ is a Cauchy sequence of elements of A, then (as is noted in [5], 3.1) $\mathcal{R}(f_n) = \mathcal{R}(f_{n+1}) = \dots$ for all but finitely many of the f_n . Thus we may assume that $\{f_n\} \subset A_i$ for some i, whence $\{f_n\}$ converges. Similarly, any finite number of elements of A is contained in some A_i . Thus A is closed under uniform convergence and l-inversion.

If every point of the compact space \mathcal{Z}_0 had a neighborhood meeting only finitely many of the sets $\{\mathcal{Z}_{i+1} \sim \mathcal{Z}_i\}$, then \mathcal{Z}_0 itself would have such a neighborhood. But every neighborhood of 0 meets infinitely many of the sets $\mathcal{S}_{i+1} \sim \mathcal{S}_i$, so this cannot be the case. Hence, there is an $x \in \mathcal{Z}_0$ such that every neighborhood of x meets infinitely many of the sets $\{\mathcal{Z}_{i+1} \sim \mathcal{Z}_i\}$. By a suitable change of notation, we may assume that every neighborhood of x meets all such sets.

Now each \mathcal{Z}_i is the inverse image of a closed subset of a metrizable space, and hence is a closed G_{δ} . Hence there is an $f_i \in A_i^+$ such that $\mathcal{N}(f_i) = \mathcal{Z}_i$. Now, $M_x(f_i)$ is greater than all the constant functions, so M_x is hyper-real. If $g \in A$, there is an i such that $\mathcal{N}(g) \subset \mathcal{Z}_i$. Suppose there were an $h \in M_x$ such that $g + h \geqslant f_{i+1}$. Then $\mathcal{N}(f_{i+1}) \subset \mathcal{N}(g) \cup \mathcal{N}(h)$, and hence $\mathcal{N}(h) \supset \mathcal{N}(f_{i+1}) \sim \mathcal{N}(g) \supset \mathcal{Z}_{i+1} \sim \mathcal{Z}_i$. But this latter set has x as a limit point, contrary to the fact that $h \in M_x$. We conclude that $\{M_x(f_i): i=1,2,...\}$ is a countable cofinal subset of A/M_x .

2. Φ -algebras closed under countable composition. The example of the last section motivates the consideration of a more restricted class of Φ -algebras.

We designate a countable product of copies of R as R^{∞} .

Let A be a Φ -algebra, and suppose that for every $g \in C(\mathbb{R}^{\infty})$, and every sequence $\{f_n: n=1,2,...\}$ of elements of A, there is an $h \in A$ such that $h(x) = g(f_1(x),...,f_n(x),...)$ whenever $x \in \bigcap_{n=1}^{\infty} \mathcal{R}(f_n)$; we say that A is closed under countable composition. By the Baire category theorem, $\bigcap_{n=1}^{\infty} \mathcal{R}(f_n)$ is dense in $\mathcal{M}(A)$, so h is unique. We denote it by $g(f_1, f_2, ..., f_n, ...)$.

Clearly, if A is closed under countable composition, it is closed under composition, and hence, by Lemma 1.8, it is closed under l-inversion. This motivates the consideration of the following concept.

A Φ -algebra A is said to be closed under countable l-inversion provided that $\langle g \rangle = A$ for each $g \in A$ for which there is a sequence $\{f_n \colon n = 1, 2, ...\}$ of elements of A such that $\mathfrak{Z}(g) \subset \bigcup_{n=1}^{\infty} \mathcal{N}(f_n)$.

The relationship between these two latter concepts is given by

2.1. THEOREM. A Φ -algebra A is closed under countable composition if and only if it is uniformly closed and closed under countable l-inversion.

Proof of necessity. Suppose that A is closed under countable composition, and that $Z(g) \subset \bigcup_{n=1}^{\infty} \mathcal{H}(f_n)$ for some $g, f_1, ..., f_n, ...$ in A.

Let $g = f_0$, $\mathcal{Y} = \bigcap_{n=0}^{\infty} \mathcal{R}(f_n)$, and define $\psi \colon \mathcal{Y} \to \mathbb{R}^{\infty}$ by letting $\psi(y) = (f_0(y), f_1(y), \dots, f_n(y), \dots)$ for all $y \in \mathcal{Y}$. Let \mathcal{H} denote the closure in \mathbb{R}^{∞} of $\psi[\mathcal{Y}]$. If $x = (x_0, x_1, \dots, x_n, \dots) \in \mathcal{H}$, then $x_0 \neq 0$. For, otherwise there would be a sequence $\{y_n\}$ of points of \mathcal{Y} such that $\psi(y_n)$ converges to x. Since $\mathcal{M}(A)$ is compact, $\{y_n\}$ has an accumulation point in $\mathcal{M}(A)$, which is a point of Z(g) not in $\bigcup_{n=1}^{\infty} \mathcal{H}(f_n)$.

Hence the function $r: \mathcal{H} \to R$ defined by letting $r(x_0, x_1, ..., x_n, ...) = 1/x_0$ is well-defined and continuous. By the Tietze extension theorem ([7], p. 242), r has an extension $s \in C(R^{\infty})$. Since A is closed under countable composition, $s(f_0, f_1, ..., f_n, ...)$ is an element h of A such that gh = 1 on the dense subset \mathcal{Y} of $\mathcal{M}(A)$. Thus h is the inverse of g, whence $\langle g \rangle = A$.

Suppose next that $\{f_n\}$ is a Cauchy sequence of elements of A, define \mathcal{Y} as above, define $\psi \colon \mathcal{Y} \to R^{\infty}$ by letting $\psi(y) = (f_1(y), ..., f_n(y), ...)$ for all $y \in \mathcal{Y}$, and let \mathcal{Y} denote the closure of $\psi[\mathcal{Y}]$ in R^{∞} .

Since $\{f_n\}$ is a Cauchy sequence, for every $\varepsilon > 0$ there is a positive integer m such that for every $x = (x_1, x_2, ..., x_n, ...)$ of $\psi[\mathcal{Y}]$, $|x_p - x_q| < \varepsilon$ whenever $p, q \ge m$. For any $z \in \mathcal{H}$, if $p, q \ge m$, then $|z_p - z_q| \le \varepsilon$. For, if not, for some such z, p, and q, there is a $\delta > 0$ such that $|z_p - z_q| = \varepsilon + 2\delta$. Then $\{w \in R^{\infty}: |w_p - z_p| < \delta \text{ and } |w_q - z_q| < \delta \}$ is a neighborhood of z in R^{∞} that contains no point of $\psi[\mathcal{Y}]$, contrary to the fact that $z \in \mathcal{H}$. Hence, for each $z \in \mathcal{H}$, $\{z_n\}$ is a Cauchy sequence. Define $s: \mathcal{H} \to R$ by letting $s(z) = \lim_{n \to \infty} z_n$. It is easily verified that $s \in C(\mathcal{H})$. By the Tietze extension theorem, s has a continuous extension $t \in C(R^{\infty})$. Since A is closed under countable composition, $h = t(f_1, f_2, ..., f_n, ...) \in A$. Clearly $\{f_n\}$ converges to h. This completes the proof of the necessity.

Before proving the sufficiency, we prove two lemmas that are of independent interest.

Recall that a topological space $\mathcal Y$ is called a *Lindelöf space* if every open cover of $\mathcal Y$ has a countable subcover,

2.2. LEMMA. Let \Im be a subspace of a compact space X such that for some countable family Ψ of closed subsets of X, for every pair of points $p \in \Im$, $q \in X \sim \Im$ there is a set in Ψ containing p but not q. Then \Im is a Lindelöf space.

Proof. Let $\{\mathcal{U}_a\colon a\in \Gamma\}$ denote an open cover of \mathcal{Y} . For each $a\in \Gamma$, let $\mathcal{R}_a=\mathcal{Y}\sim\mathcal{U}_a$, \mathcal{S}_a denote the closure of \mathcal{R}_a in \mathcal{X} , and let $\mathcal{V}_a=\mathcal{X}\sim\mathcal{S}_a$. Clearly $\mathcal{V}_a \cap \mathcal{Y}=\mathcal{U}_a$, and the sets \mathcal{V}_a cover $\mathcal{X}\sim\mathcal{V}$, where $\mathcal{V}=\bigcap\{\mathcal{S}_a\colon a\in\Gamma\}$. Clearly \mathcal{V} is a compact subset of $\mathcal{X}\sim\mathcal{Y}$.

Let $\mathcal F$ denote the union of all those subsets of $\mathcal K$ that are disjoint from $\mathcal H$, and are finite intersections of elements of $\mathcal F$. Then $\mathcal F$ is σ -compact, and hence is a Lindelöf space. Thus, it suffices to show that $\mathcal Y \subset \mathcal F$. But, for each $p \in \mathcal Y$, by hypothesis, the intersection of all the elements of $\mathcal Y$ containing p is disjoint from $\mathcal H \subset \mathcal K \sim \mathcal Y$. Hence some finite intersection of them is disjoint from $\mathcal H$. Hence $\mathcal Y \subset \mathcal F$.

2.3. COROLLARY. Every subset of a compact space X that is in the smallest family of subsets of X containing the closed subsets and closed under countable union and intersection, is a Lindelöf space. In particular, for any Φ -algebra A and any sequence $\{f_n\}$ of elements of A, $\bigcap_{n=1}^{\infty} \mathcal{R}(f_n)$ is a Lindelöf space.

Proof. Every closed subspace of \mathcal{X} satisfies the hypothesis of Lemma 2.2, so it sufficies to show that if \mathcal{E}_n satisfies this latter condition with associated countable family of closed sets \mathcal{Y}_n for n=1,2,..., then so does $\mathcal{Y}=\bigcup_{n=1}^{\infty}\mathcal{E}_n$, and $\mathcal{Z}=\bigcap_{n=1}^{\infty}\mathcal{E}_n$. If $p\in\mathcal{Y}$, $q\in\mathcal{X}\sim\mathcal{Y}$, then $p\in\mathcal{E}_n$ for some n, and $q\notin\mathcal{E}_n$, so there is an element of \mathcal{Y}_n that contains p and not q. Thus, \mathcal{Y} satisfies the hypothesis of Lemma 2.2 with associated countable family of closed sets $\bigcup_{n=1}^{\infty}\mathcal{Y}_n$. The proof for \mathcal{Z} is similar.

2.4. LEMMA. Let A be a uniformly closed Φ -algebra that is closed under countable l-inversion, let $\{f_n\}$ be a sequence of elements of A, let $\mathcal{Y} = \bigcap_{n=1}^{\infty} \mathcal{R}(f_n)$, and let $B = \{g \in A \colon \mathcal{Y} \subset \mathcal{R}(g)\}$. Then B and $C(\mathcal{Y})$ are isomorphic.

Proof. Clearly B is a sub- Φ -algebra of A. Since $B \supset A^*$, $\mathcal{M}(B) = \mathcal{M}(A)$, and since A is uniformly closed, so is B. Since $f_n \in B$ for $n = 1, 2, ..., \mathcal{R}(B) = \mathcal{Y}$. B is also closed under inversion of elements without zeros in $\mathcal{R}(B)$. For, if $Z(g) \cap \mathcal{R}(B) = \emptyset$, then $\mathcal{Z}(g) \subset \bigcup_{n=1}^{\infty} \mathcal{N}(f_n)$, so, since A is closed under countable l-inversion, 1/g is in A and is real-valued on \mathcal{Y} . By Corollary 2.3, \mathcal{Y} is a Lindelöf space, so by [5], Lemma 5.3, for every $h \in C(\mathcal{Y})$, there is a $b \in C^*(\mathcal{M}(B))$ such that $h^{-1}(0) = \mathcal{Z}(b) \cap \mathcal{Y}$. It follows from [5], Theorem 5.2 that B and $C(\mathcal{R}(B))$ are isomorphic.

The proof of sufficiency for Theorem 2.1 is now easy in view of Lemma 2.4. If $\{f_n\}$ is any sequence of elements of a uniformly closed Φ -algebra that is closed under countable l-inversion, then, by Lemma 2.4,

if $\mathcal{Y} = \bigcap_{n=1}^{\infty} \mathcal{R}(f_n)$, then $C(\mathcal{Y})$ is a subalgebra of A. So, for any $g \in C(\mathbb{R}^{\infty})$, $g(f_1, \ldots, f_n, \ldots)$ is in A.

Before returning to hyper-real residue class fields, we prove

2.5. THEOREM. Every Φ -algebra A can be obtained as a homomorphic image of a Φ -algebra B of real-valued functions in such a way that if A is uniformly closed, or closed under bounded inversion, or composition, or countable composition, then so is B.

Proof. B will be defined as an algebra of continuous real-valued functions on $\mathcal{M}(A) \times \mathcal{H}$ where \mathcal{H} is the discrete space of positive integers. Every element g of B will be regarded as a sequence $\{g_n\}$ of functions on $\mathcal{M}(A)$, where $g_n(p) = g(p, n)$, for all $p \in \mathcal{M}(A)$. B consists precisely of all those $\{g_n\}$ which converge pointwise to an element of A on a dense G_o ; i.e. those $g \in C(\mathcal{M}(A) \times \mathcal{H})$ such that for some $f \in A$, and for some dense G_o -set $\mathcal{H} \subset \mathcal{M}(A)$, for each $p \in \mathcal{H}$, the sequence $\{g(p, n)\}$ of real numbers converges in $p \in C(n)$ to $p \in C(n)$.

Since the intersection of two dense G_{σ} -sets is dense, each $g \in B$ converges to a unique $\lambda(g) \in A$. Similarly, it is easily verified that B is a Φ -algebra, and that λ is a homomorphism of B into A. Moreover, if $f \in A$, and $g_n = (f \wedge n) \vee (-n)$ for n = 1, 2, ..., then $g_n(p)$ converges to f(p) for all $p \in \mathcal{M}(A)$. Hence $\lambda(g) = f$, so λ is a homomorphism of B onto A.

Suppose that A is closed under countable composition, that $\{g_n\}$ is a sequence of elements of B, and that $h \in C(R^{\infty})$. For n = 1, 2, ..., there is a dense G_{σ} -set \mathcal{Y}_n in $\mathcal{M}(A)$ such that for each $p \in \mathcal{Y}_n$, $g_n(p, m)$ converges to $\lambda(g_n)(p)$. Let \mathcal{Y} denote the intersection of all the \mathcal{Y}_n and all $\mathcal{R}(\lambda(g_n))$, for n = 1, 2, ... Since $\mathcal{M}(A)$ is compact, this countable intersection of dense G_{σ} -sets is a dense G_{σ} -set. Moreover, each $\lambda(g_n)$ is real-valued on \mathcal{Y}_n , and so is $h(\lambda(g_1), ..., \lambda(g_n), ...) \in A$. For each $p \in \mathcal{Y}_n$, and for each $p \in \mathcal{Y}_n$, and for each $p \in \mathcal{Y}_n$, whose $p \in \mathcal{Y}_n$ converge to $p \in \mathcal{Y}_n$. Then the points $p \in \mathcal{Y}_n$ whose $p \in \mathcal{Y}_n$ the coordinates are $p \in \mathcal{Y}_n$. Since $p \in \mathcal{Y}_n$ is continuous, $p \in \mathcal{Y}_n$ whose limit $p \in \mathcal{Y}_n$ has as $p \in \mathcal{Y}_n$ -the coordinate $p \in \mathcal{Y}_n$. Since $p \in \mathcal{Y}_n$ is continuous, $p \in \mathcal{Y}_n$ is in $p \in \mathcal{Y}_n$. Thus, the well-defined continuous function $p \in \mathcal{Y}_n$ to $p \in \mathcal{Y}_n$ is in $p \in \mathcal{Y}_n$. In the converges pointwise on $p \in \mathcal{Y}_n$ to $p \in \mathcal{Y}_n$ is in $p \in \mathcal{Y}_n$. That is, $p \in \mathcal{Y}_n$ is closed under countable composition.

Simplified versions of the preceding establish the remaining assertions.

In [1], 2.1, Corson and Isbell show that if an algebra A of real-valued functions is closed under countable composition, then it is closed under composition for all higher cardinals. This fact may be used to establish the following.

2.6. Theorem. Every Φ -algebra A closed under countable composition is a homomorphic image of $C(\mathcal{Y})$ for some topological space \mathcal{Y} .

For, by Theorem 2.5, we may assume without loss of generality that A is an algebra of real-valued functions. Let $\mathcal Y$ denote the cartesian product of as many copies R_f of R as there are elements f of A. Let e denote the mapping of $\mathcal R(A)$ into $\mathcal Y$ such that the f-th coordinate $e(x)_f$ of e(x) is f(x). Finally, let $\tau g = g \cdot e$ for each $g \in C(\mathcal Y)$. By the result cited above, since A is closed under countable composition, and hence unlimited composition, $\tau g \in A$ for all $g \in C(\mathcal Y)$. Clearly τ is a homomorphism of $C(\mathcal Y)$ onto A.

In [2], it is shown that if M is a hyper-real maximal ideal of $O(\mathcal{Y})$, for some topological space \mathcal{Y} , then $O(\mathcal{Y})/M$ is an η_1 -set. Hence, by Theorems 1.4 and 2.6, we have immediately

- 2.7. COROLLARY. If A is a Φ -algebra closed under countable composition, and $M \in \mathcal{M}(A)$ is hyper-real, then A/M is real-closed field that is an η_1 -set.
- 2.8. Corollary. If $A = D(\mathcal{M}(A))$ is a Φ -algebra, and $M \in \mathcal{M}(A)$ is hyper-real, then A/M is a real-closed field that is an η_1 -set.

Proof. By 2.1 and 2.7, it suffices to show that the Φ -algebra $A = D(\mathcal{M}(A))$ is closed under countable *l*-inversion and uniform convergence. The latter follows immediately from Lemma 1.2. Let $\{f_n\}$ be a sequence of elements of A such that $Z(g) \subset \bigcup_{n=1}^{\infty} \mathcal{N}(f_n)$. Then $\mathcal{Z}(g)$ is nowhere dense and g cannot be a divisor of zero. Thus, by [5], Theorem 3.9, $1/g \in A$.

In [2], it is shown that all real-closed η_{α} -fields of power \aleph_{α} are isomorphic, if $\alpha > 0$. It follows from Corollary 2.8 that, if $\aleph_1 = c$, then all of the residue class fields of the Φ -algebra of all Lebesgue measurable functions on R, modulo the ideal of functions vanishing off sets of measure zero, are isomorphic. See [5], Corollary 3.10.

References

[1] H. H. Corson and J. R. Isbell, Some properties of strong uniformities, Quart. J. Math. (Oxford) (2) 11 (1960), pp. 17-33.

[2] P. Erdős, L. Gillman, and M. Henriksen, An isomorphism theorem for real-closed fields, Ann. of Math. 61 (1955), pp. 542-554.

[3] L. Gillman and M. Jerison, Rings of continuous functions, Princeton, N. J., 1960.

[4] M. Henriksen and J. R. Isbell, On the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 4 (1953), pp. 431-434.

[5] — and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math., this volume, pp. 73-94.

- [6] J. R. Isbell, Algebras of uniformly continuous functions, Ann. of Math. 68 (1958), pp. 96-125.
 - [7] J. L. Kelley, General topology, New York 1955.
- [8] C. W. Kohls, Prime ideals in rings of continuous functions. Illinois J. Math. 2 (1958), pp. 505-536.
- [9] M. Marden, The geometry of the zeros of a polynomial in a complex variable, American Mathematical Society, New York 1949.

PURDUE UNIVERSITY AND PENNSYLVANIA STATE UNIVERSITY

Reçu par la Rédaction le 1. 9. 1960