Hence  $[c:c'] = \varepsilon \dim K_1 \cdot [c:c':\beta]$ , where  $\dim K_1 = \sum \{d_i | i < b\}$ : and this is the incidence number originally given for S.

Thus we have proved

THEOREM 3. If each  $Y_{\alpha}$  is the space of a locally finite CW complex, then  $\underset{\alpha \in A}{L} Y_{\alpha}$  is the space of a CW complex (not, of course, in general a locally finite one).

Remarks. (i) This shows that a vector space with Dugundji's weak topology [3] is a CW complex. For in specifying the Dugundji topology, we may take a fixed basis of the space, and consider only those finite-dimensional subspaces spanned by subsets of the basis. The space thus becomes an L-product of real lines; and the real line is certainly a locally finite CW complex.

(ii) L is not associative. For if each  $Y_a$  is the unit interval, regarded as a CW complex with three cells,  $B=\{0\,,1\}$ ,  $A_0$  is of cardinal  $\kappa_0$  and  $A_1$  is of cardinal e, then the subset

$$E = \{x \mid ||x|| \text{ has one member}\}$$

is a subcomplex of the CW complex  $L = \underset{a \in A}{L} Y_a$  (and hence has CW topology in it); but as a subset of  $R = \underset{a \in A_0}{L} Y_a \times \underset{a \in A_1}{L} Y_a$ , E is just the Dowker counter example ([2], p. 563) which does not have the CW topology.

## References

- [1] D. E. Cohen, Spaces with weak topology, Q. J. Math. Oxford (2), 5 (1954), pp. 77-80.
- [2] C. H. Dowker, Topology of metric complexes, Amer. J. Math. 74 (1952), pp. 555-577.
  - [3] R. Dugundji, Note on CW polytopes, Portugaliae Math. 11 (1952), pp. 7-106.
  - [4] P. J. Hilton, Homotopy theory, C.U.P. 1953.
  - [5] J. L. Kelley, General topology, Van Nostrand 1955.
  - [6] A. G. Kurosh, Theory of groups (English translation), Vol. I, Chelsea 1956.
  - [7] S. Lefschetz, Topics in topology, Princeton 1942.

Reçu par la Rédaction le 29.1.1962



## Sur une propriété des ensembles partiellement ordonnés

pa

## J. Poprużenko (Łódź)

Soient E un ensemble quel conque,  $\varrho$  une relation binaire définie dans E.

On dit que la relation  $\varrho$  établit un ordre partiel dans E lorsqu'elle est:  $1^{\circ}$  non-réflexive (c'est-à-dire qu'on ait constamment non  $(x \varrho x)$ ),

2° transitive.

On dit que  $\varrho$  établit un ordre dans E lorsque, en outre, la condition suivante est vérifiée:

3° Quels que soient  $x, y \in E, x \neq y$ , on a soit  $x \varrho y$ , soit  $y \varrho x$ .

N étant un ensemble partiellement ordonné par la relation  $\sigma$ , soit f|E une fonction telle que  $f(E) \subset N$ .

Lorsque  $f(x) \neq f(y)$  pour  $x, y \in E$ ,  $x \neq y$  et  $x \varrho y \rightarrow f(x) \sigma f(y)$ , nous appellerons f transformation isomorphe de E dans N.

Nous dirons alors que les ensembles E et f(E) sont semblables, en symbole:  $E \simeq f(E)$ .

Soit  $\varphi \geqslant \omega_0$  un nombre ordinal. Désignons par  $U_{\varphi}$  l'ensemble de toutes les suites de type  $\varphi$  formées de nombres 0 et 1, ordonné d'après le principe de premières différences, par  $U_{\varphi}^0$  le sous-ensemble de  $U_{\varphi}$  se composant de toutes les suites de la forme  $\{a_{\xi}\}_{\xi < \varphi}$  où  $a_{\gamma} = 1$  pour un  $\gamma \geqslant 0$  et  $a_{\xi} = 0$  pour  $\xi > \gamma$ .

La relation qui établit l'ordre dans  $U_{\varphi}$  sera désignée, comme d'habitude, par le symbole  $\prec$ .

Remarquons que, lorsque  $N = U_{\varphi}$ , on a la propriété:

(i) Si  $f(x) = \{a_{\xi}^{(x)}\}_{\xi < \varphi}$ ,  $x \in E$  et si l'on pose pour un  $\psi > \varphi$ :  $g(x) = \{b_{\xi}^{(x)}\}_{\xi < \psi}$  où  $b_{\xi}^{(x)} = a_{\xi}^{(x)}$  pour  $\xi < \varphi$  et  $b_{\xi}^{(x)} = 0$  pour  $\varphi \leqslant \xi < \psi$ , alors les transformations f|E,  $f(E) \subset U_{\varphi}$ , et g|E,  $g(E) \subset U_{\varphi}$ , sont simultanément isomorphes où non.

C'est une conséquence immédiate de la définition de la relation ⊰. Le but de cette Note est de démontrer le théorème suivant:

(T) Tout ensemble partiellement ordonné de puissance  $s_{\mu}$  est semblable à un sous-ensemble de  $U^0_{\omega_{\mu}}$ .

La démonstration s'appuie sur les deux Lemmes qui vont suivre. Pour les établir, on remarque d'abord que l'espace  $U^0_{a_\mu}$  est muni des deux propriétés,  $P^\mu_1$  et  $P^\mu_2$ , mises en évidence par W. Sierpiński.

 $P_1^{\mu}$ . Soit  $Q \subset U_{\omega_{\mu}}^0$ ,  $\overline{Q} < \kappa_{\mu}$ . Si  $\kappa_{\mu}$  est un aleph régulier, il existe deux éléments  $\alpha, b \in U_{\omega_{\mu}}^0$  satisfaisant à la condition  $\alpha \prec Q \prec b$  (1).

 $P_2^{\mu}$ . Soient  $Q_1$ ,  $Q_2 \subset U_{\omega_{\mu}}^0$ ,  $\overline{Q}_1 < \kappa_{\mu}$ ,  $\overline{Q}_2 < \kappa_{\mu}$ ,  $Q_1 \prec Q_2$ . Si  $\kappa_{\mu}$  est un aleph régulier, il existe un  $c \in U_{\omega_{\mu}}^0$  tel que  $Q_1 \prec c \prec Q_2$ .

En effet, pour  $\mu = \nu + 1$ , ces propriétés ont été démontrées dans [2], p. 463-465; la démonstration est valable pour tout  $\kappa_{\mu}$  régulier (v. aussi [1], p. 62).

Cela étant, on passe par induction transfinie aux énoncés:

LEMME I. Soit  $Q \subset U^0_{\omega_{\mu}}$ ,  $\overline{Q} < \kappa_{\mu}$ . Si  $\kappa_{\mu}$  est un aleph régulier, il existe deux ensembles A et B tels que: A,  $B \subset U^0_{\omega_{\mu}}$ ,  $\overline{A} = \overline{B} = \kappa_{\mu}$ ,  $A \prec Q \prec B$ .

LEMME II. Soient  $Q_1, Q_2 \subset U^0_{\omega_\mu}$ ,  $\overline{Q}_1 < \aleph_\mu$ ,  $\overline{Q}_2 < \aleph_\mu$ ,  $Q_1 \prec Q_2$ . Si  $\aleph_\mu$  est un aleph régulier, il existe un ensemble C tel que:

$$C \subset U^0_{\omega_\mu}, \quad \overline{\overline{C}} = \mathbf{s}_\mu, \quad Q_1 \prec C \prec Q_2.$$

Le passage est immédiat. En effet, dans le cas de  $P^{\mu}_{2}$ , posons  $c=c_{0}$ ,  $Q_{2}=Q^{0}_{2}$  et soit  $0<\eta<\omega_{\mu}$ . Supposons les élements  $\{c_{\ell}\}_{\ell<\eta}$  de  $U^{0}_{\omega_{\mu}}$  définis de façon à satisfaire aux conditions:  $c_{\ell}\neq c_{\ell'}$  pour  $\xi\neq\xi'$ ,  $Q_{1}\prec c_{\ell}\prec Q^{0}_{2}$ . Alors, si l'on pose  $Q^{\eta}_{2}=\{c_{\ell}\}_{\ell<\eta}\bigcup Q^{0}_{2}$ , on voit d'après  $\overline{\eta}<\kappa_{\mu}$  que les conditions initiales se reproduisent pour  $Q_{1}$  et  $Q^{\eta}_{2}$ . On en conclut qu'il existe un  $c=c_{\eta}\in U^{0}_{\omega_{\mu}}$  tel que  $Q_{1}\prec c_{\eta}\prec Q^{\eta}_{2}$ , donc  $Q_{1}\prec c_{\eta}\prec Q_{2}$ . Comme  $c_{\eta}\neq c_{\eta'}$  pour  $\eta,\eta'<\omega_{\mu}$ ,  $\eta\neq\eta'$  et comme  $\overline{\omega}_{\mu}=\kappa_{\mu}$ , on aperçoit que l'ensemble C se composant des éléments  $c_{\eta}$  ( $\eta<\omega_{\mu}$ ) vérifie la thèse du Lemme II.

On établit le Lemme I en appliquant le même raisonnement (deux fois répété) à  $P_1^{\mu}$ .

Démonstration du théorème (T).

Cas 1.  $\omega_{\mu}$  est un nombre ordinal régulier. Soit  $\omega_{\varphi}$  le nombre ordinal initial tel que  $\overline{\omega}_{\varphi} = \overline{\overline{U}_{\omega_{\mu}}^{0}}$  et soient

(1) 
$$U^0_{\omega_{\mu}}: s_0, s_1, ..., s_{\tau}, ... \qquad (\tau < \omega_{\varphi}),$$

et

(2) 
$$E: u_0, u_1, ..., u_{\eta}, ... \quad (\eta < \omega_{\mu})$$

deux suites transfinies composées de tous les éléments (distincts) des ensembles  $U^0_{\omega_\mu}$  et E respectivement.

Définissons une fonction f|E à l'aide du procédé inductif suivant.

em®

Posons

(3)

$$f(u_0) = s_0$$

et soit  $0 < \eta < \omega_{\mu}$ . Supposons que les valeurs  $f(u_{\gamma}) \in U^{0}_{\omega_{\mu}}$  soient définies pour  $\gamma < \eta$  et que l'on ait  $f(u_{\gamma}) \neq f(u_{\delta})$  pour  $\gamma$ ,  $\delta < \eta$ ,  $\gamma \neq \delta$  et  $u_{\gamma} \varrho u_{\delta} \rightarrow f(u_{\gamma}) \prec f(u_{\delta})$  pour  $\gamma$ ,  $\delta < \eta$ .

Afin de définir la valeur  $f(u_{\eta})$ , considérons le segment  $u_0, u_1, ..., u_{\eta}$  de la suite (2). Il n'y a que 4 cas qui soient à priori possibles:

- 1. On a  $non(u_{\delta}\varrho u_{\eta})$  et  $non(u_{\eta}\varrho u_{\delta})$  pour  $0 \leq \delta < \eta$ .
- 2. On a  $\text{non}(u_{\eta}\varrho u_{\delta})$  pour  $0 \le \delta < \eta$  et il existe un  $\gamma < \eta$  tel que  $u_{\gamma}\varrho u_{\eta}$ .
- 3. On a non( $u_\delta\varrho\,u_\eta$ ) pour  $0\leqslant\delta<\eta$  et il existe un  $\gamma'<\eta$  tel que  $u_\eta\varrho\,u_{\gamma'}$ .
  - 4. On a, pour certains  $\gamma'$ ,  $\gamma'' < \eta$ :  $u_{\gamma'} \varrho u_{\eta}$  et  $u_{\eta} \varrho u_{\gamma''}$ .

Désignons par  $\{\gamma'\}$  et  $\{\gamma''\}$  les ensembles (non-vides) des indices qui apparaissent dans le cas 4, par  $\{u_{\gamma'}\}$  et  $\{u_{\gamma''}\}$  ceux des termes correspondants. D'après les propriétés 1°-2° de  $\varrho$ ,  $\{\gamma'\}$  et  $\{\gamma''\}$  sont disjoints et remplissent la relation  $\{\gamma'\}$   $\varrho$   $\{\gamma''\}$ . Il s'ensuit, conformément à notre hypothèse sur les éléments  $f(u_{\gamma})$ :

$$f(\{u_{\gamma'}\}) \prec f(\{u_{\gamma''}\}).$$

Cela étant, posons

$$(5) f(u_{\eta}) = s$$

où s désigne un élément de  $U^0_{\omega_\mu}$  satisfaisant aux conditions:

- (a<sub>1</sub>) dans le cas 1:  $s \neq f(u_v)_{v \leq n}$ , d'ailleurs arbitraire;
- (a<sub>2</sub>) dans le cas 2:  $s \neq f(u_{\gamma})_{\gamma < \eta}$ ,  $s \succ f(u_{\gamma})$  pour tout  $\gamma$  tel que  $\gamma < \eta$ ,  $u_{\gamma} \varrho u_{\eta}$ ;
- (a<sub>s</sub>) dans le cas 3:  $s \neq f(u_{\gamma})_{\gamma < \eta}$ ,  $s \prec f(u_{\gamma'})$  pour tout  $\gamma'$  tel que  $\gamma' < \eta$ ,  $u_{\eta} \varrho u_{\nu'}$ ;
  - (a<sub>4</sub>) dans le cas 4:  $s \neq f(u_{\gamma})_{\gamma < \eta}$ ,  $f(\{u_{\gamma'}\}) \prec s \prec f(\{u_{\gamma''}\})$ .

Comme l'un — et seulement un — des 4 cas envisagés se présente toujours, la possibilité de définir la fonction (5) se réduit à celle de choisir un  $s \in U^0_{\omega_{\mu}}$  de façon qu'il satisfasse à la condition correspondante ( $a_i$ ) (i=1,2,3,4). Or, comme  $\overline{\eta} < \kappa_{\mu}$ , un tel  $\overline{s}$  existe. En effet, dans le cas 1 cela résulte de (1) et de l'inégalité  $\kappa_{\mu} \leqslant \overline{U^0_{\omega_{\mu}}}$ ; dans les cas 2-3 c'est une conséquence du Lemme I, dans le cas 4 — du Lemme II, rapproché de (4).

Pour préciser s, on peut prendre toujours le premier élément de (1) satisfaisant aux conditions imposées par  $(a_i)$ .

Conformément à  $(a_1)$ - $(a_4)$ , on a  $f(u_{\delta}) \neq f(u_{\gamma})$  pour  $\gamma, \delta \leqslant \eta, \ \gamma \neq \delta$  et  $u_{\gamma} \varrho u_{\delta} \rightarrow f(u_{\gamma}) \Rightarrow f(u_{\delta})$  pour  $\gamma, \delta \leqslant \eta$ .

On définit ainsi par induction, à l'aide des formules (3) et (5), une transformation biunivoque de E dans  $U^0_{\omega_{\mu}}$ . Reste à montrer que  $u_n \varrho \, u_{n'}$  entraı̂ne  $f(u_n) \prec f(u_{n'})$ .

<sup>(1)</sup> Ce qui vent dire:  $x \in Q \to a \prec x \prec b$ . Les expressions analogues qu'on rencontre dans la suite s'interprètent de la même manière.

Supposons le contraire. Il existe alors (vu (2)) au moins un couple  $u_{\xi}, u_{\theta}$  d'éléments de E tels que  $u_{\xi} \varrho u_{\theta}$  et non  $(f(u_{\xi}) \prec f(u_{\theta}))$ . f|E étant à valeurs distinctes, cela équivaut à l'implication  $u_{\xi} \varrho u_{\theta} \rightarrow f(u_{\xi}) \succeq f(u_{\theta})$ .

Posons, pour de tels couples,  $\lambda = \max(\zeta,\vartheta)$  et soit  $\lambda = \lambda_0$  le plus petit nombre ordinal qui puisse être obtenu de cette manière. Ainsi, il existe au moins un couple  $u_{\xi_0}, u_{\theta_0}$  tel que:

(6) 
$$u_{\zeta_0} \varrho \, u_{\vartheta_0} \to f(u_{\zeta_0}) \succ f(u_{\vartheta_0}) ,$$

(7) 
$$\lambda_0 = \max(\zeta_0, \vartheta_0),$$

et

(8) 
$$u_{\xi} \varrho u_{\theta} \rightarrow f(u_{\xi}) \prec f(u_{\theta}) \quad \text{pour} \quad \xi, \vartheta < \lambda_0.$$

Si  $\lambda = \vartheta_0$ , la formule (8) devient:  $u_{\xi} \varrho u_{\theta} \rightarrow f(u_{\xi}) \prec f(u_{\theta})$  pour  $\xi, \vartheta < \vartheta_0$ . Comme  $f(u_{\xi}) \neq f(u_{\theta})$  pour  $\xi, \vartheta < \vartheta_0$ ,  $\xi \neq \vartheta$ , on aperçoit alors que, pour l'indice  $\eta = \vartheta_0$ , toutes les conditions de la prémisse hypothétique de notre définition inductive sont remplies. Par conséquent, la détermination de la valeur  $f(u_{\vartheta_0})$  s'effectue conformément à la discussion des 4 cas que nous venons de distinquer. Or, comme  $u_{\xi_0} \varrho u_{\vartheta_0}$  et, d'après (7),  $\xi_0 < \vartheta_0$ , on est soit dans le cas 2, soit dans le cas 4, ce qui donne, selon  $(a_2)$  respectivement  $(a_4)$ ,  $f(u_{\vartheta_0}) \succ f(u_{\xi_0})$ , contrairement à (6).

Si  $\lambda_0=\zeta_0$ , un raisonnement analogue montre que l'on est soit dans le cas 3, soit dans le cas 4, ce qui conduit en vertu de  $(a_3)$ - $(a_4)$  à la même contradiction.

Le théorème (T) est donc vrai en cas de  $\omega_{\mu}$  régulier.

L'idée de cette démonstration provient de W. Sierpiński [2], p. 189. Notons la propriété:

(ii) Soient:  $\omega_a < \omega_\beta$  deux nombres initiaux réguliers,  $H = \{p_\eta \colon 0 \leqslant \eta < \omega_\beta\}$  un ensemble partiellement ordonné,  $H_0 = \{p_\eta \colon 0 \leqslant \eta < \omega_a\}$ ,  $g|H_0$  une fonction telle que  $g(H_0) \subset U^0_{\omega_\beta}$ ,  $H_0 \simeq g(H_0)$ .

Alors, en appliquant la construction  $(a_1)$ - $(a_4)$  à partir de  $p_{\omega_\alpha}$ , on prolonge  $g|H_0$  à tout H de façon qu'on ait:  $g(H) \subset U^0_{\omega_\beta}, \ H \simeq g(H)$ .

C'est une conséquence immédiate du procédé inductif que nous venons de définir.

Cas 2. Le nombre  $\omega_{\mu}$  n'est pas régulier.

 $\omega_{\mu}$  est alors confinal avec un nombre ordinal  $<\omega_{\mu}$ . Il s'ensuit qu'il existe un nombre ordinal  $\nu<\mu$  et une suite d'ordinaux croissants  $\{a_i\}_{i<\omega_{\nu}}$  tels que  $\lim_{i\to\omega_{\nu}}a_i=\mu$  et  $\lim_{i\to\omega_{\nu}}\omega_{a_i}=\omega_{\mu}$ , tous les  $\omega_{a_i}$  pouvant être supposés réguliers puisque, en cas contraire, on pourrait remplacer  $\omega_{a_i}$  par  $\omega_{\beta_i}=\omega_{a_i+1}$  sans avoir altéré la convergence.

L'ensemble E représenté sous la forme (2), posons  $E_i = \{u_\eta\colon \eta < \omega_{a_i}\}$ . On a alors

(9) 
$$E = \bigcup_{\iota < \omega_{\mathfrak{p}}} E_{\iota}, \quad E_{\iota} \subset E_{\mathfrak{x}} \quad \text{pour} \quad \iota < \varkappa < \omega_{\mathfrak{p}}.$$

Désignons, d'une manière générale par  $f_{\iota}^{\iota}|E_{\iota}$  une transformation de  $E_{\iota}$  dans  $U_{\omega, \iota}^{0}$  soit

$$f'_{\iota}(u) = \{a_{\xi}^{(u)}\}_{\xi < \omega_{a_{\iota}}} \quad \left(u \in E_{\iota}, f'_{\iota}(u) \in U^{0}_{\omega_{a_{\iota}}}\right),$$

et, lorsque  $f_{\iota}^{\iota}|E_{\iota}$  est défini, par  $f_{\iota}^{\varkappa}|E_{\iota}$  pour  $\varkappa>\iota$  la transformation

$$(11) \hspace{1cm} f_{\iota}^{\varkappa}(u) = \{b_{\xi}^{(u)}\}_{\xi < \omega_{\alpha_{\varkappa}}} \quad \left(u \in E_{\iota}, \ f_{\iota}^{\varkappa}(u) \in U_{\omega_{\alpha_{\varkappa}}}^{0}\right)$$

οù

(12) 
$$b_{\xi}^{(u)} = a_{\xi}^{(u)} \text{ pour } \xi < \omega_{a_{\xi}}, \quad b_{\xi}^{(u)} = 0 \text{ pour } \xi \geqslant \omega_{a_{\xi}}.$$

Nous allons définir par induction un système de transformations  $\{f_i^x\}$  satisfaisant aux conditions:

$$\begin{array}{l} 1^* \ f_\iota^t | E_\iota, \ E_\iota \simeq f_\iota^t(E_\iota) \subset U^0_{\omega_{a_\iota}} \\ 2^* \ f_\iota^\varkappa(u) = f_\varkappa^\varkappa(u) \quad \text{pour } u \in E_\iota \ (^2) \end{array} ) \qquad (0 \leqslant \iota \leqslant \varkappa < \omega_r) \, .$$

Soit  $f_0^0|E_0$  une transformation isomorphe de  $E_0$  dans  $U_{\omega_{a_0}}^0$ : le nombre  $\omega_{a_0}$  supposé régulier, une telle transformation existe en vertu du Cas 1 de ce théorème. Définissons  $f_0^1|E_0$  conformément à (10)-(12) et posons  $f_1^1(u)=f_0^1(u)|_{u\in E_0}$ . En prolongeant, suivant (i)-(ii), la fonction  $f_1^1|E_0$  à tout  $u=u_\eta$ ,  $\omega_{a_0}\leqslant \eta<\omega_{a_1}$ , on obtient une transformation isomorphe  $f_1^1|E_1$  de  $E_1$  dans  $U_{\omega_{a_1}}^0$ .

D'une façon analogue, posons  $f_2^2(u)=f_1^2(u)|_{u\in E_1}$  et prolongeons  $f_2^2|E_1$  à tout  $u\in E_2$  de sorte que  $f_2^2|E_2$  soit une transformation isomorphe de  $E_2$  dans  $U_{\omega_{a_2}}^0$ . Cela est encore possible pour les mêmes raisons que précédemment; on vérifie de suite l'égalité  $f_2^0(u)=f_2^2(u)|_{u\in E_0}$ .

On a ainsi défini les  $f_i^{\kappa}$  de façon à satisfaire aux conditions 1\*-2\* pour  $0 \le \iota \le \varkappa \le 2$ .

Soit maintenant  $2 < \lambda < \omega$ , et supposons que les transformations  $f_{\iota}^{*}$  satisfaisant à  $1^{*}-2^{*}$  soient définies pour  $0 \le \iota \le \varkappa < \lambda$ ; il est à montrer que la définition se laisse étendre aux indices  $0 \le \iota \le \varkappa \le \lambda$ .

Lorsque  $\lambda = (\lambda - 1) + 1$ , la démonstration ne diffère pas dans l'idée, de celle que nous venons d'exposer pour  $\lambda = 2$ .

Supposons donc à de seconde espèce. Posons dans ce cas

$$f_{\lambda}^{\lambda}(u) = f_{\varkappa}^{\lambda}(u)|_{u \in E_{\iota}} \quad \text{pour} \quad 0 \leqslant \iota \leqslant \varkappa < \lambda.$$

D'après (9), qui entraîne  $E_{\lambda} = \bigcup_{i < \lambda} E_i$ , la formule (13) définit  $f_{\lambda}^{\lambda} | E_{\lambda}$  de façon univoque. En effet, on a par hypothèse  $f_{\lambda}^{\kappa}(u) = f_{\kappa}^{\kappa}(u)|_{u \in E_i}$  pour

<sup>(2)</sup> Notation plus commode:  $f_i^{\kappa}(u) = f'(u)|_{u \in E_i}$ ; nous nous en servirons dans la suite.



 $\varkappa < \lambda,$  d'où en vertu de (10)-(12):  $f_{\iota}^{\lambda}(u) = f_{\varkappa}^{\lambda}(u)|_{u \in E_{\iota}}$ . D'autre part,  $\iota_{0}$ étant le premier indice pour lequel  $u \in E_{\iota_0}$ , on a  $f_{\iota}^{\iota}(u) = f_{\iota_0}^{\iota}(u)|_{u \in E_{\iota_0}}$ , d'où  $f_{\iota}^{\lambda}(u) = f_{\iota_0}^{\lambda}(u)|_{u \in E_{\iota_0}}, \text{ donc } f_{\varkappa}^{\lambda}(u) = f_{\iota_0}^{\lambda}(u)|_{u \in E_{\iota_0}}.$ 

On a ainsi:  $f_{\lambda}^{\lambda}(u) = f_{\iota}^{\lambda}(u)|_{u \in E_{\iota}}, f_{\lambda}^{\lambda}(E_{\iota}) \subset U_{\omega_{\iota}}^{0}$ . Puis, comme  $f_{\iota}^{\mu}(E_{\iota}) \simeq E_{\iota}$ , on a en vertu de (i):  $f_i^\lambda(E_i) \simeq E_i$ , donc  $f_\lambda^\lambda(E_i) \simeq E_i$ , d'où  $E_\lambda \simeq f_\lambda^\lambda(E_\lambda) \subset U_{\omega_\lambda}^0$ .

La condition 1\* subsiste donc pour  $\iota = \lambda$  et l'on voit qu'il en est de même de 2\* pour  $\varkappa=\lambda$ . Cela vérifie 1\*-2\* pour  $0\leqslant\iota\leqslant\varkappa\leqslant\lambda$ .

Le système  $\{f_i^*\}$  est ainsi défini par induction.

Nous pouvons maintenant achever la démonstration du Cas 2.  $f'_{\iota}|E_{\iota}$  représenté dans la forme (10), soit

$$\begin{split} f_\iota^{\omega_\mu}(u) &= \{c_\xi^{(u)}\}_{\xi < \omega_\mu} &\quad \text{où} \quad c_\xi^{(u)} &= a_\xi^{(u)} \quad \text{pour} \quad \xi < \omega_{a_\iota} \\ &\quad \text{et} \quad c_\xi^{(u)} &= 0 \quad \text{pour} \quad \omega_{a_\iota} \leqslant \xi < \omega_\mu; \quad u \in E_\iota \,. \end{split}$$

Posons

(14) 
$$f(u) = f_{\varkappa}^{\omega_{\mu}}(u)|_{u \in E_{\iota}} \quad \text{pour} \quad 0 \leqslant \iota \leqslant \varkappa < \omega_{\nu}.$$

On conclut de 2\* que  $f_{\iota}^{\omega_{\mu}}(u) = f_{\varkappa}^{\omega_{\mu}}(u)|_{u \in E_{\iota}}$  pour  $\iota \leqslant \varkappa$ , d'où il s'ensuit en vertu de (9) que la formule (14) définit f|E de façon univoque; puis, on a évidemment  $f(E) \subset U^0_{\omega_u}$ . Selon (i) et (14), il est, vu 1\* et la définition du symbole  $f_{\iota}^{\omega_{\mu}}: f(E_{\iota}) \simeq E_{\iota}$  pour  $0 \leqslant \iota < \omega_{\nu}$ , d'où il vient d'après (9):  $f(E) \simeq E$ .

Cela établit le Cas 2.

Le théorème (T) est entièrement démontré.

Considérons les deux théorèmes:

- (T1) Si  $\kappa_{\mu}$  est un aleph régulier, l'ensemble  $U^0_{\omega_{\mu}}$  contient une image semblable de tout ensemble ordonné de puissance Nu (Hausdorff-Sierpiński, v. [2], p. 463-465  $(U_{\omega_n}^0 = H_{\mu})$ .
- (T2) E étant un ensemble partiellement ordonné par la relation  $\varrho,$ il existe une relation σ qui établit un ordre dans E et qui satisfait à la condition  $x \varrho y \rightarrow x \sigma y$  (E. Marczewski, [3], p. 387).

Le théorème (T) implique évidemment (T1). Or il implique aussi (T2). En effet, posons S=f(E). La relation  $\prec_S$ , induite dans S par  $\prec$ , y établit un ordre; alors, en définissant pour  $x,\,y\in E\colon x\,\sigma y \sim f(x) \prec_S f(y),$  on obtient une relation  $\sigma$  vérifiant les conditions de  $(T_2)$ .

Réciproquement, les théorèmes  $(T_1)$  et  $(T_2)$  dans leur ensemble entraînent, moyennant le Cas 1, le théorème (T).

Nous avons ainsi démontré:

Le théorème (T) est équivalent à la conjonction logique des théorèmes  $(\mathbf{T}_1)$  et  $(\mathbf{T}_2)$ .



## Travaux cités

- [1] W. Sierpiński, Sur une propriété des ensembles ordonnés, Fund. Math. 36 (1949), p. 56-67.
- [2] Cardinal and ordinal numbers, Monografie Matematyczne, t. 34, Warszawa 1958.
- [3] E. Szpilrajn-Marczewski, Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930), p. 386-389.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUT MATHÉMATIQUE DE L'ACADÉMIE POLONAISE DES SCIENCES

Reçu par la Rédaction le 5. 2. 1962