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each of the n modal operators M we are dealing with is stronger than
its predecessors. This suggests that no finitude result is possible without
this assumption of nesting (linear order). In particular, since the proof
of (8) already turns on this assumption, it may be expected that without
the assumption of nesting we could already have an infinity of irreducible
formulae of the form ... N, Ny, p. This expectation turns out to be justi-
fied. It is well known that of each partly ordered set we can obtain
a topology by taking for the closure of each set § the set of all the ele-
ments ¢ for which ¢ <s for at least one se§. The following infinite
double tree will then serve as an example which shows the Justifiability
of our expectation:

Two partly ordering relations are defined on it whose covering
relations are indicated by. solid and dotted lines, respectively. From
the unit set of the highest element one can obviously form an infinity
of different sets by repeatedly using the two closure operations.
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Spaces in which sequences suffice™®
by
S. P. Franklin (Gainesville, Florida)

0. Introduction. Venkataraman [5] poses the following problem.

0.1. ProBLEM. Characterize “the class of topological spaces which
can be specified completely by the knowledge of their convergent se-
quences”’.

It is a well known and useful fact that every first-countable space
falls into this class. Indeed, this is so by virtue of either of two prop-
erties of first-countable spaces:

(a) A point lies in the closure of a set iff there is a sequence in the set
converging to the point.

(b) A set is open iff every sequence converging to a point in the set is,
itself, eventually in the set.

But these properties are not equivalent (see Example 2.2 below)
and each is of independent interest (see Arhangel'skil [1], Dudley [3],
Franklin and Sorgenfrey [4], Hukuhara and Sibuyo [6], Kelley and Na-
mioka [8], Mazur [10]). Hence problem 0.1 becomes by mitosis the two
problems (0.1 (a) and 0.1 (b)) of characterizing the class of spaces satis-
fying (a) and the class satisfying (b).

The first of these (0.1 (a)) has two known solutions. Kowalsky [9]
has given a characterization in terms of the neighborhoods of a point
as follows: A space satisfies (a) iff the filter of neighborhoods of each of its
points is a union of Fréchet filters. Since little is known of unions of Fré-
chet filters, this solution is not completely satisfactory.

A more penetrating solution is given by Arhangel'skii who calls
spaces satistying (a) Fréchet spaces. In [1] he asserfs, without proof, that
among Hausdorff spaces, Fréchet spaces, and only these, are pseudo-open
images of metric spaces: (Pseudo-open maps form a class between the
open maps and the quotient maps. See section 2 below for the definition.)
An analogous result, due to Ponomarev [3], characterizes first-countable

* This was written while the author was a National Science Foundation Post-
doetoral Fellow.
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spaces among T, spaces as follows: first countable spaces, and only these
are continuous open tmages of metric spaces. ’

Thus there are two important classes of spaces which are character-
ized as the images of metric spaces under a certain class of maps. From
this fact and the relation between open, pseudo-open and quotient maps
the following problem is completely natural. v

0.2. ProBrEM. Characterize the quotients of metric spaces.

Since first-countable spaces are Fréchet spaces and Fréchet spaces
are, in turn, sequential (i.e., satisfy (b)), a very attractive eonjecture
would read: sequential spaces, and only these, are quotients of metric spaces.
That this is indeed the case is shown in section 1 below, yielding simul-
taneously solutions to problems 0.1 (b) and 0.2. As is clear from Prop-
osition 1.1 below, problem 0.1 (b) is what Venkataramen intended.

Section 1 is devoted to an investigation of sequential spaces, their
properties, their behavior under the nsual topological constructions, their
relations to other topological properties, and lastly, the solution to 0.1 (b)
and 0.2. Also, as a by-product, something is added to the question of
when the product of two countably compaet spaces is countably com-
pact (Corollary 1.10.1).

Section 2 is concerned with Fréchet spaces and their properties
2:11(1 their relation to sequential spaces. The characterization of sequen-
tial spaces is used to prove Arhangel’skil’s characterization of Fréches
spaces.

Section 3 is a brief coda in which another attractive conjecture is
put to rest. ' ‘

As will become apparent through individual acknowledgments, the

author is indebted to Ernest Michael for a number of helpful conver-
sations.

; 1. S.equential spaces. Let X be a topological space. A subset
_Z“J of X is sequentially open iff each sequence in X converging to a point
in U is 'event.uallly in U. A subset F of X is sequentiolly closed iff no se-
quence in ¥ converges to a point not in F. Let v be the topology of X
and ¥ bej §0me topologieal space. Following Venkataramen [3] we seul
that ¥ divides X iff no topology ¢’ on X which is strictly finer than T
14.aa.ve§ every 7-continuous function from ¥ to X 7'-continuous. o is the
first infinite ordinal.

0 1.;.119]-R§POSIT101\‘. For any topological space X the properties 1.1.1
rough 1.1.3 are equivalent. If X is Hausdorff th Wi
prough 1.3 ae ff they are also equivalent

1.11. w41, provided with its order topology, divides X.
1.1.2. Fach sequentially open subset of X is open.
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1.1.3. Each sequentially closed subset of X is closed.

1.1.4. Each subset of X which intersects every convergent sequence ()
in a closed set is closed.

1.1.5. Each subset of X which intersects every compact metric subspace
of X in a closed set is closed (2).

Proof. 1.1.1 can be restated as follows: every subset of X whose
inverse image under each continuous f: @ ~1—+X is open in w41, is open
in X. Now f: w-+1-X is continuous iff the sequence {f(n)} converges
to f(w) in X. On the other hand each convergent sequence () is the range
of a continuous funection on w-1. The correspondence is clearly one-
to-one. Hence the inverse image of a subset U of X under each contin-
uwous f: w-+1-—X is open iff U is sequentially open. Thus 1.1.1 is equiv-
alent to 1.1.2.

The equivalence of 1.1.2 and 1.1.3 is obvious. That of 1.1.3 and
1.1.4 follows immediately since for Hausdorff X the sequentially closed
subsets are precisely those intersecting each convergent sequence in
a closed set. For Hausdorff X, each convergent sequence is compact
metric and hence 1.1.4 is equivalent to 1.1.5.

A space satisfying any of 1.1.1 thru 1.1.4, and hence all of them,
will be called sequential, or a sequential space. Clearly each first-countable
space, and hence each metric space and each discrete space, is sequential.
On the other hand, there are countable normal spaces which are not
sequential (see [7], p. 77). Such & space must fail to be locally compact.
Q-+1, where 2 is the first uncountable ordinal, with its usual order topo-
logy is a compact Hausdorff space which is not sequential, since {€Q} is
sequentially open but not open. If X is any set, 6 the discrete topology
and 7 & non-sequential topology on X, then the identity map idx: <X, d>—>

—(X,7) shows that the continuous image of a sequential space need
not be sequential.

1.2. PROPOSITION. Every quotient of a sequential space is sequential.

Proof. Let  be a quotient map of a sequential space X onto a space ¥.
If U CY is sequentially open and {z,} >, € FHU), then {f(2a)} >F() ¢ U
and {f(x,)} is eventually in U. Hence {,} is eventually in FX(U) which
is therefore open. Hence U is open.

1.3. COROLLARY. There are sequential spaces which are not first-countable.

Proof. There are quotients of first-countable spaces which are not
first-countable (for example, shrink Z to a point in R), but which, by
Proposition 1.2, must be sequential.

() By a convergent sequencé we mean the union of the sequemce and its limit

points.
(2) The equivalence of this property to the others was pointed out by E. Michael.
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1.4. CoroLLARY. The continuous open or closed image of a sequential
space is sequential.

1.5. CorOLLARY. If @ product space is sequential, so is each of its
factors.

1.6. ProrosrtioN. The disjoint topological sum of any family of se-
quential spaces s sequential.

Proof. Let X be the disjoint sum of the family {X,};. 4 of sequential
spaces. If U is not open in X, then for some ¢ed, U~ X; is not ge-
quentially open. Thus there is a point pe U~ X; and a sequence
{pn} C X\U converging to p in X; and therefore in X. Hence U is not
sequentially open and the contrapositive of 1.1.2 is established.

The following is immediate from Propositions 1.2 and 1.6.

1.7. CoroLLARY. The inductive limit of any family of sequential spaces
s sequential.

A negative answer to a question posed by L. C. Robertson is given
by the following example.

1.8. Exawprr. To see that a subspace of a sequential space need not
be sequential (3), even in “nice spaces”, let X be the real numbers pro-
vided with the topology generated by the usual topology and all sets
of the form {0} v U where U is a usual open neighborhood of the ge-
quence {1/n}. Thus the topology of the line is altered only at 0 and in
such a way that a sequence converging to 0 is either eventually con-
stant a subset of {1/n}. X is o-compact (%) and regular but not locally
compact.

Next define a subset ¥ = {(,0)|0 # z <R} U {(0,1)}u {(1/n,1)|neN}
of the plane. Y is the topological sum of a convergent sequence () and
the punctured real line and is therefore sequential by Proposition 1.6.
But the first projection is a quotient map of Y onto ¥ and hence, by
Proposition 1.2, X is sequential.

But deleting the sequence {1/n} from X leaves a subspace X\{1/n}
which is not sequential since {0} is sequentially open in X\ {l/n} but
not open.

The proof of the next proposition is routine and will be omitted.

1.9. ProrosrrioN. Fach open or closed subspace of a sequential space
is sequential.

(%) Thi:_s was known to Dudley [3]. Example 1.8 is included because it is specific
and, more importantly, for later reference. It was known to the author prior to
Dudley’s paper.

(*) A space which is the countable union of compact sets is called o-compact.
A o-compact regular space is also Lindelsf, paracompact, normal, ete.
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As is well known, countable compactness and sequential compactness
are equivalent in the class of first-countable spaces. Since sequential com-
pactness always implies countable compactness, the following proposition
establishes their equivalence on the larger class of sequential spaces.

1.10. PROPOSITION. Ewvery countably compact sequential Hausdorff space
is seguentially compact.

Proof. Let X be sequential and countably compaet, and suppose
that {z,} C X has no convergent subsequence. Then {z,} is sequentially
closed and hence closed. Thus {&,} is a countable ecompact Hausdorff
space and hence first-countable in the relative topology. But this con-
tradicts {z»} having no convergent subsequence.

Novak [11], answering a question of Cech, showed that the product
of two countably compact spaces need not be countably compact.

But Ryll-Nardzewski [4] has shown that the first countability of
one of the spaces is sufficient. Hence it is natural to ask if one of the
spaces being sequential is enough. But this follows at once from Prop-
osition 1.10 and a result of Mréwka [1] which says that one of the spaces
being sequentially compact is enough.

1.10.1. CorOLLARY. The product of two countably compact spaces, one
of which is sequential, is countably compact.

This proposition is a generalization of Ryll-Nardzewski’s result since
first countable spaces are sequential.

L. C. Robertson also asked about the preservation of products of
sequential spaces. Since for uncountable X, 2% is compact but not se-
quentially compact, Proposition 1.10 shows that uncountable products
of sequential gpaces can fail to be sequential. Although this is not at all
surprising, it is remarkable indeed that the product of two sequential
spaces need not be sequential. An example using distribution spaces of
Schwarz is given by Dudley [3]. The following example i3 somewhat
more accessible (%).

1.11. Exawpre. Let @ be the rationals, @, with the integers iden-
tified, and let X =@ xQ’. X is the product of two sequential spaces
but contains a sequentially open set W which is not open.

To deseribe W let {z,} C R be a sequence of irrational numbers less
than one converging monotonically downward to 0. For n =10, 1, ... let
T» be the interior of the plane triangle determined by the points (2, n),
(1,n+13), (1, n—3). Let T; be the reflection of T, on the y-axis and
let R, be the interior of the rhombus determined by the points (—x», n),
0,24+%), (@n,n) and (0,n—%). Then W, = Tp v B, v T, is an open

(%) This example was known to the author prior to Dudley’s paper.
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subset of the plane. Thinking of X as a subset of the plane with the
o0

horizontal integer lines identified, let W =X ~ | Wy
0

If @ X—Q and &,: X —Q’ are the canonical projections, it is eagy
to see that for any neighbourhoods U and U’ of 0 in @ and Q' respecti-
vely, 7 (U) ~ 2 *(U’) cannot be contained in W. Hence (0,0) is not
an interior point of W which, therefore, cannot he open.

Now suppose {yn} C X\W and yn—>y e W. If my(y) # 0, convergence
in X is simply convergence in @ x@, and this contradicts y,—>y. Hence
5(y) = 0. If my(y) # 0, then W can be replaced by & scaled down version
of itself with y at the symmetric position. Hence without loss of gen-
erality assume that y = (0,0). But y,—(0, 0) implies my(y,) >0 in ¢,
which can occur iff some subsequence converges in ¢ to some integer %.
But this would restrict {y.} eventually to arbitrarily small strips
7z (k—e, k +e) and, sinee ¥, ~(0, 0) in X, would eventually put y, in W.
Hence W is sequentially open.

T. Seidman points out that a similar construction can be carried
out in Q' x Q' so that the square of a sequential space need not be sequential.

The principal result of this section is a cpnsequence of the follow-
ing fact.

1.12. PROPOSITION. Every sequential space is a quotient of a topological
sum of convergent sequences (1).

Proof. Let X be a sequential space. For each z ¢ X and for each
sequence {s,} in X converging to =, let S(s,z) = {saln=1,2,..} U (&}
be a topological space where each s, is a discrete point and s, -z in
8(s, z). Let T be the disjoint topological sum of all possible §(s,z).

Each point of T arose from some point of X yielding a surjection
f: T'->X which is continuous since it is continuous on each summand
(see the proof of Proposition 1.1). To see that f is a quotient map sup-
pose UCX and f(U) is open in 7. If % eU and s,—>2, in X, then
@ e F(U) ~ 8(s, ) which is open in 8 (s, ). Thus {s,} as a subset of
8(s, @) is eventually in f(U) and thus {s,} as a subset of X is even-
tually in U. Hence U is sequentially open and thus open. f, therefore,
is a quotient map and the proof is complete.

1.13. CorOLLARY. Every sequential space is the quotient of a zero-
dimensional, locally compact, complete metrio space.

1.14. CoroLLARY. The following are equivalent

(ay X 48 sequential;

{(b) X is the quotient of a first countable space;

{e) X 4s the quotient of a metric space.

Proof. (a) implies (b) implies (¢) by Proposition 1.12. (¢) implies (a)
by Proposition 1.2,
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Thus the promised complete solution to the problem posed by Ven-
kataramen is established.

E. Michael posed and answered negatively the question of whether
each separable sequential space is the quotient of a separable metric
space, his example being the real line in the half-open interval topology.

2. Fréchet spaces. A topological space X is called a Hréchet space
iff the closure of any subset A of X is the set of limits of sequences in 4.
Again, each first-countable space (and so each metric space and each
discrete space) is a Fréchet space, and every Fréchet space is sequential.
The proof of the following proposition is routine and will be omitted.

2.1. PROPOSITION. (a) Every subspace of a Fréchet space is a Fréchet
space.

(b) The disjoint topological sum of amy family of Fréchet spaces is
a Fréchet space.

2.2. ExamrrE. The space X of Example 1.8 is a sequential space
which is not a Fréchet space. Let A = X\({1jn] n =1, 2, ...} U {0}). For
each #, there is a sequence {27} in A converging to 1/n. By the double
limit theorem ([7], p. 69), 0 e cl4. But every sequence in X converging
to 0 is eventually constant or a subsequence of {L/n}. Hence X is not
Fréchet. Since X is a quotient of the first-countable (and hence Fréchet)
space Y, quotients of Fréchet spaces need not be Fréchet spacés.

Since the spaces @ and @’ of Example 1.11 are both Fréchet spaces,
the product of two Fréchel spaces need not be a Fréchet space.

Arhangel’skil [1] calls a map f: X Y pseudo-open iff for any y ¢ ¥
and for any open neighborhood U of f~'(y), y eintf( 7). It is easy to see
that any open or closed map is pseudo-open and that each pseudo-open
map is & quotient map. (See also the work of Din’N’é T'ong [2].) The
following proposition was asserted without proof by Arhangel’skif ([1],
Theorem 4). A proof will be given since none appears in the literature
and the result will be used below.

2.3. ProroSITION, If X and Y are Hausdorff, X is a Fréchet space
and f: X —X is a quotient map, then Y is a Fréchet space iff f is pseudo-open.

Proof. Suppose that ¥ is a Fréchet space, y ¢ ¥ and U is an open
neighborhood of f~{y). If y eintf(U), then y ecl(¥\f(U)). Hence there
is a sequence {ys}C ¥\f(U) converging to y. Then cl{ys} = {¥a} v {y}-
If F=f"({ya}), then olF Cf (cl{ya}) = F v '(y). But { (y) C U and
UAF = @. Hence { (y) ~ clF = @ and, thus, F is closed. But F closed
implies that X\F = f *(¥\{yn}) iz open and, therefore, that ¥\{ya} is
open, contradicting {y,}->y. Hence y e intf(U) and f is pseudo-open.

Conversely, if f is pseudo-open, let y € LM with M C X. If ™ (y) ~
Aef (M) =@, let U= X\clf (M). Then y eintf(U) C X\M contra-
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dicting y e clM. Thus there is some @, € f'(y) ~ ¢lf (M). Choose a se-
quence {z,} Cf (M) converging to #,. Then {f(#:)}C M and f{z,)—>y.
Thus Y is a Fréchet space.

With the help of this proposition Arhangel’skil’s characterization of
Fréchet spaces ([1], Theorem 2) can be easily deduced from Propo-
sition 1.12.

2.4. PROPOSITION. Among Hausdorff spaces, Fréchet spaces are pre-
cisely the pseudo-open images of a topological sum of convergent sequences.

Proof. Each Fréchet space is sequential and hence the quotient
of such a sum by Proposition 1.12. But the sum is a Fréchet space and
hence, by Proposition, 2.9 the quotient map must be pseudo-open. The
converse follows immediately from Proposition 2.9.

A number of corollaries analogous to those following Proposition 1.12
can, of course, be stated.

3. First-countable spaces. In light of Propositions 1.12 and 2.4
it is only natural to ask whether Ponomarev’s characterization of first-
countable spaces (see section 0) can be strengthened to read ‘“‘every first
countable space is the open image of a topological sum of convergent
sequences (1)”’? But any such sum is a Baire space (see, for example,
de Groot [5]) as are continnous open images of Baire spaces. But many
spaces (for example Q) are first-countable but not Baire spaces. Hence
the answer is no.
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