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Nun ergibt sich auch endlich das in der Einleitung als Satz T ange-
kiindigte Hauptergebnis dieser Arbeit:

Sarz 5. Bs sei |M|= 1., und es sei die Potenamenge LB(M) von M
ouf 8, viele Klassen verteilt: P(M) = \J T,| v < w,. Dann gibt es ein T,,
das zu jedem v < w.y1 eine Teilmenge vom Typ v-v* umfaft.

Insbesondere hat sich also ergeben: Bs gibt ein T,, das “ Universalmenge”
ist fiir alle wohlgeordneten und fiir olle inverswohlgeordneten Mengen der
Miichtigheit 8,. .

Beweis. Wegen des Satzes II der Einleitung hat P(M) eine Teil-
menge, die zu €, &hnlich ist, und aus Satz 4 folgt dann sofort Satz 5.
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Wallman spaces and compactifications
by
E. F. Steiner (Albuquerque, N, Mex.)

It is possible to obtain a compactification for any T'-space by
employing a method introduced by Wallman [9]. Frink [3] has gen-
eralized this method to provide Hausdorff compactifications for Tycho-
noff spaces. His procedure uses a mormal base of closed sets instead
of the family of all closed sets as employed by Wallman. He shows that
the Alexandroff and Stone-Cech compactifications can be obtained in
this way.

In a recent paper, Njistad [7] gives a condition for a Hausdorff
compactification to be of the Wallman type as defined by Frink. This
conditions is on the corresponding proximity. He shows that many
compactifications satisty this condition; among them those of Alexandroff,
Stone-Cech, Freudenthal [2], Fan-Gottesman (1], and Gould [5].

In this paper we present a generalization of the Frink procedure
which starts with a simple notion of a Wallman space. Necessary and
sufficient conditions for a Wallman space to be a compactification are
given. We will call these Wallman compactifications. Our compactifications
are obtained by using separating families of closed sets as defined in [8].
This condition is considerably less restrictive than that of a normal base.
In this way, compactifications for spaces other than Tychonoff spaces
are obtained. Necessary and sufficient conditions for a given compacti-
fication to be a Wallman compactification are also given Hausdorff
‘Wallman compactifications are then shown to be those of Frink.

In [7], Njdstad expresses the doubt that many common compactifica-
tions are Wallman compactifications, and in particular, the disk. We will
ghow that the closed disk is a Wallman compactification of each of its dense
subspaces. In fact, we show that any product of compact subsets of
real numbers is a Wallman compactification of any of its dense sub-
spaces, This is done by using the idea of a regular Wallman compactifi-
cation.

By using different families of closed sets in a given topological space,
many Wallman compactifications are obtained. We find necessary and
sufficient conditions for two families to give the same compactification.
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Thus, Wallman compactifications may be compatred by looking at their
defining families rather than at the compactifications themselves. This
allows us to show that the Stone-Cech compactification of the real numbers
is regular Wallman. We are also able to show that not all Wallman com-
pactifications are regular.

1. Wallman spaces. Let X be a topological gpace and F Dbe
a distinguished family of non-empty closed subsets. Define w(X, F)
to be the set of all non-empty subfamilies of ¥ which are maximal with
respect to the finite intersection property (finite intersections are non-
empty). Now if FeF, let F*= {#cw(X,F): FeA). The sets I* will
constitute a subbase for a topology on w(X,F). We will call w(X, §)
with this topology a Wallman space. By a ring of sets we will mean a family
closed under finite unions and finite intersections.

LuvMA 1. Bvery Wallman space w(X s F) is compact. If F' is the
ring generated by F, them w(X, F') is homeomorphic to w(X, ).

Proof. Let 6= {F}: i eI} have the finite intersection property.
It ARt A Ff ... ~F}, then F,, woyFnesk. Thus {Fy: {e I} has the
finite intersection property. There exists a maximal family B ew(X, F)
such that {Fy: I} CP. Thus B ¢ M {F¥: i e I}. By Alexander’s theorem
(see [6], p. 139), w(X, F) is compact.

For the second part of the theorem, let 4 ¢ w(X, F) and define f(+)
t0 be the collection of all supersets in F' of elements in the ring generated
by 4. It follows that f(#) ew (X, /). If B « w(X,5'), then B~ F ew (X, F)
and f(B ~ F)= $. Thus f is onto. It is easy to see that f is one-to-one.
I Fe&F and GeF’, define F* = few(X,F): FeA) and G = (B
cw(X, F): @ e B). We now see that f(F*) — F* and if @** — Un &,
for a finite number of Fy ¢ ¥, then f~(¢**)= { M {F4}. Hence f is
a homeomorphism.

We remark that if ¥ is a ring, the elements of w(X, F) are F -ultra-
filters and the sets F* form a base for the topology.

In order to get a closer connection betweern w(X, F) and X, for
each # ¢ X define ¢(o) = FefF: veF).

A family ¥ of elosed subsets will be called disjunctive in F if » ¢Fed
implies that there exists a set @ ¢ & such that e C X—F

I.iEMM'A 2. If ¥ is a ring of closed subsets of X, then @ is a mapping
?f X into w(X, F) if and only if F is disjunctive in F. When @ 18 a mapping
wmto w(X, F), it is continuous and pLX] is dense in w(X, F).

Pro.o.f. In order that ¢ be a mapping into w(X, §), it is necessary
and sufficient that ¢ (@) be maximal with Tespect to the finite intergection

property for each ¢ X. This can be Seen to be equivalent to & being
disjunctive in &, :
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If ¢ is a mapping into w(X, F), then ¢~ [F*]= F, si‘nce o(z) 51«’*
is and only if P € ¢(2) if and only if # ¢ F. Thus whenever ¢ is a mapping,
it is continuous. To show that ¢[X] is dense in w(X, &), it suffices to
show that when [ X]C ) {F}: 4}, I finite, then w(X,F) = {J {Ff: i eI}.
If ¢[X]C | {F7}, then w ¢ X implies that ¢(v) ¢ Ff, or Fyep(x), for
some iel. Thus @[X]C|J {F¥} implies that X = J {F:}. Suppose
Aew(X,F) and ¢ |J {Fi: i eI}. Then there is an A;es such that
Fin Ay= @ for each ieI. This implies that ) {4 C) {(X—Fy)} =0
which contradicts the finite intersection property of . Consequently,
Ut iel}=w(X,F) and ¢[X] is dense in w(X, F). _

The mapping ¢ will be referred to as the Wallman mapping. )

As in [8], we will call a family & of closed subsets of X separating
if whenever S is a closed subset of X and = ¢ § there exist sets J', G ¢ F
such that zeF, SC G and F' ~ G = @. We can now prove

Levwa 3. If & is a ring of closed subsets of X, t{zm t.he Wallman
mapping @ is a homeomorphism of X onto [ X] if and only if X is a T, -space
and F is a separating family.

Proof. The mapping ¢ is one-to-one if and only if X is 7;. This
follows since ¢(x) # ¢(y) if and only if there exist sets .F, G e F such
that 2 eF, y e @ and F ~ G = @. Now suppose that ¢ iy c'm.e-to—one.

In order that ¢~ be continuous it is necessary and sufﬁc{ent that
@[8] be closed for all closed subsets § of X. Since {F™*: _F eFris a baie
for closed sets in w(X,¥), ¢[8] is closed if and only ﬁ.qi[S]: N {Ft:
i eI}, or if and only if § = N {p~[F{]: 1 e I} = ({F e:F iel} r_ll’hus [
is continuous if and only if & is a base for closed sets in X. Thus it follows
from Lemma 2 that ¢ is a homeomorphism if and only if F is a base for
cloged sets in X and is disjunective in . These last two properties can be
seen to be equivalent to separating,

From the previous lemmasg, we obtain

TeEoREM 1. The pair (w(X, F),p) is o compactification of X if X
is a Ty-space and F is o separating famdly. If (w(X, 5), ) i.s & compacti-
fication of X, then X is Ty and the ring generated from F is separating.

The compactifications of Frink [3] are constructed for Tyf:honoﬁ
spaces, in the same manner, with a base for closed sets F having the
properties:

Fl. & is a ring; N

F2. F is disjunctive (if A is any closed set not containing z, then
there is an F ¢ F such that e F C X—4);

F3. F is a normal family (any two disjoint members 4 and B of ¥
are subsets Tespectively of disjoint complements ¢ and D’ of members c
and D of &, that is, AC (', BCD', and ' ~ D' = 0).
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2. Wallman compactifications. Let us say that X is a Wallman
compactification of X if X iy T, dense in X, and hag a separating family &
such that the mapping ¢ can be extended to a homeomorphism of X onto
w(X, F). We will write X ~ w(X, ).

If the Wallman mapping is extendable to x , the extension iy unique
and has the following properties.

LEMMA 4. If @ is an extension of the Wallman mapping which maps X
homeomorphically onto w(X, F), then

(@) {w}=N{EF: Fep@)}

(i) p)={FeF: v el },

(i) g~ [F*]=F ol FeF.
Proof. (i). In general, if #ew(X,F), then &= ){F* F et
Thus e(@)={F* Fepx)} and so {z}={g~ F*]: Fep(x)}. But,
@~1[F*] is closed and contains F, hence it contains F~. And so {#}D (N {F:

F ep(w)} # @ since (o) has the finite intersection property and X is
compact. Thus {#} = {F: Fep(2)}

(ii). From (i), p(@)C{FeF: zeF }. Now suppose FeF, wel"
and F ¢ ¢(x). Since F* is closed and ¢(z) ¢ F*, there is an open set U
such that ¢ () e Uand U ~n F* = @. Thug ¢~ [U ~ F*] = ¢~ [ U] ~ ¢~ [F*]
= @. Bubt & ¢p~[U] which is open and F C ¢~[F*]. This implies o ¢ F~
which is a contradiction. Hence, p(2)D {F e F: ¢ F }.

(ii). From (i) we have that F*= {p(y): Feop(¥)} = {p(y): y ¢ F }
= g[F]. .

‘SupApose that X is a compactification of X and 5 is a family of closed
s.ets in X. Then ¥ has the trace property with respect to X if F = N {F; e &:
i=1,..,n}# @ implies that ¥ ~ X = @.

) We can now give necessary and sufficlent conditions for a compacti-
fication to be Wallman.

TBE(?REM 2. If X i a Wallman compaciification of X, then X possesses

& separating ring with the irace property w.rt. X. In fact, if X ~ w(X, F)
then & = {F: F ¢ %} is such a ring. Conversely, if a compact Tl-spcw,e A%
Possesses @ sepamt}'ng. Jamily & with the trace property w.r.t. & dense sub-
%pazawé 7 “t%he: Xf % o Wallman compactification of X. In fact,
) ]E:roof. Let 2?:: w(X, ). By Lemma 1, we may suppose that F
is a ring. Consider § = {F: F ¢ 7). We will S],IOW thatyfi' i;) ]; separating
erg with the trace property w.r.t. X. Let Fy,FoeF and y ey ~F.
y Eemma _4, Fy and F,ep(y) and so F, A F, € ¢(y). This implies that
% €(FynT,)" and hence Fy ~ Fy = (Fy A F,)". Therefore & is a ring.
0 show the trace property, suppose Fy,F,eF and Fy ~ Fy - 0. If
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y ey ATy, then as above Fy ~TF,eqp(y). Thus (Fy A X))~ (T A X)
=T, ~F,#@ and § has the trace property w.r.t. X.

Tn order to show & is separating we will first show it is a base for
closed sets. Let H be a closed set in X and y ¢ H. Then ¢[H] is closed
and ¢(y) ¢ p[H]. Since the family {F*: F ¢ 7} is a base, there is an F ¢ &
such that o(y)¢F* and ¢[H]CF* So HCo{F*]=F and y¢F .
Hence § is a base for closed sets. Since X is 74, {y} is closed and X— {y}
is open and contains F—. Thus there are basic open sets covering each
point of F~ which do not contain y. Since X is compact, a finite number
of these will also cover F. The complement of this union is a finite inter-
section of sets from # which contains y and is disjoint from F—. Therefore &
is a disjunctive base for closed sets and hence separating.

To prove the converse, let X be a compact T,-space and ¥ Dbe a sep-
arating family of closed sets with the trace property w.r.t. a dense sub-
space X. We will show that X = w(X, ~ X), where § ~ X = {F ~ X:
F ¢ F}. Since ¥ ~ X is separating, w(X, ¥ ~ X) is a compactification
of X. Extend ¢ to R— X as follows: if #e X—X, let p(z)={F ~ X:
# e e §}. We must show that ¢(#) is maximal with respect to the finite
intersection property. If Fi~ X eg(x), ¢=1,2,..,m, then xe N{Fe:
i=1,2,..,m} and thus N{Fs: i=1, w,n}nX#0 by the trace
property. Hence ¢(z) has the finite intersection property. If H e § and
® ¢ H, there exists F ¢ § such that ¢ ¢ ¥, F ~ H=0. Thus (F~ X)
A{H ~X)# @ and so p(») is maximal.

Since X is T, and & is separating,  is one-to-one. To show that ¢
is onto, let #ew(X, § ~ X). Consider {F eF: F ~ X e} This family
has the finite intersection property because # does. Since X is compact,
there exists ze({F e F: F A X e#}. Therefore £ C ¢ (). Since s is maximal,
# = p(#). That ¢ is a homeomorphism follows from ¢[F]=(F ~ X)*
for all Fef. '

Tt follows from Lemma 4 that all Wallman compactifications are T;.
A simple example shows that not all T,-compactifications are Wallman.
Consider the positive integers with the co-finite topology X as the com-
pactification of the even integers X. There is only one closed set n X
whose clogure in X contains odd integers. Hence X cannot be a Wallman
compactification of X.

3. Hausdorff Wallman compactifications. If X is a Haus-
dorff compactification of X, it is sufficient to find a separating family
of closed sets with the trace property wr.t. X in order to show that it is
a Wallman compactification. The next theorem shows that Hausdorff
Wallman compactifications and those of Frink coincide.

TaEoREM 3. X is o Housdorff Wallman compactification of & dense
subspace X if and only if X possesses a normal separating ring &
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of alo.ied sets with the trace property w.rd. X. If & has these properties, so
does ¥ ~ X. ’

Proof. The sufficiency is apparent. If X is 2 Wallman compacti-
fication, then it possesses a separating ring & of closed sets with the trace
property w.r.t. X. It remains to show that § iz a normal family.

Recall that a Hausdorff compact space is normal. If F,,F,ed and
Fy ~ F, = @, then there are disjoint open sets 0;, 0, C X such that F,.Co
and F, C 0,. Now consider the disjoint closed sets F, and X—0,. Le;
¢ eF,. Then there are disjoint sets F,, Gy ¢ such that eF; and
X - 0, C @, since F is separating. Therefore ¢ X—@q,C 0,. Repeating
th{s for e-alch zely, F,C|J{X—Gy 2eT)CO,. Since X is compact
this covering of 7, may be replaced by a finite subcovering. Thus F,C K’
C Oy, where K = | J {X— Gy 6=1,2,...,n}is an open set and X —F, ¢ fFl
Similarly, there is an open set K, such that F,C K, C 0, and X— K: ¢ F.
Kl?herefore F is a normal family. Tt is also clear that & ~ X is a separatiné
ring of closed sets in X. Since § is 2 normal family in X and has the trace
property w.r.t. X, it follows that & ~ X is a normal family in X,

4. Regular Wallman compactifications. In orde; i

4 ; . order to find
families which have t‘he trace property we define a family of regular
olosed sets to be one in which each set is the closure of its interior.

th TPE.OREM 4. If X possesses a separating ring of veqular closed sets & s
en X is @ Wallman compactification of each of its dense subspaces.

Proof. In view of Theorem 2, it suffices to show that § has the
graee property w.r.t. any dense subspace. Let X be 5 dense subspace of X.
tzppose P, 7, « F and F; ~F, + 0. Since § is a ring of regular closed
ge & i } 1;1, = Xgmt([Fl N F,)". Since X is dense in X, (F, A X) ~ (F, ~ X)
=Py Fy) A X = [int(F, ~ F)]" A X == . Thi §

o Property wab & ) s # is shows that & has the
. If thas a separating ring of regular closed sets, we will say that X
a regular Wallman compactification of each of its dense subspaces.

Many common compactifications are regular 'Wallman.
THEOREM 5. Every com

EORKEY pact subset of real numbers is o reqular Wallman
compactification of each of its dense subspaces. !

Proof. Let X be 3 compact (hence closed and bounded) subset

;):I fﬁlnzuu?éagrs.ﬂLet A= {weX: g, Ly &y F B, By € X implies @, < @

ey ciently lamgg Or @y >  for all n sufficiently large}. Roughly

speak fI,go,m 1(:, :;t A conxists of those points of X which cannot be appro-

ach oth sides. Let Y = [ry, 5], where r, i rational, s, is irrational

and a’rl.; fn @ ; saAf;)r Eg,llll x eR X. Let B = {rationals in ¥— A} and 8= {irl."f:bz
—4j. Then B and § are dense in Y.

~nE=@ for some open interval (p,q) in T. Evallnileleda; 3 S(;u’llql;% (1]1)1,11341)1&
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redCX. Let @ be a rational in (p, ¢). Then {m,— (B,— p)/(n-+1)} >,
from below and {x,+ (¢— @)/(n--1)} >z, from above contradicting the
fact that @, € 4. So, R is dense in Y. A similar proof shows § is also dense
in Y.

Let § = {finite unions of closed intervals [r,s], r ¢ R, s € S}. Then §
is a ring of regular closed sets. Now let § =8 ~X. We will show that §
is a separating ring of regular closed sets in X. Certainly it is a ring. To
show that each member is a regular closed set, let 7' ¢ 5. Then F = G ~ X
for some G ¢ G. Suppose ¢ e F— (int G ~ X). Then @ must be the endpoint
of some interval {7, s] in @ (G is a finite union of such intervals) and so
weX, » ¢ A. Thus there is a sequence @, # # of points in X converging to @
from below and a sequence ¥, # @ in X converging to @ from above.
One of the sequences is eventually in (7, s), 80 @ e[intG ~ AT ClintFT.
Thus F is a regular closed set.

To show that & is separating, let H be a closed subset of Xy e_f,
and y ¢ H. Since B and § are dense in Y, there exist points +',7" ¢ B
and s, 8" ¢8 such that weH, 2 <y imply 2 <s”" <7 <y and ®¢H,
y < wimply y < s <r” <. Thus, [r, 8] v [r", s] contains H, y ¢[7’, §']
and [7', 8]~ ([ry, 81 v [1", 8]) = @. Therefore if F,=[r',8']n X and
Fy= ([ry, 81w [r", 8]) ~ X, then H CF,, y e F, and F, ~ F, = @. There-
fore ¥ is separating. Tt now follows from Theorem 4 that X is a regular
Wallman compactification of each of its dense subspaces.

In the special case of a closed interval I = [0, «], the family & of
all finite unions of closed subintervals of the form [r, s], r rational, s irra-
tional, is a separating ring of regular closed sets.

The next theorem provides more regular Wallman compactifications.

THEOREM 6. The topological product of spaces possessing separating
rings of regular closed sets has a separating of regular closed sets.

Proof. Let X,, a ¢ 4 be a topological space with a separating ring
of regular closed sets. Consider the family & of finite unions of sets of
the form {#: @, e F,e F., ae A’} where A’ is some finite subset of A.
Then & is a separating ring of regular closed sets in X {X,: aed}

COROLLARY. Every product of compact subsels of real numbers is a re-
gular Wallman compactification of each of ils dense subspaces.

Thus we can see that all cubes are regular Wallman compactifications.
Tn particular, the closed disk is a regular Wallman compactification of
the open disk.

5. Equivalent Wallman compactifications. In deciding whether
a given Wallman compactification is regular it is helpful to know
when two families of closed sets provide the same compactification.
To do this, we make the following definition. Let & and § be two rings
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of closed sets in X. Then F separates S if Gy, G, €S, Gy ~ G, = @ implies
that there are sets 7y, Fy e & such that G, CFy, G, CF, and ', ~n F, = @,

THEOREM 7. If & and S are two separating rings of closed sets in X,
then w(X, F) and w(X,F) are equivalent compactifications of X if and
only if S separates F and F separates S,

Proof. Let X = w(X, ) and identify X with its image under the
Wallman mapping. By Theorem 2, the family = {F": F e F} is a sep-
arating ring with the trace property w.r.t. X. Consider §={6": Ge 8},
where closures are taken in X. We will show that ¢ is separating family
with the trace property w.r.t. X. If §is closed in X and «x ¢ S, there are
sets Iy, F, € ¥ such that @ ¢ Fy, SCFy and ¥y ~ Fy = 0. Thus By ~ T, +# 0.
The family § separates &, hence there are sets @, @, ¢ § such that ¥, C Gy,
F,C@, and G, ~ G, = @. Since F separates G, there exist sets Fy, F, ¢ F
such that G, CF;, G,CF, and Fy ~nF,=@. Thus Fy ~ F; = @. This
implies that 67 ~ G5 = @, % ¢ GT, 8§ C Gz . Thus § is separating. To show
the trace property, let ¢, ~ G, = @. Then there are sets F,, I, ¢ F such
that G, CF,, G,CF, and F, ~ F, = 0. Since & hag the trace property,
Fy ~nFy = 9. This implies that 67 ~ 6z = @ and § has the trace prop-
erty wrt. X. Then by Theorem 2 X ~ w(X, 8§ ~ X) = w(X, §).

. To prove the converse, again let X= w(X,F) and suppose
X ~w(X,S). Then by Theorem 2, = {¢": G ¢S} is a separating ring
of closed sets. It follows from the compactness of X that & separates the
family of all closed sets; hence § = § ~ X separates . Similarly § = {F:
F eF} is a separating family and § = § ~ X separates S.

Using this theorem, we can give a simple example of a Wallman
compactification which is not regular. Let X be the positive integers
with the co-finite topology and F be the family of all closed sets. Then
w(X, ) is a compactification since X is T, and F is separating. But,
since the closure of every non-empty open set in X is X, there is no family
of regular closed sets which could separate &. Thus w (X, ) is not a regular
Wallman compactification.

As another illustration of the use of Theorem 7 we prove

) TeroREM 8. The Stone-Cech compactification B(R) of the real numbers
18 & regular Wallman compactification.

Proof. We kmow that g(R) ~ w(R, F) where F is the family of
all closed subsets of B (see Gillman, Jerison [4]). Tt is clear that & separates
any fa@y of closed sets. Thus by Theorem 7, it suffices to construct
% separajtmg ring of regular closed sets which also separates F. Let G be
the family of all sets which can be expressed as the union of closed intervals
of the form [, §] where r is rational and s is irrational, such that there
are onl.y a finite number in any bounded set. It is not difficult to show
that § is a ring of closed sets. Also, if ¢ = U {lr+, 84]: ¢ e I}, then @ = clo-
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sure (| {(rs, $:): 4 e I}). Hence the members of § are regular closed sets.
Now let I, and F, be any two disjoint closed sets. Consider F; ~ [p, q]
and F, ~[p, q] where [p, q] is an arbitrary closed interval. These are
closed, bounded and disjoint sets. Sinee R is normal, there are open sets 0,
and O, such that I, ~[p, ¢]C O, and F, ~ [p, ¢] C 0,. These open sets
can be expressed as countable unions of disjoint open intervals. Since
T, ~[p, q] is compact, a finite number of the intervals in 0, will cover it.
Let one of these intervals I = (a, b) cover a part P of F, ~n[p, ¢]. Note
that @ or b may lie outside of [p, ¢]. Since F; ~[p, ¢] is closed and the
intervals are disjoint. P is bounded away from both ¢ and b. Thus a closed
subinterval [, s'] may be chosen to cover P, where ¢’ is rational and s’
ig irrational. In this way, a finite number of the closed intervals eover
Fy~[p,q) Similaxly F, ~[p,q] can be covered with closed intervals
and they will be digjoint from those chosen to cover Fy ~ [p, q]. This proe-
ess.can be repeated along B by using overlapping closed intervals and two
disjoint members of § will be obtained which cover F; and F, respec-
tively. This shows that § separates & and hence also that § is separating.

* 6. Conclusion. The compactifications shown by Njastad [7] to be
Wallman by way of the associated proximities may also be shown to be
Wallman directly by finding separating families with the trace property.

As an example consider the Fan—Gottesman compactification X of
a regular T;-space X ag described by Njistad. It is defined by a distin-
guished base # of open sets in X. It can be shown that the family of finite
intersections of closures (in X) of the members of # is a separating family
with the trace property w.rt. X.

Although we have shown that not all T,-compactifications are
Wallman and that not all Wallman compactifications are regular, we
have not settled these questions in the Hausdorff case.

‘We have shown that all cubes are Wallman compactifications, but
we have not shown this for all their closed subspaces; in fact, not even
for all closed subsets of the unit disk. We proved that f(R) is a regular
Wallman compactification but have not shown this for all Stone-Cech
compactifications.
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A unique factorization theorem
for countable products of circles

. by
Carl Eberhart* (Lexington, Ky.)

To say that X is a factor space of ¥ means that ¥ is homeomorphic
with X xXZ for some space Z. One can often say something about X if
something is known about Y. For example, it is not hard to show that
if ¥ is a compact, connected, locally connected metric space, then so is X.
As a further example, it can be shown that every one-dimensional faetor
space of the Hilbert cube is a tree (non-degenerate locally connected
metric continuum containing no simple closed curve). R.D. Anderson
has proved that in fact every tree is a factor space of the Hilbert cube [1].
In this note -we consider the analogous problem of determining the one-
dimensional factor spaces of countable products of circles, It is found
that the circle is the only one. The author wighes to thank R. D. Anderson
and A. Lelek for their suggestions.

The notion of an inessential space [2] will prove useful. An inessential
space is a space X such that there is a homotopy H: [0, 1] x X »X with
the property that H (1, «) = & for each # ¢ X and H(0, X} # X; in words,
X can be continuously deformed to a proper subset of itself with a homo-
topy starting at the identity. A space is essential if no such homotopy
exigts. It follows from Lemma 1 of [3] that a countable product of circles
is essential.

Lmyva 1. Let X be a tree and let p be an endpoint of X. Then there
is a homotopy H: [0,1] x X X such that H(1,x) = o for » ¢ X, H(0, X)
=p and H(t,p)=p for each 1¢[0,1]. Consequently X is inessential.

Proof. This is a corollary of Theorem A of [4], which states that X
can be made into a semilattice with identity and zero p.

LeMva 2. Bvery factor space of am essential space is essential.

* The results in this paper are contained in the author's dissertation written
under the direction of Professor R. J. Koch.
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