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this decomposition is core with respect to satisfying Mc Auley’s condition I.(,,
([10], p. 9), but is not core (or atomic) with respect to giving an aposyndetic
hyperspace, nor is it core with respect to having T-closed elements.
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Spaces in which sequences suffice II
by
S. P. Franklin (Pittsburgh, Pennsylvania)

4. Introduction. In this paper we continue the work begun
in [6] presenting some new facts on sequential and Fréchet spaces (Sec-
tions 5 and 6) and paying particular attention to those sequential spaces
which are not Fréchet spaces (Section 7).

5. Sequential spaces II. The category of sequential spaces
fails to have two important permanence properties; it is neither hereditary
([6], Example 1.8) nor productive ([6], Example 1.11). There is another
example of a non-sequential subspace of a sequential space (due
essentially to Arens [1]) which plays a critical role in what follows.

5.1. EXAMPLE. There is a countable, normal sequential space M with
a non-sequential subspace.

Proof. Let M =(NXN)yuNu {0} with each (m,n)e NxN an
isolated point, where N denotes the set of natural numbers. For a basis
of neighborhoods at =, ¢ IV, take all sets of the form {n,} w {(m, ny)| m = m,}.
U will be a neighborhood of 0 if and only if 0 ¢ U and U is a neighbor-
hood of all but finitely many # e N. One verifies routinely that M is normal
and sequential. We shall show that {0} is sequentially open but not open
in M\N. ’

Since 0 e cly(IVx N), {0} is not open in M\N. If {(m¢, ny)} iy any
sequence in VXN, either there is some #,¢N such that n;=n, for
infinitely many 4, or there is no such n,. In the first case, {(mq, ns)} has
a cluster point in the set {ny} v {(m, n,)| m ¢ N} and hence does not
converge to 0. In the second case one easily construets a neighborhood
of 0 disjoint from {(mi, n¢)}.

We are left by these examples with the problem of characterizing
those subspaces of a sequential space X which are themselves sequential.
Such a characterization can be effected in terms of X as a quotient (under
the quotient map ¢x) of X*, the topological sum of its convergent sequences
(see 1.12, [6]) as follows.

5.2. PrROPOSITION. A subspace Y of a sequential space X is sequential
iff exlez(X) is a quotient map.

4%
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Proof. Let ¥, = ¢z (Y) and ¢, = ¢x|¥;. Denote by oY the get ¥
topologized by the sequential closure of the relative topology from X
(ie. all sequentially open sets are open), and let ‘(plr: Y*>Y be_ﬂl‘? map
which, with X replaced by ¢¥, becomes the quotient map 1.12, [6] (¢¥ is

sequential space).
* C{f gol'l(U)Pis open in ¥y, where UC Y, thoxll e (U) = qo_i;l(U) ~ Y*ig
open in ¥*. Conversely, we have ¢i 11( U)=gx (U) = {px (U~ 8| §is
a convergent sequence in X}, and if ¢x'(U) is open in. ¥*, tl}en each U~ S
is open in S, and 80 @1’ (T) is open in X*. Thus ¢, i o quotient map iff gy
is, and 5.2 follows from 1.2 and 1.12, [6]. o

Sequential subspaces will be used in. Section. 6 to characterize Fréchet
spaces.

T, K. Boehme, in [3], asked whether or not a sequential space with
unique sequential limits need be Hausdorff. Several examples showing
that they need not have been given (see Tréchet [8] (%), Dudley [5],
Franklin [7]). The following example, which is both countable and compact
was discovered independently by A. Arhangel’skii and the author.

5.3. ExAMPLE. There is a countable, compact, sequential space M, with
unique sequential limits which is not Hausdorff.

Proof. Let p be some point not in M (see 5.1) and let My = M o {p}
with 3 open in M, and where basic neighborhoods of p are of the form
(P} v (N xN)\F) with I the union of the ranges of o finite mumber
of convergent sequences in N x N (2). Clearly I, is countable and, since 0
and p have no disjoint neighborhoods, is not Hausdorff. Since M is Haus-
dortf and a convergent sequence in M cannot also converge to p, M, has
unique sequential limits. The compactness of M, follows immediately
from the covering definition. Fvery sequentially open subset of M is
openin M, . If § is sequentially open in M, and p ¢ 8, clearly § is a neighbor-
hood of each m e § different from p, since S\{p} lis sequentially open
in M. Since any subset {(m,n)| m ¢ A CN, n e B C N} contains a sequence
converging to p whenever B iy infinite, X\S must contain points of
NxN having only finitely many second indices. Honce § containg
a Dasic neighborhood of p and is therefore open in M,. Thus M,
is sequential. '

After a preliminary result we shall see that the situation described
in Bxample 5.3 cannot oceur in the presence of suitable compactness
conditions.

5.4. PROPOSITION. A sequential space has unique sequential limdts iff
each countably compact subset is closed (and hence sequential).

() The author is indebted to C. E. Aull for this reference.
(*) This idea was gleaned from H. T. Cullen [4].
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Proof. If {@,} is a sequence converging to two distinct points
and @', then {#} w {#.] n ¢ N} is a non-closed compact set. Conversely,
if X is sequential and has unique sequential limits, X is T,. Let K C X
be countably compact. If {#,} is a sequence in K and {w,} -2, then {z,} v
o {&n| n e N} is sequentially ¢losed and hence closed. Thus , is the only
possible accumulation point of {ws| neN}. I {24 neN} is infinite,
x, e K. If not for some n, %, = o, ¢ K. Hence K is closed.

5.5. COROLLARY (Aull). A sequential space has unique sequential
limils iff each sequentially compact subset is closed.

Proof. If K is a sequentially compact subset of a sequential space X
with unique sequential limits, then K is countably compact and, by 5.4,
closed. To converse is clear.

5.6. PROPOSITION. A locally countably compact (locally sequeniial
compact, locally compact) sequeniial space X with unique sequential limits
18 Hausdorff.

Proof. BEach countably compact subset of X is closed (by 5.4),
sequential (by [6], 1.9), and, hence, sequentially compact (by [6], 1.10).
(Note that the Hausdorff hypothesis there, while used in the proof, is
not needed.) The proof is the following: Let {z,} be a sequence in a count-
ably compact space and y one of its cluster points. If for infinitely
many n, &, = ¥, some subsequence of {z,} converges to y. If not, suppose
that %> n, implies @, # y. Then if T= {&a] n > ne}, ¥y eclI\T and
thus 7T is not sequentially closed. Hence some sequence in T' converges to
a point (not necessarily y) outside of 7' and {z,} has a convergent sub-
sequence. Thus X is locally sequentially compact and (by Boehme’s [3]
Theorem 1) X x X is sequential. Hence X is Hausdorff (see [3], page 7
or [7], footnote (8)).

Note. The apparent contradiction between 5.6 and 5.3 results
from the fact that Boehme’s Theorem 1 ([3]) requires local sequential
compactness in the sense that each point has a basis of sequentially
compact neighborhoods. The space M, of 5.3 is compact but not locally
(sequentially) compact.

The next proposition, a lemma for the following one, is possibly of
independent interest.

PROPOSITION. Hvery locally sequential space X is sequential.

Proof. If » belongs to a sequentially open subset U of X and N is
any sequential neighborhood of , then intN is sequential (by [6], 1.9),
and U’ = (intN) ~ U is open in int N and hence in X. Thus U is open
and X is sequential.

We close this section with the companion piece to 5.2.

5.8. PROPOSITION. The product of two sequential spaces X and ¥ is
sequential iff px X pr 18 a quotient map.
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Proof. By Boehme’s Theorem 1 ([8]) each cartesian product of
a convergent sequence (including its limit point) in X with another in ¥
is sequential. Hence, by 5.7, X*x Y* is sequential. Thus if px Xpr i3
a quotient map, by 1.3, [6], X xY is sequential.

Conversely, suppose that X x ¥ is sequential, and that WC X x Y
is such that (px X@y) (W) is open in X*x T*. One verifies routinely
that W is sequentially open, and hence, open, 50 that px X @r 18 a quotient
aap.

6. Fréchet spaces IL In this section we congider the possible
cardinality of compact Hausdortt Fréchet spaces, and the uniqueness
of sequential limits in Fréchet spaces.

A well-known, unanswered question of Alexandroff asks whether or
not there is & first countable compact Hausdorff space with cardinality
greater than ¢. The corresponding question for Fréchet spaces is trivially
answered by

6.1. PROPOSITION. The one-point compactification of amy discrete space
is o Fréehet space.

Tn [7] an example of a Fréchet space, not Hausdortf, but with unique
sequential limits was given. Another such (discovered also by A. Arhan-
gel’skil) which is countable and compact follows. (See also 5.3. M, is not
Fréchet.) ‘

6.2. ExAMPLE. There is a countable, compact, Fréchet spuce with unique
sequential limits which is not Housdorff.

Proof. Let X =(NxN)v {p, ¢} with p #¢and {p,¢} (NxN)=0.
Bach (i,5) e NxN will be discrete. Basic neighborhoods of p will be
of the form {p}ug’ {(3,9)] jeN} for each ke, and those of ¢ of

ic

the form {g} v U {{(i,)| j =ji e N}. One verifies routinely that X is
i

compact but not Hausdorff. A sequence {(is, jn)} in NxIN converges
t0 p iff {i,} is unbounded, and to g iff {in} i8 eventually constant and {jn}
is unbounded. Hence sequential limits are unique.

Let 4 be any subset of X\{g}. If for each 4, 4 ~ ({1} x INV) is finite,
g ¢ cLA. If for some 4 it is infinite, there is a sequence in 4 converging
to ¢. Since each point of X \{g} has a countable basis of neighborhoods,
X is a Fréchet space.

7. When is a sequential space Fréchet? Example 2.2 [6]
ghows that sequential spaces need not be Fréchet. An early draft of [6]
asserted that locally compact sequential spaces must be. An error in. the
proof was pointed out by C. B. Aull. A counter-example follows.

7.1. BXAMPLE. There is a sequential compact Hausdorff space which
48 not I'réchet.

1 ©
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Proof. The example is the one-point compactification of the space ¥
of Isbell (see [9], 5I, page T9). We shall briefly describe the construction
for the convenience of the reader.

Tet & be an infinite maximal pairwise almost disjoint collection
of infinite subsets of N and let ¥ = F v N with points of IV discrete
and neighborhoods of F e & those subsets of ¥ containing ' and all but
finitely many points of F. Let ¥* =¥ v {co} be the one-point com-
pactification of ¥. Since each F v {F} is compact, ¥ is locally compact
and hence ¥* is compact Hausdortf.

Now any sequence of distinet points in F' converges to F and any
sequence of distinet points in & converges to co. Hence any sequentially
open subset of ¥* is a neighborhood of each of its points and so ¥* is
sequential. But no sequence in IV converges to co even though oo e cliV.

Note that ¥*\F is a non-sequential subspace of ¥*. The following
proposition (a corollary to results of Arhangel’skil) shows that such a sub-
space must always exist.

7.2. PROPOSITION. A sequential space is Fréchet iff it is hereditarily
sequential.

Proof. By 2.1, [6], every subspace of a Fréchet space iy Fréchet
and hence sequential.

Conversely, if X is hereditarily sequential, by 5.2 ¢x is 2 hereditary
quotient map and hence pseudo-open ([2]). Thus by 2.3, [6], X is Fréchet
(the Hausdorff hypothesis is not needed here).

The space M of 5.1 can be used to give a characterization (in the
Hausdortf case) which is more useful than 7.2.

7.3. PrOPOSITION. A Hausdorff sequential space is Fréchet iff it con-
tains no subspace which, with the sequential closure topology (see the proof
of 5.2), is homeomorphic to M. (%)

Proof. Let ¥ be a subspace of a sequential space X and h: M —~>o¥
(see the proof of 5.2) be a homeomorphism. Then if ¥ # cY, Y is a non-
sequential subspace of X and, by 7.2, X is not Fréchet. It Y=Y,
Y\R(N) is a non-sequential subspace of X.

Conversely, suppose that X is not Fréchet and, for any 4 C X, let A
Dbe the set of all limits of sequences in A. Then for some B C X, B’ # clB.
Qince X is sequential, there is a sequence {®,} in B’ converging to some
2, € cLB\B'. Without loss of generality take the @ distinet and {w} C B\D'.
Then for each i, there is a sequence {w;} C B which converges to ;.
Since X is Hausdorff and {z,} v {&:| ¢ e N} is compact, the xy may be
taken all distinet. But since no sequence of wy’s converges to @, the

(®) The author is greatly indebted to the referee, whose skepticism led to th~
correction of an error in the original version of this proposition.
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space oY where ¥ = {m} v {m] teN}v {wy) ©,j € N} i easily seen to
be homeomorphic to M.

Note that ¥* of example 7.1 contains no subspace homeomorphic
to M.

Example 1.11, [6], shows that the product of Fréchet spaces need
nob be Fréchet. This is also an immediate consequence of 6.2 (see [3],
page 7 or [7], footnote (3)). In each of these cases, the produect is not
even sequential. The next example shows that this need not always be
the case.

7.4, ExaMprE. The product of two Hausdorff Tréchet spaces can be
sequential without being Fréchet.

Proof. Let X = RJZ, the real line with the integers identitied,
and I=1[0,1] the closed unit interval. I ig firgt countable and hence
Fréchet. The quotient map ¢: R—X i3 pseudo-open and hence by 2.3, [6],
X is Fréchet. Since I is compact, by Boehme’s Theorem 1, [3], X xIis
sequential. For each nelN let An= {(n—1k, 1/n)| ke N} and let
4=\ {4s] neN}. Then (0,0)ccld but no sequence in A converges.
to (0,0). Hence X x I is not Fréchet. )

7.5. Examperm. The product of two hereditarily quotient (pseudo-openy)
maps may be a quotient map without being hereditarily quotient (pseudo-
open).

Proof. The natural identifications ¢x: X*—+X and o@r: I*-I
(see 5.2) are pseudo-open by 2.3, [6] but gx x ¢z is not, since X*x I* i
a Fréchet space. However by 5.8 gx X¢r is a quotient map.
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On bundles over a sphere with fibre Euclidean space

by
C. T. C. Wall (Liverpool)

The origin for this work is a paper of 8. P. Novikov [17] on the
topological invariance of rational Pontrjagin classes. His paper gives
the first method (beyond mere homotopy theory) for proving topological
invariance of eertain properties. The object of this paper ig to consider
the special case of (topological) bundles over a sphere with fibre Euclidean
space, and to compare the piecewise-linear (hereafter written as PL)
and topological classifications. Perhaps the most interesting of the results
obtained is that topological equivalence of two such bundles implies
(stable) piecewise linear equivalence; however, we go on to extract all
the information we can from the method.

T am indebted to Steve Gersten and Larry Siebenmann for pointing
out that results from the latter’s thesis can be used to fill an apparent
gap in the argument of [17]: Novikov's recently published detailed
proof [28] appears to use the same reasoning.

Our main result is the following

TrnorEM. The natural homomorphism

j: m(@, PL)—mi(@G, Top)

has a left inverse, for all © > 0, exoept possibly for i =2 or 4. BEven in these
cases, j 18 injective,

In the first paragraph we establish our notation. The next is devoted
to the lemmas which are needed at the key place in the argument. We
then prove the main theorems. A final section is devoted to discussion
of special features of low dimensional cases, to which the proofs do not
apply without modification.

§ 1. Structure groups and classifying spaces. First it will
be convenient to establish our notation and recall some known re.sults.

By O, we denote the usual orthogonal group acting o R". PL{. is the
group of piecewise linear homeomorphisms of R™ onto iiself, leaving the
origin fized. It is necessary to define PLy a8 a semi-simplicial group [14].

Top, will denote the group of all homeomorphisms of (R",0) onto
itself, with the compact-open topology.
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