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Measurable relations
by -
C. J. Himmelberg (Lawrence, Kan.)

Abstract. The measurability properties of relations (= set valued functions) are
developed. First the logical relations among the various definitions of measurability
are worked out and used to determine sufficient conditions for the intersection of measur-
able relations to be measurable. These results are then used to generalize the selection
theorems of Kuratowski and Ryll-Nardzewski, Castaing, and Aumann, to generalize
Filippov’s implicit function theorem, and to prove the existence of a measurable selector
extending a given measurable partial selector. The paper concludes with some appli-
cations to relations with values in a locally convex space.

1. Introduction. Measurable relations, i.e., set valued functions which
assign to each element ¢ of a measurable space T a subset of a topological
space X in a manner satisfying any one of several possible definitions
of measurability, have been studied extensively in recent years by numer-
ous authors (Aumann [A-1,2], Castaing [C], Debreu [D], Jacobs [J],
Kuratowski and Ryll-Nardzewski [KR], McShane and Warfield [MW],
Rockafellar [R], Van Vleck and the author [HV-1, 2, 3] and many others.)
Much of this work either assumes that the measurable structure on T' is
that of a Radon measure on a locally compact space Or that X is a very
special kind of space, say compach metric or Fuclidean. The purpose of
this paper is to develop the properties of measurable relations in the
general situation where T is an abstract measurable space and X is
separable metric. It turns out that to work with 7' this general we must
usually (but not always) introduce compactness somewhere, either in X
or in the values of a multifunction with values in X. Alternatively, we
obtain a similar body of results assuming that X is a Souslin space and
that a o-finite meagure is defined on the measurable subsets of T.

In the main, we will confine our attention to the general properties
of meagurable relations, and to selection, extension, and implicit function

theorems. -

In Section 2 we give most of the necessary definitions and termi-
nology, and state without proof some, trivial but often used properties
of meagurable relations. Section 3 is an account of the logical relationships
among the various definitions of measurability. Section 4 is concerned

with measurability of the intersection, complement, and boundary of
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measurable relations. Section 5 contains partial generalizations of the
selection theorems of Kuratowski and Ryll-Nardzewski [KR] and

Castaing [C], and of Aumann’s extension [A-1] of Von Neumann’s measur-

able choice theorem. The first generalization characterizes weak meagsur-
ability by the existence of dense families of meagurable selectors. In
section 6 we consider the measurability of relations defined in various

ways from a funetion f: T'x X— Y measurable in ¢ and continuous in z.

Section 7 contains several implicit function theorems, i.e., theorems
asserting the existence of a measurable function y such that ()  I'(t)
and g(t) = ft, y(2)) for all t¢ T, given that I' is a multifunction and y is
a funetion such that g(t) e f{{t} X I'(t)) for all ¢. Section 8 is concerned
with the extension of a partial selector f: §—X of a measurable multi-
function F: T—+X to a measurable selector defined on all of 7. (Here 8 is
an arbitrary (not necessarily measurable) subset of 7'.) Section 9 contains
a few results for relations with values in a linear space. No attempt is
made to be complete in this section. For recent work on relations with
values in linear space we refer the reader to Valadier [V].

2. Definitions and some elementary properties. Throughout the paper T
will denote a measurable space with o-algebra +£. In the absence of any
other statement about T, that is all we assume about it. In case there
is a o-finite measure defined on #£ we say that T is o-finite, and if there
is a complete o-finite measure defined on # we call T complete.

X will almost always be a separable metrizable space, and, following
Bourbaki, we will call X: Polish, if X is separable and metrizable by
a complete metric; Lusin, if X is metrizable and the bijective continuous
image of a Polish space; Souslin, if X is metrizable and the continuous
image of a Polish space.

A relation F: T—X is a subset of T'x X. Alternatively, ' may be
regarded as a function from T' to the set of all subsets of X. However,
for the sake of conceptual clarity, if #: T—+X is a relation, we denote
by F the corresponding function into the set of subsets of X. Also, when
we want to emphasize the properties of I as a subset 7' X X, we will refer
to its graph Gr(F), even though this is redundant terminology, since I is
a subset of T'x X. The set {teT| F(t) # @} is called the domain of
F: I'-X. If domain F = T, then F is called a multifunction (or corre-
spondence) from T to X. If BCX, then FY(B)= {t¢ T| F(i) ~ B s 0}.
Relations are composed in the customary way.

A relation F: T'—X is measurable (weakly measurable, 9-measur-
able, C-measurable) iff F~Y(B) is measurable for each closed (resp., open,
Borel, compact) subset B of X. If F': Y—X where ¥ is a topological
space, then the assertion that F is measurable (weakly measurable, etc.)
means that F is measurable (weakly measurable, ete.) when Y is assigned
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the o-algebra B of Borel subsets of Y. Likewise, if F: T X ¥-+X, then
the various kinds of measurability of F are always defined in terms of

‘the product ¢-algebra AX B on TX Y generated by the sets 4Ax B,

where A e & and B eB.

The following propositions are trivial exercises. We state them here
without proof, and will frequently use them without specific reference.

PROPOSITION 2.1. 3B-measurability implies measurability, and, if X is
perfectly normal, measurability implies weak measurability.

Beeause of Proposition 2.1, it follows that the measurability of
F: T—X is equivalent to the measurability of the function F: T—2%,
if, X is compact metric, and 2% is the space of compact subsets of X with
the exponential topology (see [K-1, p. 160].) Recall that in this case the
exponential topology is the topology on 2% defined by the Hausdorff
metric [K-1, p. 215]. :

"PROPOSITION 2.2. If F: T—X is measurable or weokly measurable,
then domain F is measurable.

PROPOSITION 2.3. Let J be an at most countable set and let Fp: T—+X
be a relation for each n ed. Then i

(i) If each Fy is measurable (weakly measurable, etc.), so is the re-
lation | ) Fn: T—X defined by (iJFa)(t)= U Fal(l); and

N n

n
(ii)nif X is second countable and each F, is weakly measurable, then
s0 is the relation [] Fu: T—X’ defined by ([] Fa)(t) = [] Fx(t).

The measurabqillity of the at most countable intersection of measur-
able (weakly measurable, etc.) relations is more difficult-to obtain, and
will be discussed. in gection 4.

PROPOSITION 2.4. Let F: T—>X be a measurable (weakly measurable,
$-measurable, C-measurable) relation, and let- Z be a closed (resp., open,
Borel, closed) subset of X. Then the relation P, T—X, defined by
F,(t)y= F(t) ~ Z, is measurable (resp. ‘weakly measurable, 3-measurable,
C-measurable).

PROPOSITION 2.5. If X 4s a subspace of ¥, then F: T—>X is (weakly)
measurable as a relation into X iff F is (weakly) measurable as & relation into Y
Le., if i: XC Y, then F: T—~X is (weakly) measurable iff i o F: T—Y is.

PROPOSITION 2.6. F: T—>X is weakly measurable iff the relation
F: T—X, defined by F (1) = F(t), is weakly measurable.

3. Logical implications among the various definitions of measurability,

TumorEM 8.1. Let X be o meiric space, and F: T—+X a relation with
compact values. Then F' is measurable iff F is weakly measurable.

Proof. Measurability implies weak measurability by Proposition 2.1.
On the other hand suppose F is weakly measurable and let B bé a closed
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subset of X. We have X—B = | 4s, where Ay = {2] d(x, B) > 1/n}.
By hypothesis, F~{X—A,) is measurable. So also T—F " X—A4,)
= {f] F(t) C A5} is measurable. Applying the compactness of each F(t),
we obtain

FY(B)=T-{t| F(t)C X—B}

= T—{t] F(t)C | An}
= T— |J{t| F(t)C An}-

Hence F~(B) .is measurable.

TEEOREM 3.2. (i) Let X be a separable metrizable space, and F': T—>X
a relation with closed values. Then measurability of F = weak wmeasura-
bility => C- measurability. i

(ii) If, in (i), X is also o-compact (i.e., X = | J Xn, where each X, is

n
compact), then all three measurability concepls are equivalent.

Proof. (i) The first implication follows from Proposition 2.1. So
suppose F' is weakly meagurable. Let ¥ be a compact metric space which
contains X as a dense subspace, and define G: T'—Y by G(t) = F()
(closure with respect to ¥). Then @ is also weakly measurable. By
Theorem 3.1, & is measurable. Now let K be a compact subset of X. Then

FYEK) = {t| (i) ~ K +# O}
={t[_F_(t)m_Xr\K#Q)}
={ F(t) ~E + 0} = ¢"\(K).

So F~Y(K) is meagurable.

(ii) Assuming X as in (ii) above, there remains only to prove
C-measurability implies measurability. So let F' be C-measurable and
let B be a closed subset of X. Then

CFYB)= UFYB X, e,

since each B ~ X, is compact.

In many instances it is useful to characterize the measurability of
F: I'-X in terms of the £ X $-measurability of Gr(F) (as, for instance,
in the work of Aumann [A-1] and Debreu [D]) or in terms of the measur-
ability of the function i—d(z,F(})) (as in Oastaing [C]). In the latter
situation we define d(z,F (1)) = + oo if F(t)= @,

THEOREM 3.3. Let X be separable metric and let F: T—X be a relation.
Consider the statements:

a) F is weakly measurable;
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b) t—d(x, F (1) is a measurable function of ¢ for each m;

¢) Gr(F) is AX B-measurable (F is defined by F(t) = F(1)). Then
a<b=c.

Proof. a < b. F is weakly measurable iff F~'(B(z,e)) is measur-
able for each open ball B(z,s) in X. On the other hand, t—dfw, F(t))
is measurable in ¢ iff {f| d(w,F (1)) < £} is measurable for each 0< &
<+ o0, But

FY(B(w, &) = {t| () ~ B(w, ¢) + 0}
= {t| dlz, )< ¢} .

It follows that a <« b.

b < ¢. This is essentially proved in [D, Theorem 4.3], although
Debreu assumes F has compact values and uses a stronger definition
of measurability. The implication also follows directly from the fact that

Gr(F) = {(t, a)| dlz, () = 0} =F70),

where f: Tx X->[0, ++oo] is defined by f(, #) = d(z, F(t)). The func-
tion f is easily shown to be measurable in ¢ and continuous in , and hence
(by Theorem 6.1 to follow) is measurable in both variables jointly. Thus
f7Y(0) is measurable.

THmoREM 3.4. Let T be complete, X be Souslin, and F: T—X a re-
lation such that Gr(F) is %X B-measurable. Then F is B-measurable.

Proof. If X is Polish, see [D, Theorem 4.4] or [A-1, Projection
Theorem]. In the present case, let ¢: P->X be a continuous function
from a Polish space P onto X. Define i: T'— T to be the identity function,
and let (i, p): Tx P—Tx X be defined by (4,9)({t,p)= {t; ¢(p)). Then
(3, p) is & measurable function in the sense that (i, @) (AX Bx) CAX By,
where $x, By are the families of Borel subsets of X, Y, respectively.
Now congider the relation ¢~! o F: T—P. It has measurable graph, since
Gr(p~ o F) = (i, @)~ Gr(¥)). Thus ¢7'oF is a measurable relation by
the Polish case. It follows that F = g og ™ o F is measurable.

The situation for relations with closed values can now be summarized
in the following theorem.

TeazorEM 3.5. Let X be separable metric, and let F: T—X have closed
values. Consider the following statements:

a) I is B-measurable; '

b) F is measurable; '
¢) F is weakly measurable;
d) F' is C-measurable; -
e) t—~d(z, F (1) is @ measurable function of i for each zelX;
f) Gr(F) is #4X B-measuradle.
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We have (i) a=b =>cwe=d and ¢=1;
(ii) If X s o-compact, then a=b<wcedw o= £;
(iii) If T is complete and X is Souslin, thena b s cwe«wf=d

In (ii) above we do not have b = a, even if X is the unit interval I,
Tor let T be the collection of non-empty members of the space 27, and
define a multifunction F: T->I by F(A)= 4 for each 4 ¢ T. Then F is
clearly continuous (since it corresponds to the identity funetion from
97 to 27) and has closed values. However, I is not %- measurable when
T is assigned the o-algebra 4 of Borel subsets of T'. To see this, let ¢ be
the set of rational numbers in I. Then I—¢@ is a Borel set in I, but
FY(I—Q) = 27— {4] F(4) C @} is not a Borel set in 2%, (See [K-2, p. 72].)

We do not have an example for £ > b in (ii), unless the o - compactness
condition is removed. Nor do we have an example for d => b in (iii) unless
either the completeness condition is removed from T or the Souslin con-
dition is dropped from X.

It would be very interesting to know whether b« ¢ if T is just
a measurable space and X is Souslin (or even Polish).

4. Intersection, complement, and boundary of measurable relations. For
each # in an at most countable set J, let F: T—X be a measurable (or
perhaps just weakly measurable) relation with closed values, and define
F: T—+X by F(t) =) Fa(t). If T has a complete o-finite measgure and

n

X is Souslin, then the measurability of F' follows immediately from (iii)
of Theorem 3.5. Even if T has no complete measure and X is only assumed
to be separable metrie, it follows from Theorem 3.3 that I’ has /4 X $-meas-
urable graph. For the measurability of F in this case we have the following.

THEOREM 4.1. Let X be separable metrizable, and let Fyp: T->X be
a weakly measurable relation with closed values for each n eJ. Also assume
that for each teT, Fo(t) is compact for some ned. Then F = () Fy is

n
measurable.

Proof. We first consider the case where F,(t) is compact for all ¢
and . Define a relation G from T to the product XV of J copies of X by
@ (t) = [] Fau(t). By Proposition 2.3, & is weakly measurable. Since @ has

ned

compact values,'it is ‘also measurable, by Theorem 3.1. Now let B be
a closed subset of X, and let 4 be the diagonal of X7. Then

F2B)={il [ Falt) 0 B # 0}
= {i| J]Fu(t) ~ 4~ B = @}

neJ

— @4~ B).
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This last set is measurable, since 4 ~ B is closed in X7 and @ is meagur-
able. Thus F is measurable.

Now suppose that only one Fu(t) is assumed to be compact for each
teT. Let ¥ be a metrizable compactification of X, and define Fp: T—Y

by Fa(t) = Fu(t) (closure with respect to ¥). Then each F, is weakly

measurable, and hence measurable, by Theorem 3.1. By the first part

of the proof (1) Fn is measurable. But, as is easily seen, () Fu(t) = N Falt),
n ne ned

for each f, since iv;;(—t-)‘ = I'y(t) for some n. Thus () F, is measurable by
Proposition 2.5. net
COROLLARY 4.2. Let X be a o-compact metrizable space and let each Fy,

be (weakly) measurable with closed values. Then [\ Fy is measurable.
n

Proof. The Fy’s are measurable by Theorem 3.5. Let X = | J Xp,
n .
where each X is compact. By Theorem 4.1, t—X, ~ [ Fy(t) defines
n
a measurable relation for each m. Hence (| Fy ig the countable union
"

of measurable relations.

CoROLLARY 4.3. Let X be separable metrizable, and let each F, be
C-measurable with closed values. Then F = () Fn is C-measurable.

n
Proof. Let K be a compact subset of X, define Gu: T—X by Ga(t)
= Fu(t) ~ K for each n, and let G = () G». Bach Gy is measurable with

n
compact values. Hence @ is measurable by Theorem 4.1. But F~Y(K)
= @K). So F is C-meagurable.

THEOREM 4.4. Let X be a separable metric space, and let F': T—X be
a measurable relation with closed values. Then the velation G: T'-X, de-
fined by G(t) = X—T(t), is measurable.

Remark. In fact, instead of measurability of F, we use only the
weaker fact that F~({z}) is measurable for all # e X, and we prove that
G~Y(B) ¢ # for every subset B of X. This happens because G has open
values.

Proof. Let BC X, and let 4 be a countable dense subset of B. Then

G (B)={i| (X—F@)~B # 0
= T—{i| BCF (1)}
= T—{t| ACF (1)}
=T— {t acFQ)}

aed
= T— N F*({a}),.

. aed -’
So G7Y(B) is measurable.
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If T is complete and X Souslin, the situation iy simpler (by Theo-
rem 3.5), and the reader can easily check the following:

TEroREM 4.5. Let T be complete and X Souslin, and let F, H: T—+X
be measurable relations which closed walues, then t—H (1)—T (t) defines
a measurable relation.

THEOREM 4.6, Let F: T— X be a velation. Then the relation BAF: I'»>X,
defined by t->BAF (1), is measurable if any of the following condilions is
satisfied:

(i) X is separable metric and F is measurable with compact values.

(i) X is o-compact meiric and F s measurable with closed values.

(iil) T is complete, X is Souslin, and F is measurable with cdlosed values.

(iv) T is complete, X is Souslin, and Gr(F) is X B-measurable.

Proof. (i) By Theorem 4.4, t—X—F (i) defines a measurable re-
lation. Hence T—X— F () is weakly measurable. It follows from Theo-
rem 4.1 that t—BdF(t)=F () » X—F(¢) is measurable,

(ii) Both t—F(t) and t->X—F (t) are weakly measurable. So BAF is
measurable by Corollary 4.2.

"(iii) Follows from (iv) by Theorem 3.3.

(iv) Both F and #—~X—F(f) have sX B-measurable graph, and
hence are measurable, by Theorem 3.4. Thus both ¢—F(?) and i—X—T(t)
are weakly measurable, and, by Theorem 3.5, have 4 X $%-measurable
graph. Hence, so does BdF, and it follows that BdF is measurable by
another application of Theorem 3.5.

TeeEOREM 4.7. If X is separable metric, and I': T—X is C-measurable
with closed values, then BAF 48 C-measurable.

Proof. By the remark after Theorem 4.4 and by Theorem 3.2,
t—X—F (1) is C-measurable. Hence BAF is C-measurable by Corollary 4.3.

5. Selection theorems. A function f: T'—X is a selector for a multi-
function F: T—X iff f(t) e F(f) for all ¢ e T. The basic theorems giving
the existence of meagsurable selectors are the selection theorems of Kura-
towski and Ryll-Nardzewski [KR] and Aumann’s extension [A-1] of
Von Neumann’s measurable choice theorem. We gtate them here for
reference.

TeeorEM 5.1 (Kuratowski, Ryll-Nardzewski). If X ds separable
metric and F: T—X is a weakly measurable multifunction with complete
values, then F has a measurable selector.

TeEEOREM 5.2 (Aumann). If-T is o-finite, X is a Borel subset of
a Polish space, and F: T—+X is a multifunction with measurable graph,
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then there is & measurable function f: T—>X such that f(1)

Ve P(t) for all ¢
cacept those in some set of measure 0.

Remarks. Theorem 5.1 is a trivial modification of the Kuratowski,
Ryll-Nardzewski theorem; they assume that X is Polish and F has
closed values. Theorem 5.1 follows from that theorem by embedding X in
a complete space. Theorem 5.2 is less abstract then Aumann’s Theorem.
His hypotheses on X are purely measure theovetie, but specialize to the
theorem quoted here.

It is perhaps of interest to observe that Theorem 5.2 can be deduced.
from Theorem B5.1. For recall that Auwmann proves 5.2 essentially by
reduction to the case where I'=[0,1]= X, = Borel subsets of T,
and the measure x on # is Lebesgue measure. This more special theorem
follows readily from 5.1. In fact the following argument from [HV-3]
deduces 5.2 from 5.1 with the assumption that T =[0,1], #= Borel
subsets of T, u = Lebesgue measure, X is separable metric, and F: T-»X
ig a multifunction with Souslin graph: Let ¢: P—Gr(F) be a map of
a Polish space P onto Gr(F), and define a multifunetion ¢: T—P by
Gt) = ¢ {1} X F'(t)), if teT. Olearly, ¢ has closed values. Moreover,
@ is measurable if / is replaced by the completion 4* of #. To see this
let B be a closed subset of P. Then

¢7B) = {t| o7} x F (1) ~ B # 0)
=t] {3 X B (1)) ~o(B) = B}
=1’T(‘P(B))1

where pp is the projection of Tx X onto T. Thug ¢7YB) is a Souslin
subset of T, and is therefore measurable with respect to #*. By Theo-
rem b.1 there is a selector g:- TP for @ which is measurable with respect
to A* Then, if p, denotes projection of Tx X onto X, f=pxogeg:
T—X is a selector for F measurable with respect to £*. Finally, by a rou-
tine use of Lusin’s Theorem, change the values of f on a set 4 of measure 0

- to obtain a function f measurable with respect to 4 and satistying f(t)

eF(t) for all te T— A.
‘We will apply Theorem 5] to generalize Castaing’s results on dense

“families of selectors [C, Theorem 5.4], and we will generalize Theorem 5.2

to hold when X is a Souslin space.

Levma 5.3. Let X be separable metric, F: T—X a measurable mlti-
function with finite values, and f: T->X a measurable selector for F. Then
1—F (1)— {f(t)} defines a measurable relation.

Proof. Recall that t—{f(f)} x F(t) is a weakly measurable multi-
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function into X x X. Let U be an open subset of X, and let 4 be the
diagonal of X x X. Then

[EO—{fO}) U +# O<a# f(t) for some zeF(t)n T ,
= (f(t),m) ¢4 for some zeF(t) n T
< {fOIX(FQ) A UV)—4 # 0
<> {fEIXF(E) " (AXTU-4)# 0.

But X x U—4 is open in X x X, so t—F (8)— {f(1)} is weakly measurable
and hence measurable by the weak measurability of t— {f(¢)} x F(t).

THEOREM 5.4. Let X be separable metric, and F': T—X a measurable
multifunction with finite values. Then there ewists an at most countable
Sfamily {fy, ..., fi, ...} of measurable selectors for F' such that

F(t) = {f(®)y -y fu(t)y -}
for each t e T. If each F (1) has at most n elements, then at most n of the func-
tions fi are needed. ’
Proof. Let f; be a measurable selector for F. (One exists by Theo-
rem 5.1.) Define F,;: T—X by

Fy(t) = { {fl(t)} ’ it F()= {fl(t)} ?
TP (@), i FO- {0}~ 0.
Then F, is measurable since {f| F(1)—{fy(t)} = @} = (F—{i})~"(X) is

measurable by Lemma 5.3.
Next, let f, be a measurable selector for F; and define F,: T—X by

) — {m(t)}, it I = {0},
: F)—{fit)}, if Iyt~ {fut)} # 0.

Continuing in this way the functions f;, ..., fa, ... must eventually exhaust
every value of F.

COROLLARY 5.5. Let X be separable metric, and F: T—X a measurable
multifunction such that each value F (1) has at most n members. Then there
exist a measuradle function f: T—X", and a continuous finile valued multi-
Junction G: X"—+X such that F= Gof. G is given by G(@y, ..., D)
= {@1, ..., B}, and continuity is with respect to the Hausdorff melric on
the compact subsets of X,

icm

We can now prove the following generalization of a theorem of. -

Castaing [C, Theorem 5.4]. If U is a family of functions from 7' to X,
then U(t) denotes the set {u(¢)| u ¢ U} for each te T.

THEOREM 5.6. Let X be separable metric and let F: T—X be a multi-
Junction with complete values. Then T is weakly measurable if and only if
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there exists a countable family U of measurable selectors Jor F such that

CF)= fj—ﬁ_) for all teT. If X is also o-compact, then I need only have

closed values.

Proof. If U iy a countable family of measurable selectors as in the
theorem, then {—U(¢) defines a multifunction which is measurable since
it is the egglimble union of measurable multifunctions. Tt follows that
I (1) = U(t) is weakly measurable.

Now suppose F is weakly measurable, and, changing the metric
on X if necessary, let ¥ be a compact metric space containing X ag a dense
subspace. (Of course I need not have complete values in the new metric.
But it will be sufficient at the end of the proof for F to have complete
values in some metric.) To find U it is sufficient for each &> 0 to find
finitely many measurable seleetors u,, ..., us: T—X such that {wy(1), ...
vy Un(t)} 18 an g-net in F(f) for each te T.

Bo let ¢ >0, let Yy, ..., ¥, be a cover of ¥ by open sets of diameter
less than e, and let T be the measurable set F~(¥;) for each 4. Define

Fy: Ti—Y by Fi(t) = F (1) n Y,Y. (A¥ denotes the ¥-closure of 4.) Then

Fy is a measurable multifunction, since it has compact non-empty values

and ¢—F(f) n Y, defines a weakly measurable multifunction on T;.

It follows that the corresponding function F;: T2 is measurable.
Define a multifunction y: T—2Y by ‘

(1) = {Fut)| t e T4} = ()| Fult) = 0},

Then 9, being the union of measurable functions, each with measurable

domain, is measurable. By Theorem 5.4, there exist # measurable selectors

Py ey Yot T—>2% for p such that e(f) = {yy(t), ..., pa(f)} for all teT.
——¥

(Note then that each v(¢) is an Fy(¢) and that () = F(#) .) Now for

for each teT.

each 4, define a multifunction ¢i: T—>X by @i(t) = F(t) ~ ¥;, where ¥; is
any of the sets such that wi(t) = m f. (For each t, there may be
several such Y;. Choose any one of them.) Then ¢+ I'—X is weakly
ineasumble, since v is. Flence also the 1inultiﬂn:lction t—;;—t(—t)x —1s- x;eakly
measurable. Moreover, F(t)= X nF(t) =X~ Ueit) = Upi(t) , and
each mx hay diameter less than e. ___; ' '

By Theorem 5.1, the multifunction ¢—>gi(f) has a measurable se-
lector u;. Clearly {uy(?), ..., ua(t)} is an s-net in F (1) for each teT.

To prove the last assertion in the theorem, let X | j Xn, where
n
each X, is compact, and let T,=F'(X,). Bach multifunction

Fp=Tn (Tyx Xy): Ty—X, has a measurable selector f,. Also f: T—+X,
defined by f(#) = f,(t) it te T,—(T, v ... v T,_,), is a measurable selector
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for F. Next, let U, be a countable family of measurable selectors for

T, such that F, (1) = U,(t) for all teT,. Define Uy = {u*| ueT,} by
w't)=w(t) if teT,,u"(t)=f({t) it teT—T, Then U= {JU* is the

desired family of measurable selectors for F.

TeEOREM 5.7. If T is o-finite, X is a Souslin space, and F: T—X is
a multifunction with measurable graph, then there is a measurable SFunction
J: T—X such that f(t) e F'(t) for all t ewoept those in some set of measure 0.

Proof. Let p: P—X be a continuous function from a Polish space P
onto X. Then, as in the proof of Theorem 3.4, (i,¢): X P—Tx X ig
measurable, and so Gr(p™' <F)= (1, @) "Gr(F)) is measurable. By
Theorem 5.2 there is a measurable function g: T-»P guch that g(t)
e p~'(F(2)) for all ¢ except those in a set T, of measure 0. Then pog: I'>X
is measurable and ¢{g(t)) e F(t) except when ¢ e T,. ‘

In applications, say to control theory or game theory, one often
hag the sitnation of Theorem 6.5, where ¥ = the real numbers and I
has compact values. In this case a measurable selector y for I is sovght
-such that f{t, y(¢)) = max ftx F(t)) for all te T (or such that It y(0)
= min f{tX F(t)) for all £eT). That such selectors exist follows from
Theorem 6.3, Theorem 7.1 of the mnext section, and the “following
consequence of Theorem 5.6. )

TEEOREM 6.6. Let X be separable meiric, and F: T—R* weakly
measurable multifunciion (with mnot necessarily closed values). Then

t—sup¥'(t), ¢ — intP(1) define measurable functions into the space -

R' U {—o0, +-c0} of emtended real numbers.

Proof. We consider only the function f—» supF (t). Since t——>1'1’-(—5
is also weakly measurable, and supF(t) =sup17(—ﬁ, We may assume,
without loss of generality, that F has closed values.

Let U be a countable family of measurable selectors for .7 as
given by Theorem 5.6, and let r be a real number. Then the
measurability of ¢ - supF(t) follows from

{t| supF(t) >r}= UU{t| u(t) > r}

6. Functions of two variables and a superposition theorem. Let f: T'x X—+Y
be a function such that f(z, ) is meagurable in ¢ for each #and continuous
in 2 for each ¢. In this section we concern ourselves with the measurability
of f and of various relations defined from f. The proof of the following
theorem is essentially from Kuratowski [K-1, p. 378].

THEOREM 6.1. Let X be separable metric and Y metric, and let
F: IX X—Y be measurable in ¢ and continuous in 2. Then f is measurable;
in faet, for each closed subset B of X, f~B) is the countable intersection
of. countable unions of basic rectangles im 4 XB.
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Proof. Let B be a closed subset of ¥, and let 4 bo a countable dense
subset of X. Let d denote the metric for both ¥ and ¥, and let B,
= {y| d(y, B) < 1/n}. Then f({,x) ¢ B it for every n there exists g ¢4
such that d(wz, @) < 1/n and f(i, a) ¢ B,. Hence

I B =N Ut 1(t,0) e Ba) X {0 e X a0, 0)< 1n},

and so f7(B) is the countable intersection of countable unions of basic
rectangles in 4 X%,

TuEoREM 6.2. Let X be separable metric, Y metric, f: Tx XY
measurable in t and continuous in @, ond U an open subset of Y. Then F (t)

c={weX| f(¢t, %) e U} defines a measurable relation Jrom T to X. In por-

vieular, if f is real-valued, then 1—{z| J(t, %) > 2} and t—{z| ft, o)< 2}
are measurable.

Proof. Let BC X and let 4 be a countable dense subset of B, Then
F~Y(B) is measurable, since
F(B)= {t| F(1) nB + 0}
= {t| f(t,2) ¢ U for some » ¢ B}
{tl f(t,a) e U for some a ¢4}
U {tl f(t,a) e T} .
aed

It

If

It does not follow from the previous theorem that t— {@eX| f(t,2) <A}
is meagurable when f is real valued. However, it does follow that
i-Cl{zwe X| f(t, )< A} is weakly measurable, and sometimes this is all
that is needed, as for example in Theorem 7.1 and in the following corollary.

COROLLARY 6.3. Let X be separable metric, and let fi Tx X—R* be
measurable in t and continuous in . Then the relation F: T—>X defined
by F(t)= {»| f(t,a)=0} has measurable graph.

Proof. Define Fy: T—+X be Fat) = {u] If(¢,2)] < 1/n}. By the
preceding theorem oach T, is measurable. It follows then from Theo-

rem 3.3 that t——jf’n(t) has measurable graph. But clearly F(t)= N 1_?’,,_(5

By assuming more about T and X we get the following

TuRoREM 6.4, Let T' be complete, X Souslin, ¥ metrio, f: TX X—Y
measurable in t and continuous in %, and B a closed subset of ¥. Then
1> (1) = {x ¢ X| f(¢, %) e B} defines a measurable relation. In particular,
if f is real valued, then

t{al f(t @) = 2}, t{o] f(t,2) <), o] f,0)= 2}

are all measurable.
5 — Pundamenta Mathematicae LXXXVII
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Proof. Let B,={y ¢ Y| d(y, B)<1/n}, and define
Fu(t) = {we X| f(t, ) e Bu}.
Then F(f) = Fu(t), and each Fy: T—X is a weakly measurable re-

n
lation by Theorem 6.2. Now, for each n, F, has measurable graph by
Theorem 3.3. Clearly F = () F,, since @ ¢ Fall) = f(t, @) € By = alf, »), B)

n
< 1/n< 1/n—1. Hence F' has measurable graph and is thus measurable,
by Theorem 3.5.

Finally, using Theorem 6.1 and a selection theorem from the previous
section we are able to prove the following superposition theorem for
multifunetions.

THEOREM 6.5. Let X be a separable meiric space, ¥ a metric space,
fi Tx X—Y a function measurable in t for each & and continuous in » for
each t, and F: T—X a measurable multifunction with complete values. Then
the multifunction G: T Y defined by G (1) = f(t X F (3))is weakly measurable.

Proof. Applying Theorem 5.6, let U be a countable set of measur-

able selectors for F such that —Tf(—t) = I'(t) for each ¢ ¢ T'. Let B be an open
subset of ¥. Then

G7(B) = {t| ft,F () ~B * 0}
— {1 16, TG) B 4 0)
= {t] f(t, %) e B for some areTY_(?)}
= {i| f(t, u(?)) ¢ B for some u ¢ U}
= Ui flt,u(t) e B} .

So it remains to show that {t] f (£, u(®) e B} is measurable. But f is meagur-
able, by Theorem 6.1, and the map ¢,; T—Tx X, defined by p,(t)
= (t, u(t)), is clearly measurable, in the sense that o7 (A X Bx) C A.ult
follows that {i| f(¢, u(#)) « B} is measurable, since it is equal to e f7(B)).

.7. Ix_np?icit function theorems. Using the results of the preceding
seetions it is 1OW easy to prove very general implicit function theorems
of the type first proved by Filippov [F]. We give several samples. It is
easy to obtain others with slight changes in hypothesés.

TBZ.EOREM 7.1. Let X be separable metric, ¥ metric, f: Tx X—>Y
a fu?otw'n measurable in t and continuous in wx, I T->X a measurable
multifunction with compact values, and g: T—>Y a measurable Sfunction
such that g(t) e fIl{ty X I'(¢)) for all teT. Then there emists a measurable
selector y: .T——>X Jor I such that g(t) = f(t, (1)) for all te T.

If X is also o-compact, then I' need only have closed values.

icm
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Proof. Define H: T—X by H(t) = I'(t) ~{a| 4(f(t, =), 9(1)) = 0}.
The desired function g is any measurable selector for H. Thus, since H has
compact non-empty values, it is sufficient, by Theorem 5.1, to show that
H is measurable. To this end define Fy: T—-X by

Falt) = {o| d(f(t, @), g(t) < L/n}.
T, is measurable for each n by Theorem 6.2, and so ?—>Fn(t) defines
a weakly measurable multifunction. Clearly {al a(j(t, =), g(®) = 0}
= [ Falt) (sinee Fu(t) C {a| d(f(t, @), (1)) < 1/n} for each n). Thus t—H ()
n —
= I'(t) ~ [ Fult) is measurable by Theorem 4.1.

n
To prove the last assertion in the theorem, use the same proof as
above, except now use Corollary 4.2 and the Jast assertion in Theorem 5.6,

Tf we strengthen the hypotheses on T' and X, then I' need not have

. closed values. In fact we have the following.

TrsorEM 7.2. Let T be o-finite, X Souslin, X metric, f: T'X XY
a function measwrable in t and continuous in @, I't T->X a multifunction
with measurable graph, and g: T—Y a measurable function such that g(t)
eftx I'(t)) for all t e T. Then there exists a measurable function y: T—-X
such that y(t) e (%) and g(t) = f(t, y(¥)) for almost all teT.

Proof. Define H: T—>X as in the proof of Theorem 7.1. By Corol-
lary 6.3, t—{z| d(f(t, @), g(t))= 0} has measurable graph. Hence so does H.
We then obtain the desired selector (almost everywhere) by Theorem 5.7.

If in the preceding two theorems the function f depends on « alone,
we have “lifting”’ theorems of the sort proved in [MW] and [HV-2, 31
Two other lifting theorems are the following.

THEOREM 7.3. (Assume the continuum hypothesis for this theorem.)
Let X be separable metric, Y a Hausdorff space, f: X>Y a continuous
function, I't' T—>Y a C-measurable function with closed values, and g: T->Y
a C-measurable function such that g(t) € f(F(t)) for all teT. Then there is
a C-measurable selector y: T—X for I' such that g(t) = f (v(®) for all te T.

Proof, Define a multifunction F: T—X by F()=f" Y{g(t)). Then
T has closed values and is C-measurable. Also F)ynI'@) #9 for all
teT. By Corollary 4.3, Fn G is a C-meagurable multifunction. Hence,
by [HV-2, Theorem 3], F ~ @ has a C-measurable selector. It is clearly
the desired function.

THEOREM 7.4. Let T be o-finite, X Souslin, ¥-melric, f: X~ Y a measur-
able function, I': T—X a multifunclion with measurable graph, and g: T—>X
a measurable function such that g(t) fir (t)) for all teT. Then there ewisis
a measurable function y: T—X such that y(t) e I'(t) and g(t) = fly @) for

almost all t e T.
5%
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Proof. As for Theorem 7.3, define I: T—X Dby F(t) =f“1(g(t)),
Then F has measurable graph, since Gr(F) = {tt, 2)| fle) = g(0)} = o7 (4),
where A4 is the diagonal in ¥ X ¥, and ¢: T x X— Y x Y is the measurable
function defined by @(t, #) = (g(t), f(2)). Hence the multifunction defined
by t—I'(¢) ~ fHg(t)) has measurable graph. By Theorem 5.7, there ig
2 measurable function y: T—X such that y(t) e I'(f) » f”l(g('l)) for almogt
all . It is clearly the desired function.

8. Fxiension of measurable selectors. Let S be a subset of T. A function
f: 8- X is defined to be measurable iff f ig measurable when § is assigned
the trace o-algebra #g= {4 ~ 8| A e #}. In this section we prove that
it is always possible to extend such a function to a measurable selector
for a complete valued measurable multifunction F: T— X, provided X is
separable metric and f(1) e F(¢) for all ¢t ¢ 8. Note that we do not require
Se# We will need the following theorem.

icm

TemorEM 8.1. Let X be a Lusin space and f: S—X be measurable.

Then there exists a measurable extension f*: T—X of f.

Proof. First suppose X is a complete separable metric space. In
this case the theorem must be generally known. (For example, in [K-1,
pp. 434] there is a proof that every function of class o extends to one
of class a-+1.) However, since we know no precise reference to it, we
give a proof here. Note that it is sufficient to find an extension g of f over
some measurable subset A of T containing §. For then we define f* to
be constant on T—.4 and to agree with g on A.

Begin by partitioning X into the union of a countable family 3,
of pairwise disjoint Borel sets, each of diameter less than or equal to 1.
For each B e®, choose Ape# such that f~(B)= 4z~ S. Moreover,
since B, is countable, we may assume that any two Ap’s are disjoint.

Then let #, = {Ap| Be B} and 4 = L:{!. Ag.
Beln

Continuing by induction, for each n =1, 2, ..., partition X into the
union of a countable family B, of pairwise disjoint Borel sets cach of
diameter less than or equal to 1/n, and find a subfamily #, = {4 | B e Bu}
of # such that B,,, refines B, and £, refines +,, for all =, F7HB)
= Ap~ 8 for all B e By, and #,,, partitions 4 for all n.

Define g,: A—X by making ¢, constant on Az with value in B for
each B e $5. Then

(i) g» is measurable on A,

(i) d(gald), F(1) < 1fm, if te 8, and

(itl) d(gn(®), gm(®) <fm, if te 4 and m=n> 1.

Since the sequence (ga(f)) is Oauchy for each te.d, apply the com-
pleteness of X to define ¢g: A—X by ¢(t) = limgy(f). By (ii), ¢ extends f.

n—>Q
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Since gn converges uniformly to g on 4, we apply [KR, Lemma] to deduce
that ¢ is measurable. This concludes the proof for X complete.

Now suppose X is a Lusin space, and let X be the completion of X.
By the first part of the proof, f extends to a measurable funetion 7: T— X.
But X is a Borel subset of X*, 50 A = F7}(X) € 4. Clearly the measurable
set A containg §8; so f|l4 is a measurable extension of f with values in X,
Define f*: T—>X to be constant on T'—A4 and to agree with f on A.

TeroREM 8.2. Let X be separable metric, F: T—>X a measurable mulli-
fumetion with complete values, and f: 8—X a measurable fumetion such that
f(t) e F(t) for all teS. Then there emists a measurable selector g: T-—>X
for ,such that g extends f.

Proof. Let X be the completion of X, and let f: T->X be the ex-
ten_sion of f given by Theorem 8.1. By Theorem 4.1, the relation H: T—X
C X, defined by H(t)= {f()} ~F(2), is measurable, and so the set A
= H™(X) is measurable. But, HYX)= {t¢ 7| J(t) e F(1)} D §. So F(4)
CX, and fl4: A—X is an extension of f over 4. Next use Theorem 5.1
to find a measurable selector ¢: T'— A—X for F|(T— A). Then the func-
tion g which agrees with 7|4 on 4 and with ¢ on T—A is the desired
function.

Remark. The previous theorem is also true for closed valued P,
if it i assumed that X is a Lusin space, and that F' is $-measurable rather
than measurable. The proof is essentially unchanged, except that it is
unnecessary to take the completion of X, and we must now use [HV-2,
Theorem 4] to get a selector on 7— A.

9. Relations with values in linear spaces. We conclude with some appli-
cation of the general results of the preceding sections to the case of multi-
functions with values in a locally convex linear space. The following two
theorems are generalizations of theorems from [C, section 6]. The convex
hull and closed convex hull of a set .4 are denoted by cod and cod,
respectively.

TuroreM 9.1. Let X be o separable Fréchet space and F: T— X a weakly
measurable relation with closed values. Then the multifunctions coF, coF
defined by t—coF (1), t—COF (1) are also weakly measurable. (X need only

be a separable metric locally comvex space if each F (1) is assumed to be

complele.)
Proof. By Theorem 5.6 there is a countable collection U

== {Uy, ..., Un, ...} Of measurable selectors for F such that F(t)= U(f)
for all te 1. Let Q be the set of all sequences (g, .., gny -..) of noN-NeEga~
tive rational numbers such that all but finitely many g.’s are 0 and
3 g = 1. The set @ is countable and 50 i8 V = {3 gatn| (¢ --+s @n, --) €@}

n —
V is a countable collection of measurable functions such that V(z)
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= coU(t) = o F(t) for all teT. Hence, again applying Theorem 5.6,
coF and coF are weakly measurable.

THEOREM 9.2. Let T be complete, X a separable Fréchet space, and
F: T—>X o multifunction with compact convex velues. Then the following
two statements are equivalent.

a) F is measurable.

b) For every continuous Winear functional &' on X, the function M,:

TR defined by M,(t) = max{2’, x) is measurable.
zeF(t)
Proof. a = b. Let 2 be a continuous linear functional. The multi-
function #' o F: T—R' is weakly measurable. So by Theorem 5.6, there
is & countable collection U of measurable selectors sueh that &'(I)(f)

= U(t) for all teT. Let A be a real number. Then
M7H(A, o0)) = {t| max#'(F(t)) > A}
= {t| () > A for some u ¢ U}

U w™H(4, o0)) e .
uel

b= a. By [C, Theorem
continuous linear functionals

6.1] there exists a countable family & of
on X such that
F(t)= Hy(t),

2 eF
‘where

Hyt) = { e X| &, a> < M(1)} .

H,: T--X is measurable for each 2’ ¢ ¥ by Theorem 6.4. Thus each H,
has measurable graph by Theorem 3.3. It follows that F has measurable
graph, and hence, by Theorem 3.4, that F' is measurable.

If F' is a relation with compact, convex values in a locally convex
space, we denote by F° the relation whose value at ¢ is the set of extreme
points of F (). We conclude with two theorems concerning the measur-
ability of ° and the existence of implicitly defined measurable selectors
for F°. The proof of the first is the same as the proof of [HLV-1, Theorem 4],
and hence is omitted.

TrrorEM 9.3. Let B be a locally conven space with separable dual 'space,
let X CH be the union of an increasing sequence (Xyp) of compact convex
metrizable -subsets of B, and let F: T—X be a multifunction with compact
conver values.

. a) If I is measurable, then F° has measurable graph. If in addition
T is complete, then F° is measurable.

b) If F° is measurable, then F is measurable. If F° has measurable

graph and T is complete, then F is measurable.

icm
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TreoREM 9.4. Let T be complete, X the meirizable union of am in-
creasing sequence of compact convex subsets of a locally comvex space with
separable dual space, Y a meiric space, f: TX XY a function measurable
in t and continuous in x, I't T—X a measurable multifunction with compact
come values, and g: T—Y o measurable function such that g(t) e f(tx I°(t))
for all teT. Then there ewists o measurable function y: T—X such that
y(t) e I°(t) and g(8)= f(t, y(2) for all teT.

Proof. Define H: T-+X by

H(t) = I°@) ~ {al a(f(t, »), 9(8) = 0}

I° has measurable graph by the previous theorem, and the relation
t—{w| d(f(t, @), g(#)) = 0} has measurable graph by Corollary 6.3. Hence
H has measurable graph, and has a meagurable selector y, by Theorem 5.7.
This is clearly the desired function.
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i-complete near-rings *
by
R. Gorton (Dayton, Ohio)

Abstract. Lot N be a near-ring. For each cardinal 4, a radical like ideal Ci(N)is
introduced and used to describe the structure of N in terms of A-complete near-rings
of transformations. The radical J,(N) of Betsch is extended to near-rings in which
On = 0 is not assumed and it is shown that Jo(N)C Oy(N) N N,. Finally, the result
of Berman and Silverman on simplicity of near-rings of transformations is extended for
infinite groups. and several illustrative examples are given.

1. Introduction. The most natural example of a near-ring is given by
the collection of all transformations of a group. Several authors (for ex-
ample [3, 4, 7, 8]) have studied the structure of near-rings by extending
well known radical concepts of rings to near-rings. In this paper a radical
like ideal C,(N) is introduced and used to describe the structure of near-
rings in terms of A-complete near-rings of transformations. The radical
Jo(N) of Betsch is extended to near-rings in which On = 0 is not agsumed
and it is shown that Jy(V)C Cy(N) n N,. Finally, the principal result
of [2] is extended for infinite groups and several illustrative examples
are given.

2. Definitions. A near-ring N is a system (containing at least two
elements) with two binary operations 4 and - satisfying

(i) (¥, +) is a group. .

(i) (&, -) is a semigroup.

(i) a(b+¢) = ab+-ac for all a,b,ceN. .

I ¥ is a nearring then an additive group I' (# {0}) is an N -group
if and only if for all y ¢ I' and n e N, yn belongs to I’ and

(i) y(m--n) = pm-yn for all y-eI and m, n eN.

(ii) y(mn) = (ym)n for all y eI and m,nelN. .

A subgroup 4 of an N-group I' is an N -subgroup if and only if
AN C A. Observe that any XN-subgroup of I' must contain Iy= 0N
(Whé;'e 0 iy the identity element of I'). If I' and I" are N -groups and

* Research performed at the U.S.A.F. Aerospace Research Labo.rsiytories while
in the capacity of an Ohio State University Regearch Foundation Visiting Research
Associate under Contract F33615-67-C-1758.


GUEST




