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Accordingly, g* >f, 2g>g7, thatis, g = g* = f,. Dually for infima, so CI(X)
is a regular sublattice of C(X). M o :

We recall from [7] that the minimal Boolean extension B(L) of any L & Dy,
may be obtained from PL by “forgetting the order”: more precisely, B(L) is iso-
morphic to the algebra of all clopen subsets of PL. Minimal Boolean extensions are
connected with the second question raised above in the following way:

‘THEOREM 13. If the embedding of L into its minimal Boolean extension B(L) is
regular, then CI(PL) is a regular sublattice of C(PL).

" Proof. The assamption is equivalent to PL being an I-space, see Proposition 17
of [7]. &

Theorems 12 and 13 are not fully satisfactory since they provide only sufficient
conditions. The problem of giving exact characterizations of the spaces and lattices
in question remains open.

We conclude by remarking that it is possible to generalize our key theorems
(8 and 9) to the case where L lacks universal bounds. One would then consider the
lattices- CI(P(Loy)), where Ly, is obtained from L by adjoining a zero and a unit
regardless of the fact that L already may — but need not — have such elements.
Much of the theory developed would remain valid, but we feel that the generality
gained by such a procedure does not compensate the required technical clumsiness.
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On CE-images of the Hilbert cube
and characterization of Q-manifolds

H. Torufczyk (Warszawa)

ABstract. It is shown that a locally compact ANR, X, admitting arbitrarily small (i.e. clcs.e
to idy) maps f, g: X—X with f(X) n g(X) = @ is a Q-manifold. This is applied to show that if

" 4 is a semicontinuous decomposition of Q such that each A4 e o has trivial shape then Q/# =~ Q

(resp. Q/# %[0, 1122 Q) provided Q/# ¢ AR and the union of non-degenerate elements of A is
contained in a countable union of Z-sets in Q (resp. in a countable union of finite-dimensional

compacta). A short proof of the Curtis-Schori hyperspace theorem is included in the Appendix.

In 1975, R. D. Edwards established the following profound result (see [11]
and [8], § 43):

EDWARDS THEOREM. If M is a manifold modelled on the Hilbert cube Q and
7: M— X is a proper CE-map of M onto a locally compact ANR, then

wxidy: MxQ— Xx Q

is a limit of homeomorphisms and, in particular, X x Q is a Q-manifold. ‘

However, it is of interest to know under what additional conditions on = the
space X is itself a @-manifold. Specifically, for the case M = 0, the following prob-
lems were posed in [1]:

(a) Suppose that the union S(%) of non-degenerate point inverses of = is con-
tained in a countable union of Z-sets. Is then X' = @ *?

(b) Under what conditions on 7 is Xx[0,1] = Q7

Tn connection with (a) it follows from a theorem of J. E. West that X' = @
if §(m) is contained in a single Z-set of Q; see [19]and [8], § 42. In kconncction with (b)
it was shown by J. L. Bryant and by T.A. Chapman that Xx [0, 1] = @ and
Xx X = Q if = has only one non-degenerate point inverse .4 which is an arc. This
was subsequently generalized by Z. Cerin [9] to the case 4 = [0, 11", h<co. In [1] it
is mentioned that R. D. Edwards has proved that Q/4 x [0, 1] = @ for any finite-
dimerisional compactum 4 in Q of trivial shape (unpublished).

In this note we solve (a) in affirmative and we also show that if S(x) is a countable
union of finite-dimensional compacta, then Xx[0,1] = O (see §4). In fact we

(1) We write X 22 ¥ to denote that X and Y are homeomorphic.
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show that, under the same assumption, [0, 1] may be replaced by any compact
AR-space Y containing more than one point. This implies the existence of spaces X
which are topologically different from Q and become homeomorphic to Q after
taking product with any non-trivial AR. (Consider X = Q/A4, where 4 is any arc
containing Wong’s [22] wild Cantor set). These results are obtained by considering
the projection py: Xx Q — X, rather than = itself, and by using Edwards’ ANR-
theorem and Bing’s shrinking criterion, along with some information carried by r.

When considering the projection py: X'x @ — X we arrive in § 2 at a general
characterization of Q-manifolds stating that a locally compact X e ANR is
a @-manifold if it admits arbitrarily “small” (i.e. close to the identity) maps into its
Z-sets or, equivalently, if any two maps f, g: QO — X may be approximated by

maps with disjoint images. This characterization readily implies the before-mentioned

results; it also yields the fact that an ANR-compactification of an ,-manifold with
a Z,-remainder is a Q-manifold (see § 3).

Let us note that the same characterization can be used to give short proofs of ‘

many, if not all, of the earlier results concerning identifying Q-manifolds (see [17]).
As an example we include in the Appendix an argument for the result of D. W, Curtis
and R. M. Schori on hyperspaces of Peano continua. :

The author wishes to thank C. Bessaga for discussions on earlier versions of
this note.

§ 1. Preliminaries. In this section we shall fix the notation and state some known
facts which will be needed later.

By I we denote the segment [0, 1], by I* the k-cube, and by aI* the boundary
of I¥, k<oo. We let Q = I, the Hilbert cube. Any product [] X n<oo,

i<n
of metric spaces (X;, ¢;) will be considered in the product metric

e((x, () = max{min(27%, g,(x;, )): i<n}.
Pxt Xx Y- X denotes the natural projection. :
We write cov(X) for the family of all covers of X by open sets and Cc(M, X)

for the set of all maps (i.e. continuous functions) from M to X, We topologize
C(M, X) by the “limitation topology” in which each fe C(M, X) has

{V(f, %): % e cov(X)}
as a basis of neighbourhoods, where
VS, %) = {ge C(M, X): Yxe MAUe % with £(x), g(x) e U}.

The Ii]n.nita;tii)n topology can, equivalently, be described as the one induced
by the family {g: o € Metr(X)} of metrics on C(M, X), where Metr(X) is the
set of all bounded metrics compatible ‘with the topology of X and

e(f, 9) = supfo(f(x), ¢()): x € M}
for f,ge C(M, X) (see [17], § 1.1 or [2], p. 121),

©
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All function spaces will be considered in the limitation topology. If M is compact,
then the limitation topology of C(M, X) coincides with the compact-open one
and may be metrized by any of the metrics ¢, o € Metr(X).

(A) If X is complete-metrizable, then C(M, X) has the Baire property (i.e. the
intersection of a countable family {U;: i€ N'} of dense open sets in C(M, X) is dense).

Outline of the proof (Details in [17]). Fix fe C(M, X) and a complete
¢ € Metr(X) and modify the proof of the classical Baire theorem to get a g-Cauchy
sequence in V = {ge C(M, X): 0(g,f)<1} that converges to an he V' n ()} U;.
Since V may be required as small as we wish, f is in the closure of N U;.

A subset 4 of X will be called a Z,,-set in X if { fe C(Q, X): f(Q)n 4 = O}
is dense in C(Q, X). Closed Z,-sets will be called Z-sets and the family of all

" Z-sets in X (vesp. the family of all countable unions of Z-sets in X) will be denoted

by Z(X) (resp. Z(X)). By (A), if X is complete and K is a closed set contained in
an Le %,(X), then Ke Z(X). .

An fe C(M, X) will be called a Z-map if f(M)e % (X). Embeddings will
always be assumed to be closed and homeomorphisms to be surjective; idy. denotes
the identity map of X. By an ANR we mean any absolute neighbourhood retract
for metric spaces, c.f. [2], p. 66.

(B) Let X be alocally compact space and let M be an ANR. Then; given A € Z (X),
the set {fe C(M, X): f(M) A = B} is dense in C(M, X).

Proof. The lemma is a special case of known facts (see e.g. [18]).

(C) Let X be an ANR, let T be a metric space and let Ty be a compact set in T.
Then, the restriction f— f|To is an open map from C(T, X) to C(Ty, X).

Proof Assume first that X is an open subset of a normed linear space E.
Let % be a cover of X by open convex sets. Given f'e C(T, X) and he V(f|T,, %),
extend ki to an fi: Ty — X, where T is an open neighbourhood of T, in T such
that Fe V(fITy, %). Tt Ae C(T,I) satisfies 27(0)=T, and X\T; cintd™1(1),
then

x b A FE)+H(1—A) R()

defines a map g € V(f, %) with g|Tp = h. o .
The general case now follows in a standard way by considering a retraction

ri U— X, where U is open in a normed linear space (see [2], p- 68), and by using
the fact that C(T, U)ef—rofeC(T, X) is continuous.

We will need the following version of Bing’s shrinking criterion:

(D) Let n: M — X be a proper map between locally compact metric spa(.:es,
and let d be a metric on M. If, given ¢ >0 and U e cov(X), there is a homeomor]?hzsm
h = hg, of M such that whe V(x, %) and the d-diameter of each set hr~Y(x) is less
than &, then M = X. .

Proof. Let ¥ and M denote the one-point compactifications of X and M,
respectively. Extending m and the /g,’s to oo-preserving maps ﬁ M —+X and
Fage: B — B, we infer from Bing’s shrinking criterion as formulated in [8] or in [15]

3 — Fundamenta Mathematicae CVI
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that % is a limit of homeomorphisms ¥ — X which, by an inspection of the proof,
may be required to send {0} to {o}=X. Thus M = X.

We shall also use the following theorem of Chapman (see [8], §22):

(E) Any contractible Q-manifold is homeomorphic to Q.

Finally, we need Edwards’ ANR theorem (see [11] and [8], § 44):

(F) If X is a locally compact ANR then Xx Q is a Q-manifold.

§ 2. A characterization of Q-manifolds.

TaeOREM 1. Let X be a locally compact ANR such that, for each k € N,

(*)  the set of all Z-maps I¥ — X is dense in C(I*, X).
Then X is a Q-manifold. 4

The proof of the theorem is divided into the following lemmas (we assume
that X is a fixed space satisfying the hypothesis of the theorem).

LemMma 1. Condition (x) holds with I* replaced by any compact space K.
Prof. Given u: Q—X, the maps

x> u(xyg, v, %,,0,0,..), n=1,2,..,

converge to ¥ and may all be approximated by Z-maps. Thus (*) holds with I* re-
placed by Q and there s a dense subset {u,, u,, ...} of C(Q, X) consisting of Z-maps.
By (B), if K is any compactum, then each f: K— X is in the closure of

S={geCK, X): g(K)nul(Q) =@ for ieN};

clearly g(K) e Z(X) for each ge S.
LeMMA 2. Given compact disjoint sets K, L in X, the set

‘ T={feCX, X): f(K)nf(L) = B}
is dense in C(X, X).

Proof. Given he C(X, X), we may use Lemma 1 to approximate h|K by
a Z-map u: K— X and, then, we may apply (B) to approximate by a v: X — X
with v(X) N u(K) = @. Assuming that » and v are sufficiently close to /| K and &,
respectively, there is by (C) a map f: X — X closely approximating / and satisfying
SF(x) =u(x) if xe K and f(x) = v(x) if xeL. Then fe T and hence % is in the
closure of T.

LemMA 3. The set of all 1-t0-1 Z ,-maps X — X is dense in C(X, X).

Proof. Let {u;,u,, ...} be a dense subset of C(Q, X); by Lemma 1 we may
assume that all the u;s are Z-maps. Further let ¥ be a countable basis of open
sets in X such that the closure ¥V of each ¥ & ¥ is compact. By Lemmas 2 and (A),

G={feX,X): fT)nf(V) =@ for all ¥, V,e¥ with VinV, =0}
is a dense Ga—set in C(X, X).
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By the o-compactness of X, the set
H={feCX, X): f(X) nufQ) = O for all ie N}

is also of type G; in C(X, X); moreover, H is dense in C(X, X), by (B). Hence
G ~ H is dense in C(X, X) (see (A)); clearly each fe G n His a 1-to-1 Z,-map.
LevmMa 4. For each ne N the following condition is satisfied:

Given % € cov(X) and £>0, there is a homeomorphism f of X x QxI" such
that pyfe V(px, %) and diampf ({x} x @x I <e, for all xe X.

CY)

Proof. We first check (c,). Given % € cov(X). Since X is an ANR, any two
maps which are sufficiently close may be joined by a small homgtopy.; thus we may
use Lemma 3 to get a 1-to-1 Z,-map v: X — X homotopic to idy via a homotopy
limited by %. Assuming that the star of % consists of sets with compact closures,
this homotopy is proper; in particular v is an embedding and 4 = v(X) e Z (X).
If w is any homeomorphism of QxI onfo 0, then"

(%, ¢, ) (07 1(), wig, ), 1)

is a homeomorphism of 4 x Q x ] onto X'x Q x {1} which, by the Anderson—flh'apman
isotopy theorem, may be extended to a homeomorphism g of X x oxI lnmte.d by
{Ux@xI: Ue a}; see [8], §19. (By (F), the product Xx OxIis a Q -manifold,
and hence the isotopy theorem is applicable). Clearly, g(Ax @xI) = Xx Qx {1}.
Hence diamp,g({x}x @xI) =0 for xe 4; to make diamp;g({x}x Q@x1T) -small
for x € XA we shall use a trick applied by Edwards in his proof and earlier by
t in [20]. ‘ .
e Put o[co()]c, g) = 0 for (x,9)e Xx Q and F = pxg” H(Xx Qx{0}); Fy is closed
in X. Moreover, Fy, n A = @, whence g(FoX OxDn XxOx{l} = O and there
is 2 map oyt Xx @ — (0,1) such that

for (x,q,t)eAxQxI

df
gFox XxD){(x, g, e Xx Qx I t<au(x, O} = §

(see [10], p. 74). Put F; = pxg~3(S) and continue likewise to get sets
FycFc..cF_ cX\4 and maps 0 = ag<oy <...<o = 1 such that

{(x’ q, t): t<0€;(x, Q)}CQ(FzX Q XI)C{(X, q, t): tso‘i-%l(x: Q)}

fori=0,1,..,k-1. [ ‘ )

Let h be a homeomorphism of Xx Qx I preserving the fibres of- DPxxg 2N
carrying the graph of «; onto X'x ox {ijk}, for all i =0, 1, ..., k. Given x€ X,
if i is chosen so that x € F\F;_;, then

prah({x} x @x Nel~Dik, @+ /K]

Hence diamp;gh({x}x QxI)<2/k for all xe X and, assuming 2/k<s, f= gh
satisfies (cq).
3
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Now suppose that n>1 and (¢;) and (c,—,) are satisfied. Given % e cov(X),
let ¥ ecov(X) be a star-refinement of % and let f; be a homeomorphism of
Xx QxI"" such that py f; € V(px, ¥) and diampm-« f,({x} x O x ") <¢/2 for
all xeX. There isa # ecov(X) refining ¥ such that diampy.-« f;(Wx Qx I D <g/2
for all We # . Let f, be a homeomorphism of Xx QxJ" *xI such that p f,
€ V(px, %) and diam p; f,({x} x QxI""*x I)<e, for all xe X. Then f= (f;x
xidp) f, is as required in (c,); this concludes the inductive step and the proof of
Lemma 4.

‘We now complete the proof of Theorem 1. Let ¢ be a fixed metric of X, Given
% ecov(X) and ne N, with % consisting of sets of ¢-diameter less than 1/n, we
can use Lemma 4 to get an fe H(XxI®) such that pyfe V(py, %) and
diampy, x...xr, S ({x} xI®)<1/n for all xe X. Then diam f({x}xI®)<I/n f;)r all
x € X (we metrize 1", I and X x I* by product metrics), whence X & Xx I® by (D)
used with 7 = py. Thus X is a Q-manifold by Edwards’ ANR theorem F).

Remark 1. Condition (x) is satisfied for each ke N if, .

(*¥)  givenk e N, x € X and a neighbourhood U of x in X, there is aneighbourhood V
of x such that any Z-map 8I*— V extends to a Z-map I* — U.

' Prko of. It follows from (**) by a standard induction on dim(X) that (*) holds
with I rep]ac;ed by any compact polyhedron X. :

Remark 2. If X is a Q-manifold, then conditions («) and (%) are satisfied.

Remark 3. It follows that a locally compact X e ANR is a Q-manifold iff,
for each ke N, ’

(x%%)

any two maps I* — X may be approximated by maps with disjoint images.

Proof. ;[f (+#x) is satisfied for each k e N then it hélds also with I* replaced
by O and, given an open subset U of C(Q, X), the set '

G(U) = {ge C(2. X): (@) " g(Q) = @ for some feU}

is open and dense in C(Q, ).(). If {Uy, U,,..} is a basis of open subsets of
C(Q, X) then G = (\G(U is dense in C(Q, X), by (A), and consists of Z-
maps; thus () is satisfied.

§3. O-manifolds as local compactifications of I,~manifolds. From BEdwards®
ANR -theorem (F) combined with [18], Proposition 5.1, it follows that if X is a lo-
cally compact ANR and there is a Z-set A in X such XA is a Q-manifold, then X
is a Q-manifold itself. Here is another result of a similar character: | ’

THEOREM 2. Let X be a locally compact ANR. If there is a Z ,-set 4 in X such

that X\A is a manifold modelled on ari infinite-dimensi i
te-dimensional linear 7 ;
then X is a Q-manifold. ar metrie apace

Proof. We need the following
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SUBLEMMA. If M is an E-manifold and K is a compact set in M, then K& Z(M).

~ Proof. To be a Z-set is a local property (see [12], [18]), and hence we may
assume M = E. Given f: Q — E. The set B = {x—y: xe K, yef(Q)} is compact
and hence nowhere-dense in E. Thus there is a sequence {a,} in E\B converging to 0.
The maps x> f(x)+a, converge to f and take values in ENK.

We pass to the proof of the theorem. By assumption, the set T" of X\4 -valued
maps Q — X is dense in C(Q, X). Moreover, any compact subset K of X\4 is
a Z-setin X: given he C(Q, X) we may approximate & by an element of T and, by
the sublemma, we may approximate the latter by maps Q — X\A\K. Thus T is
dense in C(Q, X) and consists of Z-maps; thus Theorem 1 applies.

By a theorem of Anderson, the Hilbert space I, is homeomorphic to .(0, 1)*
(see [2], p. 174) and hence Q can be considered as a compactification of I, with
a Z,-remainder. Theorem 2 shows that, among the ANR’s, Q is the only such
a compactification of /,.

§4. Images of the Hilbert cube under CE-maps with small singularity sets.
Amapn: M — Xissaid to be CEif, foreachx e X, n~ (x) is a non-void compactum
of trivial shape in the sense of Borsuk [5]. The following fact is known:

Lemma G (Lacher [14], p. 722). Let n: M — X be a CE-map. Then, for each
ne N, the set {nf: fe C(I", M)} is dense in C(I", X); consequently, if A is closed
in X and n~Y(A) € Z (M), then Ae Z(X).

The set

S(m) = {xe M: n7'n(x) # {x}}

will be called the singularity set of . If m is proper, then S(m) = U S;, where each
S, = {xe M: diamn~'n(x)3>1/i} is closed in M.

" TuroreM 3. Let f: O — X be a CE-map with X an AR. If S(f) is a Z,,-set
in Q, then X = Q. .

Proof. As noted above, S(f) is of type F,. Heace S(f) e Z(Q) and, by the
results of Anderson, we may assume that S(f)= ON0, 1)®; see [2] p. 156 or [17],
§$IL.2. Put A = f(O\0, )*). Then FHA) = 0N, )® and f: (0, 1) — IN4
is a homeomorphism. By Lemma G, 4 & Z,(X), whence X =~ 0, by Theorem 2
and (E).

The following result also implies Theorem 3 instantly:

TuEOREM 4. Let m: M — X be a CE-map, where X is a locally compact ANR
and M is a metric space. In order that X be a Q-manifold it suffices that, for any
map g: I"— M of a finite-dimensional cell, g should be in the closure of
{he CU", M): n~'nh(I") e Z (M)}

Proof. Apply Theorem 1 and Lemma G.

Below, we use Theorem 4 to consider images of Q under CE-maps with count-
ably-dimensional singularity sets. We need the following
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LemMmA 5. Let S be a compact finite-dimensional subset of Q and let A be q closed
nowhere-dense subset of an ANR-space Y. Then SxAe Z(Qx Y ).

Proof.' By a result. of Kroonenberg [13], Q has a basis of open sets consisting
of sets U W.lth the relative homology H,(U, U\S) vanishing. Therefore, by a result
of l\k/llogllskx [16], for every closed set C in S'x ¥ and for every open set ¥ in OxY,
we have H(V, V\C) = 0. By the Hurewicz theorem it thus remains t ’
Ox \Sx 4 is 1-ULC. : © prove that

The proof is analogous to that of Corollary 2.4 of [13]: given f: or*
— O x ¥\S'x 4, we may use the fact that § disconnects no open setin Q to approxi-
mate pyf by a g: 8I* — O\S which is so close to pof that the map '

h(x) = (g(x)>Pvf(x)) for" xeol?
is homotopic to f by a small homotopy {¢,: te I} taking values in Qx N\Sx 4.

We may then use the local contractibilit
y of ¥ and of Q to get a h
{p:: te[l, 3]} such that ¢ g romoteRy

(a) D@y = ¢ for :ze [1 2] Py = i 3
s “ls @ P f and 0, (0I*
{y} ™ ) 1 Y fi’ P;_( ) 1S a smgleton

®) pro0I”) = {3} for te[2,3], pow, = g and pos(7%) = {point}.

0 539;1 icp,:f ted[0,3]} homotopes f to a constant map within a subset of
X x A of a diameter which may be assumed t i i
oter of POT o be small if such was the di-

" TH{ZOREM 5. .Letj": Q — X be a CE-jnap, where X is an AR. If S(f) is a count-
ai .e. union of finite-dimensional compacta, then, Jor any compact AR -space ¥ con-
taining more than one point, Xx Y is homeomorphic to Q.

lShOWPr;Zf.‘ Pclllt T =fx id;: Ox Y- Xx Y. By Theorem 4 and (E) it-suffices to
Wdypyxy may be approximated by maps h: i
7~ inh(Q x YVeZ(QxY). pe Mt @x¥= Ox Y with

To this end let ¥, be a countable dense subset of ¥, By Lemma 5
S(f)x YoeZ (0% Y), whence there is a Z-map h: OxY— QXY whicli
saix}s;ﬁf: MOX ¥)n 0:?'(f) x Yy =0 and is as close to idyxy as we wish. (Apply (B)
wi [ = (ONO, D®)x ¥) U S(f) % Y. Expressing S(f) as a union of finite-
dimensional compacta S, S,, ..., we have

™ nh(Q % Y)NA .
where (@x YNR(Q X V)= pS,xTi,

Ty = py(h(@x Y) 1 S;x e \Y, ieN.

By Lemma 5, all the S;x T’s are Z-set -
S X T -sets. Thus 7~ 14(Qx ¥) i ined i
and hence is a Z-set, as required. (005 contained n o st

for

With the same proof, Theorem 5 may be generalized as follows:

o T;EOREM S.Letf: M— X be a CE-map, where M is a Q-manifold and X is
. ocally compact ANR, and assume that S(f) = Sy, where each S; is a closed
N i

ie
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subset of M such that Hy(U, UNS,) = 0 for any open subset U of M. If Y is any
locally compact ANR with no isolated points, then Xx Y is a QO -manifold.

Similarly, using Theorem 4, one can generalize Theorem 3 as follows:

Turorem 3. Let f: M — X be a CE map, where M is a Q-manifold and X is
a locally compact ANR. If there is an A € Z (M) such that f|M\A is 1-to- 1, then X
is a Q-manifold.

Appendix. A proof of the Curtis-Schori hyperspace theorem. In this appendix
we use Theorem 1 to give a short argument for the following result, which was
originally established in [5] and [6] by delicate methods developed prior to Edwards’
theorem:

TreoreM (D. W. Curtis and R: M. Schori) Let P be Peano continuum and
assume that either X = 2F, the hyperspace of all non-void closed subsets of P, or P
contains no free arcs and X = {A €27 A is connected}. Then X = Q.

Proof. X is topologized by the Hausdorff metric

d(dy, 4;) = max{o(x, 4): ie{l,2}, xe 4, U A5}
where o is a metric for P which, by [3], we may assume to be convex (i.e. any pair
of points of P is contained in a subspace of (P, g) isometric to a segment of the reals).

By a theorem of Wojdystawski [21], X is a compact AR.
Given £>0, the formula

fuld) = {xeP: o(X, A)<s}

defines a map from X to X with d( f,(4), A) <& for all 4 e X. Moreover, if By, ... B,
are g-balls in P centred at points py, ..., P, of an ie-net in P and having }e as
radii, then image (f)=X; U ..u X, where X; = {de X: AoB},i=1,..,n.
By Lemma 5.4 of [7], each X;is a Z-set in X. Thus f, is 2 Z-map and the result
follows from Theorem 1 and (E). .

for Ae X,
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Provability in arithmetic
and a schema of Grzegorczyk

by

George Boolos (Cambridge, Mass.)

Abstract. S4Grz is the system that results when the schema
(((B = DA)= DA) & (—B = DA) = DA)) = DA

is added to the modal (propositional) logic S4. Let @ map sentence letters of modal logic to
sentences in the language of P(eano) A(rithmetic). Define @4, 4 a sentence of modal logic, by:
Pp =gt (p); P(—A) = —(P4); P(4& B) = (PA& ?B); D(DA) = Bew( 24 )& P4), where
Bew(x) is the standard provability predicate for PA and [ 7] is the numeral for the Géodel
number of the sentence S.

THEOREM. For all sentences A of modal logic, Yage, A ift for all &,Vpa PA.

(This result was independently obtained by R. Goldblatt.)

We shall describe a connection between provability in PA (= Peano Arithmetic,
classical first-order formal arithmetic with induction) and a system of (propositional)
modal logic considered (*) by Grzegorczyk. We are interested in “readings” of
the box (D) of modal logic that concern provability in PA. Accordingly, we let &5 be
a variable ranging over functions from the sentence letters of modal logic to sentences
of PA and define the provability translation A2 (under ) of a sentence 4 of modal
logic as follows: if 4 is the sentence letter p, then A% = #F(p); if 4 = —B, then
A% = —(B®); if 4 = (B& C), then 4% = (B? & C?) (and similarly for the other
non-modal connectives); and if 4 = DB, then 49 = Bew(" B? 1), where Bew(x)
is the standard provability predicate for PA, and S is the numeral for the Godel
number of the sentence S of PA.

It is a well-known consequence of Godel’s incompleteness theorems and their
proofs that not every provability translation of every theorem of the modal system S4
is a theorem of PA. For example, if (Z/(p) is the undécidable sentence S constructed
by Godel, then since Fp(S e —Bew("SN), (Dp—p)?, = Bew( S H—9),
is not a theorem of PA; and if (f(p) ="0 = I, then if Fps(Dp— p)? then
Fea(Bew(T0 = I)— 0 = 1), Fp,—Bew("0 = 1", and (by the second incomple-
teness theorem) PA is inconsistent.

) In [2], p. 230.
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