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A note on the paper of I. Singer “Basic sequences and reflexivity
of Banach spaces™

by
A. PEECZYXNSKI (Warszawa)

I. Singer posed in [3] the following question:

Is a Banach space reflexive if its every subspace with a basis is
reflexive?

In this note we shall show that the answer to this question is “yes”.
A similar result was announced without proof by James in [4]. Further
we shall give a few characteristics of reflexivity in terms of the behaviour
of basic sequences generalizing the analogous results in [3]. Our main
result is based on the proposition concerning the choice of basic sequences.
This proposition was first proved by C. Bessaga in his thesis. The idea
of his proof and our proof is due to Professor Mazur.

Throughout this paper we preserve the terminology and notation
of [3]. We recall that a set @ of a space Y™ conjugate to a B-space Y is
said to be norming if sgp lg(y) = |ly]] for every y in Y, where Sy =

Jed@

={g<G: gl =13
PrOPOSITION. Let G be & norming set 4n Y™ and let (y,) be a sequence
in @ B-space Y such that

(1) 0 <infiy,]l < suplyal < oo,
n 3
(2) limg(y,) =0 for any g in G.
n

Then there is a subsequence (y,,) with y,, = y, which is a basic sequence in ¥.
‘We shall need the following
LemMA. Let (y,) and G have the same meaning and properties as in
the Proposition. Then for every e > 0, N > 0, and for every finite dimensional
subspace B of Y there is an index n > N such that

(3) lle+ ty,ll = (l;a) llell  for any e in E and every scelar t.

Proof of the lemma. Without loss of generality we may replace
condition (1) by
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(1) Il =1 (n=1,2,...).

Let us put Sy = {e<E: |le] = 1}. Since the subspace K is of finite
dimension, Sg is compact. Hence there are elements ¢, ¢, ..., ¢, in 8y
being an ¢/3-net for Sgp. Since & is a norming set, there are functionals

g1y Jay -+ gr SUch that
(4) lgi(e)] >1—ef3 llgall = 1

By (2) there is an index n > N such that [g;(¥,)l << &/6 for i =1,
2,...,7. We shall show that for such = inequality (3) holds.

By the homogeneity of the norm it is sufficient to restrict our atten-
tion to the case where |l¢|| = 1. We consider two cases

1° [t = 2. Then [[ty,+ el = [tlllyall—lell 2 2—1 =1 = (1—e¢)lel.

2° |t| < 2. Then choosing: 4 such that |e—ell <e/3, we have
g+ ell = 1g:(tya+ o) = 1g: (el — 192 (ta) | — gl —esll > 1—e/3—Fe—e/3
=1—z = (1—¢)|ell.

Proof of the Proposition. Let (s) be a sequence of positive
numbers such that

and (6 =1,2,...,7).

il
0<e <1l and inf l—g)=08 >0.
w1
We shall define the sequence (y,,) by induction. Let us put %, = 1. Sup-

pose that we have chosen ny < 7y < ... <<my (F >1) in such a way
that

(5) (1_' 81‘) l|t1yn1+ t?.yn._! '{" e + [/ —1?/71,,,.1]| < Iltlynl 'l" tzyng"l‘- . + tr'y'nru

for any secalars f,,t,,...,% and for every 1 <7 < k.
Now we apply the Lemma to the case where N = #n;, £ = g, and
E is the subspace spanned on the elements ¥, , Ynyy -+ Uny,- We define
Ny >0y =N as an index satisfying inequality (3) of the Lemma.
It is easily seen that the sequence (y,,) defined in this way satisfies
inequality (5) for r = 2,3, ... Hence

kd

Htlynl "]‘ tz yn2 + e '{' tp?/np“ ? n (l—_ 8,,) ) Ht] f’/n! % t’ﬂ?/nz "" ves "|‘ {',llllptvai‘
v -1
2 1 “t] ynl "E" 12}/%.2 + e ‘I” t,lf‘/nq” L

for arbitrary scalars ¢;,t,,...,%, and ¢ <p (p = 2, 3,...). Thus accord-
ing: to [1], p. 111, (y,,) is a basic sequence.

TeegorEM 1. Let X be a non-reflewive Banach space. Then there is
a (non-reflezive) subspace of X with a non-shrinking basis.

Proof. Since X is non-reflexive, the unit ball of X is not weakly
compact (ef. [2], p. 56). We consider two cases

icm
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1° There is a weak Cauchy sequence (x,) in X which has no weak
limit in X. Let us put zf*(z*) = lims*(x,) for any «* in X* and set

o =g, (n=2,3,...). ObvioT{lsly ¥ does not belong to X, be-
cause otherwise it would be the weak limit of the sequence (z,).

Now we apply the Proposition to the case where ¥ = X™, ¢ = X*
and (y,) = (23%). Let (x);) be a basic sequence and let zy =z, Leb
Z,Z,,Z, denote the subspaces of X** spanned on the sequences (277),
:Z +1) respectively. Obviously Z, C X (treated as a subspace
of X**). The codimension of Z, with respect to Z is obviously equal to
one. The codimension of Z, in Z is also one, because Z is the smallest
linear manifold containing Z, and #}*, and Z, = Z (27*¢ Zy, 2% <Z).

Now we shall prove that the spaces Z, and Z, are isomorphie. Let
Zy=Z,~7Z, Since Z, #Z,, the codimensions of Z; with respect to
Z, and with respeet to Z, are equal to one. Thus the space Z; as well as
the space Z, is isomorphic to the Cartesian produect of Z; by a one-dim-
ensional Banach space; therefore Z, is isomorphic to Z,.

Since the sequence (#,,) has no weak limit in X, there is an £ in
X*** such that 1imisup |o™* (@5%)] > 0. Indeed, if 111’11m***(w§z) =0 for
any " in X**, then 2}* would be (in X™) the weak limit of a sequence
(z,,)- Bence, by [1], p. 134, 28* would belong to Z, C X, which contra-
diets our assumption.

Hence the basie sequences (z;) and (wny, ) are not shrinking. Thus
Z, is a space with a non-shrinking basis. Since the possessing of a non-
-shrinking basis is an isomorphie invariant, Z, is a subspace of X with
a non-shrinking basis. )

9° There is a sequence (z,) in the unit ball of X no subsequence of
which is a weak Cauchy sequence. Without loss of generality we may
agsume that X is separable. Under this assumption, by [1], p. 124, there
is in X* a countable norming set G = (g,). Using the diagonal procedure,
we may choose o subsequence () of (z,) such that there exists Hm G ()

for m = 1, 2, ... Sinece the subsequence (x,) is not a weak Cauchy sequence,
there arve #* in X*, 6 >0 and inereasing sequences of indices (p,) and
(¢x) such that &*(a), —sg) >6 >0 (k=1,2,...). Consider the sequence
() = (@, —iy,)- It is easy to establish that this sequence fulfils the
assumptions of the Proposition. Thus there is a subsequence (¥, whieh
is a basic sequence. Since #*(y,,) > 6 (F = 1,2, ...}, this basie sequence
is non-shrinking.

R emark. Tt immediately follows from the analysis of the preceding
proof that

The wnit ball of a Banach space X is conditionally weakly eompact

“if amd only if the wnit ball of every subspace of X with a basis is con-

ditionally weakly compact.
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A Banach space X is weakly complete if and only if every subspace
of X with a basis is weakly complete.

THEOREM 2. Let X be a Banach space. Then the following conditions
are equivalent:

(i) X 4s reflexive,

(ii) every subspace of X with a basis is reflowive,

(iii) every bounded basic sequence in X weakly converges to 0,

(iv) every basic sequence in X is shrinking,

(v) every basic sequence in X 18 boundedly complete.

Proof. (i)=>(i). This is a trivial consequence of the general fact
that every subspace of a reflexive space is reflexive (see e. g. [2], p. b6).

(ii) = (iii). Let (x,) be a bounded basic sequence in X. By (ii) the
space [x,] spanned on the sequenece (w,) is reflexive. Hence, according
to a result of James [2], p. 71, the basis (,) i3 shrinking. Thus
limg(x,) = 0 for any ¢ in [z,
"

(iii) = (iv). Suppose that (iv) does not hold. Then there is a basic

sequence (¢,) which is not shrinking. Thus there are a funetional f in
fe,]* and a sequence (z,) such that

In

6) w,= Ef;% where 9, <¢g<pa<@z<... (m=1,2,..),
Dy
(7) llgp)l =1 and  limsup|f(a,)| > 0.

n

It is well known that (a,) is a bounded basic sequence (as a bounded
block sequence of a basic sequence). But by (7) (#,) does not weakly
converge to 0, which contradicts (iii).

(%v) j (i). This implication is an immediate consequence of Theorem 1.

(1) => (v). This implication is an immediate consequence of a result
of James [2], p. T1.

' (v) = (ii). This implication immediately follows from a result of
Singer [3], p. 362.
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Anerkennung der Prioritét.
yvon

8. HARTMAN und C. RYLL-NARDZEWSKI (Wroclaw)

Satz 1 aus unserer Arbeit [4] war teilweise frither bekannt. Er
wurde namlich fir den Fall der Bohrschen fastperiodischen Funktionen
auf der reellen Achse zuerst von Bochner in [1] bewiesen. Der Beweis
15086 sich nicht direkt auf beliebige Gruppen oder auf allgemeinere Klas-
sen fastperiodischer Funktionen iibertragen. Weiter muB die Arbeit von
Jerison und Rabson [5] zitiert werden, die uns leider entgangen ist und
die fast alle Resultate aus [4] enthilt, obwohl sie sich ihrem allgemeinen
Tnhalt nach nicht auf fastperiodische Funktionen bezieht. Satz 4.7 aus
[5] umfalt nimlich unsere Sétze 1 und 2 bis auf Formel (5), die nicht
explizit angegeben wird.

Gelegentlich bemerken wir, daB der in [3] angegebene und dem
zweiten von uns zugeschriebene Begriff von R-fastperiodischen Funktio-
nen bereits von Doss in [2], wenn anch vermittels anderver Definition
eingefithrt und mif derselben Bezeichnung verwendet wurde.
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