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A Banach space B is isometric with a subspace of its second con-
jugate space under the “natural mapping” for which the element of B**
that corresponds to the element # of B is the linear functional ¥, defined
by F.(f) = f(w) for each f of B*. If each F of B** is of this form, then
B is said to be reflewive and B is isometric with B** under this natural
mapping. It is known that for a Banach space B each of the following
conditions is equivalent to reflexivity:

I. The unit sphere of B s weakly compact [1].

II. Bach decreasing sequence of bounded closed conmvex sets has a mon-
empty intersection [5].

If the unit sphere is weakly compact, then each continuouns linear
functional attains it sup on the unit sphere. Klee used II to show that
if each continuous linear functional attains its sup on the unit sphere
of any isomorph of the space, then the space is reflexive [4]; & result that
was firgt known for spaces with bases [2]. Later it was shown by the author
that if each continuous linear functional attains its sup on the unit sphere
of a separable Banach space, then the space is reflexive [3]. The proof
used a characterization of reflexivity that will also be used in the proof
of Theorem 1 of this paper. Roughly, this characterization is that a Ba-
nach space is reflexive if and only if its unit sphere does not contain
a “large flat region” ([3], Lemma 1). Theorem 1 gives a somewhat strong-
er but similar characterization of reflexivity that will be used in proving
that an arbifrary Banach space is reflexive if each continuous linear
funetional attains its sup on the unit sphere (Theorem 5).

No specifie results for complex Banach spaces are included in this
paper. However, all results can be translated easily if (where appropriate)
one uses linear functionals that are real-valued. Except where specifically
restricted to being real, the spaces (¢,) and I may be either real or
complex. It should be recalled that all complex linear functionals on
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a complex Banach space are of type F(wx) = f(x)—if(iz), where f is
a real-valued linear functional. Moreover, |F| attains its sup on the unit
sphere if and only if there is & point on the unit sphere at which both
[F| and f attain their sups; if f attains its sup, then |F| attains its sup
at the same point.

THEOREM 1. A Banach space B is non-reflewive if and only if, for
each number r << 1, there exists o sequence {2;} of elemenis with wnit norms

and a sequence {f;} of continuous linear functionals with unit norms such that -

1) Jale) >r  of fal2) =0

Proof. Suppose first that such sequences {z} and {f;} exist. Let
8, denote clleconv{e,, 2,1, ...}]. Then {8,} is a decreasing sequence of
bounded closed convex sets that has an empty intersection, since, if w
belongs to the intersection, f,(w)>=r for all » and also lim f,(w) = 0.

n—>00

Suppose now that B is non-reflexive. Then it follows from Lemma 1
of [3] that, for some o > 0 and for all positive numbers 4 and 6 with
4 > 6, there exists a sequence {z;} of members of B for which:

1) 6 <&l <4 for all ELeconv{m};
(ii) for each n, there is an N (n) such that

o(in{wy, ..., z,}, & = ofé,

for all feconvi{my, Oyyyy ...}
It follows from (i) and (ii) that

n <4, if o>

2) o(lin{zy, ..., @}, conviwy, ¥x,1,...}) = od
for all n. Let
(3) e =1inf lim g(w, conv{m, 2.4, ...}).

weB o0

Then & > kod. To show this, let us suppose that ¢ < }od, which
together with (2) implies that there is an weB and members nand { of
conv {z, @,, ...} such that |lo— g <}, |lo—E| <408, and |yp—E||>= of.
The first two of these inequalities imply |lp—¢|| < 0.

Now let A denote a positive number for which (e—A)[(e+2) >r.
Because of the definition of ¢, it is possible to choose w and {n:}, with
73 €CONV{@;, Ty, ...} for all ¢, such that

4) lns—w|f < e+ 2

It also follows from the definition of & that, for each choice of
{6i)--ylaa} as a subset of {n), and each choice of u from
Iin{{;—w, ..., &_;—w}, there exists an integer N such that

L) =14,

for all 1.

(5) 9(”’7 cony {ny—w, NINy1— W, .
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since otherwise the right member of (3) would not be greater than s —%2
when « is replaced by u-+w. Moreover, suppose we let U be a {finite
subset of lin{¢;—w, ..., {py—w} with enough members that, if
gelin {&;—w, ..., Cn_y—w} and || < 2e, then there is a weU with
lle—ul]< $1. Then if we let N* be the largest N needed to satisfy (5) for
any « of U, then (5) will be valid with ¥ replaced by N*, with e—%4
replaced by e—4, and for all welin{l;—w, ..., {,_;—w}. Then we let
ln = Ny+. By induction, this defines a subsequence {{;} of {#;} such that

(6) o(u, conv{ly—w, L —w,...}) = e—A
for all » and all welin{¢,—w, ..., ,_,—w}. Therefore if we let 2, =
= ({n—w)[|it,—w| and use (6) and (4), we have

s e—12 1
> ) .
] = et h

e N e > =1 Y

for all positive integers n, all uelinfz,,..., #,_;}, and all finite sequences_
{a;} of non-negative numbers. Therefore, for all n,

. g—24
(7) o(Uin{ey, ...y Zp1}y, CONV {20y Znyay .o0}) = —— > 1.

e+ 2

As a first step toward defining the desired continuous linear func-
tional f, for a particular =, let us define a new norm on lin{z;} as fol-
lows. Let §,_, denote lin{e,, ..., 2,_;} and, when z = Y a;2;, let

If ze8, 1, then ||lz[|| = llell. If ||[2]|| =0, then (2, 8,_,) =0 and

2e8,_y, so that |||z||| = ||zl|. Therefore ||[2||| 0 if 2z % 0. To establish the
triangle inequality, let us write # = Zaizi and y = Y b;2;. Then

]

n—1
< max [Q(-’AU, 8 —1)+ Q(y7 SnAl); “2“‘7121'
1

llelll = max e (e, Sn_s), U:Sm

] El(“i—l- bi)2;

lllo-+yll| = max [o(@+y, Sus),

N1
—]—H 41‘_7 b;2; ]

-1
] -+ max [g(y, 8p1), H nZ‘biz@-
1

|

n—1
< max [@(ma 8, —1)) HZ ;%;
1

el 141119111 -

Now let 1/6 = inf{|||2|||: 2econv(2,, 2ny1,...)}. It follows from the
definition of [|| ||| and (7) that

I

1
(8) i o(eonv{2,, Zny1, .-ty Spoy) >7.
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The definition of 6 implies that conv{z,, 02,4, ...} contains no
points @ for which |||2]|| < 1. Therefore [6] there is a linear functional
fn whose domain is cl[lin{z,, 2541, ...}] and for which

(9) faie) =1 for all  zeconv{0z,, Oz,,,, ...},
fiw) <1 i el <1,

Then [fr(w)]< ||lu]]| for all u. Let f;* be defined by fi*(x) = fX(x)
when 2 is in the domain of f;, and fi*(#;) = 0 if 4 < n. Then

:*(Za/izi)‘ = f:(Zaizi) < HIZ“"Z"'
” n
Since IH§ a;z||| = g(%1 w2, Suy) <) Sazi], we ha,Ve,J

(S| < | S

- Therefore ||f3*]] < 1. Also, if i > n, it follows from (9) that f%(62;) >1,
and from thiz and (8) that

1
(@) = fulz) = 5>

Now we can define f, as a norm-preserving extension of fi*/||f;*|
to the entire space. This completes the proof of Theorem 1.

The following corollary gives a geometric description of Theorem 1:

CoROLLARY 1. A Bamach space B is non-reflexive if and only if, for
each number + < 1, it is possible to embed B in a space of bounded functions
defined on a set A in such o way that, for each positive integer n, there
is o member z, of B with

(10) %y = (11,15, .oy Py, 0,0, .5 {t7),

where 1 > 17 >v for all i and % <1 for all a.

Proof. First, we use Theorem 1 to choose a sequence {#;} of elements
with unit norms and & sequence {f;} of continuous linear functionals with
unit norms for which f,(z) > if n < { and falzi) =0 it m > 4. Then we
choose a countable set {a,, a,, ...} of points to be a subset of A and de-
tine »(a,) as f,(x) for each n and each @ in B. Finally, we choose enough
additional continuous linear functionals {94} of unit norms so that, when
we introduce a point « of 4 for each g, and define x(a) as g,(x), it follows

for all # that
el = sap {w(a): aed},

so that B is isometric with a subspace of the space of bounded funetions
with domain 4.

icm

Characterizations of reflexivity 209
If B = 1", then this corollary can be strengthened and (10) repla-
ced by

= (1,1,...,1, =1, —1,..; {&}),

as is shown in the proof of the following theorem. The proof of this the-
orem uses an argument that will be generalized to prove Theorem 5.

THEOREM 2. There is a continuous linear functional g defined on 1
which has the property that, if 1V is a subspace of & Banach space B, then
there is a norm-preserving emtension of g that does not attain its sup on the
unit sphere of B.

Proof. Let {e;,e,,...} be the natural basis of 1) and, for each n,
let f, be the continuous linear functional defined on 1™ for which f,(e;) =
= +1if » <4 and f,(¢) = —1 if n >4. Let f be defined by

flo) = lim f,(x)

n—00

(i e, f(z) = —Z a, if =z =Ea,,,en).
1 1

It # is a subspace of B, extend each f, to all of B without increasing
the norm. Then extend f to all of B by letting f(2) be lim f,(x) whenever
N—=00

this limit exists, and then completing the extension of f to all of B without
increasing the norm of f. Finally, let g be defined by letting

(@) = 3 27 (@) —f(@).
Then |g(x)| < 2|z||, so that ||g|| < 2. Since

n o]

glea) = D) 27— Yok 41 =g 9=,
1 w41

it follows that |lg] = 2 and that g has the same norm on I® as on B. Now

suppose that flu| =1 and g(x) = 2. Since |f(u)] <1 and |fp(u)| <1 for

all &, we must have f;(4) = 1 for all . But then f(u) = 1 and g(u) = 0.

Therefore g does not attain its sup on the unit sphere of B.

The following theorem shows that Theorem 2 is not valid if IV is
replaced by (¢,). Although there are spaces B in which (¢,) can be embed-
ded so that all norm-preserving extensions of continuous linear functio-
nals defined on (¢,) attain their sups on the unit sphere of B, it follows
from Theorems 4 and 2 that, whenever a Banach space contains a sub-
space isometric with (¢,), there is a continuous linear functiomal defi-
ned on B that does not attain its sup on the unit sphere of B. Of course,
this also follows from Theorem 5.

TarorEM 3. With (¢,) considered as o subspace of (m), each norm-
-preserving extension of a continuous lnear functional defined on (c,)
attains its sup on the wnit sphere of (m).

Studia Mathematica XXIII.3 14
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Proof. Suppose f is a continuous linear functional defined on (¢,)
with [[fl| =1. Then there are numbers {f;} such that }'|f;] =1 and f(z) =
= Y fiw if @ is in (¢,) and » = (#;, @5, ...). Let sign(0) = 0 and sign(a) =
= @/|a] if ¢ is non-zero. Also let

u = [sign(f,), sign(fs), sign (fs), ... 1,
Uy, = [sign(f1), ..., sign(f,), 0,0, 0,...].
Then f(}u)-+f(u,—%u) = f(u,) and, since

Bl = lun—3ull =3 and  flw) = ifal,

we have |f(u,—3u)) <3 and f(3w)+flu,—4u) = 3 |f;]. Therefore
1

flw) =2 ) 1fal—1.

By letting 2 — co, we obtain f(u) > 1. Since |ju|| =1 and ||f] =1,
we have f(u) =1.

THEOREM 4. If (¢)) = B and each norm-preserving emtension to B of
each continuous linear functional defined on (e,) attains its sup on the wunit
sphere of B, then B contains a subspace isometric with real I®.

Proof. Embed B in the (m)-space of all bounded functions defi-
ned on a set A. Also choose 4 so that there are points {a,, a,, ...}in A
with the property thab, if @e(¢,), then

T = [m(al)am(‘:‘z): (@), P

Let f(#) = Yenw(a,)[2", where each e,is +1 or —1. If f attains its
sup on the unit sphere of B, it is at an z of unit norm for which B(®y) = &,
for all n. Lebt {f;,f,, ...} be chosen so that for each n the values at ay,
@3, ... of the element at which f, attains its sup on the unit sphere form
alternate blocks of -+1’s and —1’s, each block with 2™ members. The
closed linear span of these elements is isometric with real IV,

‘With the hope of simplifying notation in the statement and proof
of the following lemma, specific choices of certain numbers have been
made, although this is not strictly necessary. We shall use the convention
that sup denotes the supremum for all # with ] = 1. Also, a sequence
of non-overlapping members of conv{z} is a sequence {y;} of members
of conv{x;} for which there is an increasing sequence of integers {p;}
such that g, belongs to eonv{@y, ; ..:, @, , 1} for all n.

LEM.MA If B is a non-reflexive Banach space and {f;} is a sequence
of positive numbers with p, = 9, then there is a sequence {z} of members

of.B with unit norms and o sequence {95} of continuous linear functionals
with norms mot greater than 1, such that

icm°®
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(A) g (2) > 79/80 if » <4 and, for each i, there is am N (1) such that
gn(zi) =0 7:f n >-N(i);

(B) if for some k an element & of unit norm has the property that
g (E) < 3+27%, then there is an element y of unit norm such that

3 3
[ buauty—Tm gu()] > 2%t 5] Bugs ()~ limas 8]
1

Proof. Tt follows from Theorem 1 that theve is a sequence {2} of
elements with unit norms and a sequence {f;} of continuous linear fun-
ctionals with unit norms for which (1) is valid with r = 79/80. Eventually,
we shall choose {g;} as a sequence of non-overlapping members of conv {f;}.
Tt is then possible to choose {z;} as a subsequence of {#i} in such a way
that (A) is valid.

We shall show now that (B) is satisfied when % =1 if {g;} is any
sequence of non-overlapping members of conv {f;}. To do this, we suppose
that {g;} has been chosen and that a & with unib norm ha'\,s the prop‘.e,rty
that ¢,(&) < $. We know that ﬁmgi(z;) =0 and g¢,(=,) > 79/80 if n

T—+00
ig large enough. Therefore there is an » large enough that we can satisfy
(B) with k¥ = 1 and y = #,, provided it iz true that

() 0B > At [~ lim ().

{
8

Sinee the right member of (11) is not greater than 18+ Gp+1),
or 1f;-+1, it is sufficient to have (9/80)f, >1 or §; >80/9. For k =1
and B, = 9, we have shown that (B) i3 true for all choices of {g:} a5 a se-
quence of non-overlapping members of conv{f;.

Now suppose that {gy,gss--+s Gne1s Fns Fryas ...} has been chosen
ag a sequence of non-overlapping members of conv{f;} and that, for each
sequence {g,, fn.1, - -} Of non-overlapping members of conv{Fy, F,,;, .. 3,
(B) is valid for all k < n. Let
n—1

(12) 0, = inf sup | 3 figi(2) + a6 (@) —lim ()],
e T
where {;} denotes a sequence {Gy, Gy, ..-} 0f non-overlapping members

of conv {Fy, F,.,,...}. Choose a particular {G7} such that

h—1

sup| X fig:(0) + B2 G (@) — U (@)] < 0+ 274 fi0p.
1

It G =G, and {Gh,y, ...} 15 2 sequence of non-overlapping mem-
bers of eonv {G,y, ...}, then for all sequences {fyy,...} of non-overlapping
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members of conv{G,,,...} we have
limk;(s) > m&;(«) for all =
(13) - (@) = Bt ’
sup[ ) D) figs )+ Fai(0) ~lim hi(@)] < 0, 42704,

We can choose {Gn,1, ...} 50 that, with g, = @}, we also have
A4) 5[ 3 Aigu(@)+ frgahuya(o)—Tim hi(w)]

<92 (“+3’ﬂ,,+1+ sup [2 Bi9:(@) =+ Buyr By (%) —limn hﬂ(m)]’

for all sequences {k,,_1,...} of non-overlapping members of conv {Gy 1,...}.
To show this, we first arrange all members of conv{@,,,,...} that have
rational coefficients in a sequence {p,, @, ...}. Choose {H,, H,,...}
and an element @, of unit norm so that {H,, H,,...} is & sequence of
non-overlapping members with rational coefficients of conv{G.;,...}
which has the property that

2ﬁl-gi<w1>+ﬁmwl(wl)—ggm(wl)

is within 27"*¥g, , of being as la,rge as possible for all such sequences
and elements »,. Then let {H1, ...} be a subsequence of {H,, H,, ...}
for which lim Hj(z,) exists and equa,ls limH; (»,). Now use induction to
choose for each % a sequence {HY, HY,...} and an element a;, of unit norm
with the following properties:

(a) {H’{,E’-j,...} is a sequence of non-overlapping members with
rational coefficients of conv {HE"Y, HE .};

[Z' B:9: () +ﬂn+1¢k(wk)—hm Hf(a)] is within 27"+9g, ., of
bemg as large as possible for all ehomes of {H% HE,...} as a sequence of

non-overlapping members of conv{Hr !, H:!,
(0) lim HY () exists.

1o

ks

Now let G, = H} for each k. For any g, in conv{6:,,,...}, the
expression

2 Bi9: (@)t By 0n (@) — UM G ()
1 L=r 0

= ' Bia @)+ Brsa i) — lim HY (a),

and this expression cannot be increased by more than 2_("“)/3,,,,1 by re-
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placing {G5,,, ...} by some sequence {fn,, ...} of non-overlapping mem-
bers of eonv{@.,...}. Also,

Lim by (@) = 1—1?11 R ()

100 100

for any such sequence. Now for a choice of {hn,, ...}, We can choose
@ 50 that

Mir (@) — pe(@)] < 270796, i o] <1
and use @, and the corresponding »;, to show that if (14) is false then we
could replace h,., by ¢ and obtain the false statement:

n

N B )+ B i (a2) — L oy (1)
> sup [2 Bi04(®)+ Bua () — 00 By (@)
1

Now suppose there exists a G** in conv{Gy,,, ...} and a sequence
{ns1, ---} of mon-overlapping members of conv{@,;, ...} for which

n—1

(15) sup[lzﬁfgz-(m+ﬂnG:(m>+ﬁn+1G**(w>-lirphi(w)]
< 8,4+ (% +2“")ﬁn+1-
Let H = (BaGn+ Bunsr@ ™) [(Bn+ Bnsa)- Then
(16) sup] Zﬂzg, D)+ (B (@) 1 )] < 6, (5 +27) B

We know that (B) is valid for k = »n with k; substituted for g; when
i > n and H substituted for g,. Therefore if £ has unit norm and is such
that the expression 8,

n—1

vm v)+ B, H (x)— Lim hy(w),

is within 27498, of its sap when « = &, then H(&) >;-+27" and §is
increased by more than (1427")8,,, when the term B, . H(£) is added,
so it follows from (16) that

-1

sup] Y ige(o) -+ ol (o) lim ()]

1 1
< 61L+ (‘I +2—“)ﬁn+1_ (Z +2hn)ﬂn+1 = Bn-
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This contradiets (12), so we can conclude that expression (13) is
false for all @ and all sequences {A, ., ...} of non-overlapping mem-
bers of conv {@.;, ...}. It follows from this and (13) that

n—1

a7 sup| N Bigi (@) + A @)+ B (@) — lim by (o) |

n—1
[_‘_,_%_o -n_g- (zzx%):l,g7“1+511])[ Y’ﬁLg/1 +ﬁn ) — lm hy (2 )]
whatever the choice of G** and {f, 1, ...} as non-overlapping members
of eonv{@n,,,...}. It then follows from (14) and (17), with &} = g,,
that

(18)  sup| 3 ega(@)+ fusalina (@) — T 1y (o) |

> =27, sup [ ) Bige(@) 4 Busa Ty (0) — i Iy ()|
¢ |

1 "
[ 2=t sup | X o) —tim i)
1

Now we are prepared to attack (B) when &k = n-+1. Suppose that
{hni1y ...} is a sequence of non-overlapping members of conv{G;
and that & with unit norm is such that b, (&) < 342,
easy to verify directly that

s e}
Then it is

1
(19) [Z gt ”] Bra

2 3 Bu:( )+ Busahaa () —Tm iy (£)] — [ﬁ Bige( &) —lim by (8)]-
1 1 E

From (18), it follows that there is a ¥ of unit norm such that
20) [ Y Bige @)+ Busa hnsn () — iy ()|
< |

1 n — (- c 0
>[Z +27"— 2 '2)].811-1-1'!' SUP[Z ﬁim(w)—%i_lytz(w)]-
“ J

It follows from (19) and (20), and the equality of }4+27"—
and 27N L1 4 9= that

Lx]

[ Zﬂimy)+ﬂn+1hn+1(y)—1‘imi<y>]

2-—(7L+2)

> 27 [ X B:04(8)+ Basa nsa (6)— ER( )
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Therefore condition (B) is valid for % =n-+1 and for all
©hoices Of {fn,1y Jnizs---} 85 & sequence of non-overlapping members of
eonv{Gpi1, Gryny <o }-

THEOREM 5. If B is a non-reflewive Banach space, then there is a con-
tinuous linear funetional that does not attain its sup on the unit sphere of B.

Proof. We shall use the sequences {2;}, {8}, and {g;} of the lemma,
but add the restriction that fi.; < 2-F+8, for each k. Let @ be a linear
functional of unit norm defined on (m) and such that

limmz < @(ml,xz, Tgy “') glﬁﬁml

For example, we can let @ be any linear functional of unit norm sueh

that @ (zy, %,, ...) = lim », whenever this limit exists (or we could let
N—00

& be a Banach limit—but we do not need the “translation invariance”
of a Banach limit).

Now define a linear functional ¢ on the space B by letting ¢(2) =
= @[g,(2), g2(2), -..]. Then Jg|| <1 and we also have
(21) limg,(2) < g(2) <Iimgi(2)

for all z in B. Now let & be defined by

= Y Bigi()—9(2)-

It follows from (B) of the lemma that, if g,(£) < $427" for some
& of unit norm and some n, then there is a % of unit norm such that

@2) | X gl —1limgy) >2-‘"+2’ﬁﬂ+[2 Bige(£)—limg (&)
1

Since fr.y <

~#+p, for each k, both Ziﬁlyz(yl and "‘1 lﬁl%(t)[
are less than 2 e

("'T” B.- Therefore

[iﬁigi(‘!/)—ﬁﬁgi(?l)] >{§j Big:(& ~¥Plgi<£)]s

I'S_O,’ B (1) — ()] >[§ﬁz~gi(§)—g(s>’_|,

or G(y) > G(&). Therefore if @ attains its sup on the unit sphere at u,
then g,(u) >3+2"" >1 for all = and therefore g(u) > 1. We would

then have
Glu) < D) Bi—1,
1
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but it follows from (A) of the lemma and ¢(z,) = 0 that

'5% Zn‘ﬂi“‘gﬂi %13— Eﬁi as
1 n+1 1

Glen) = D Bugilen) >

Therefore

B 4 <o Zm

1

. . . L ke
which implies that > f; > 20. However, }' 8, < 10.
1 1
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Generalized convolutions
by

K. UTRBANIK (Wroctaw)

Introduction

Let P be the class of all probability measures defined on Borel sub-
sets of the positive half-line. By E, (¢ > 0) we shall denote the probabi-
lity measure concentrated at the point a. For any positive number a
we define a transformation 7T, of P onto itself by means of the formula
(T, P)(&f) = P(a~'sZ), where PP, & is a Borel set and oo = {a~"a:
zesf}. Of course, the family T, (a >0) forms a group under eompo-
sition and 7,05 = Te (a, b >0). Further, we define the transformation
T, by agsuming T, P = E, for all P from P. It is very easy to verify that
for every bounded continuous function f the equation

(1) J F(@)(ToP)(ds) = ff >0,PeP)

holds.

We say that a sequence P,, P,, ... of probability measures is weakly
convergent to a probability measure P, in symbols P, — P, if for every
bounded continuous funection f the equation

az)P(dz) (a

I~ -
lim [ f(z)Pp(da) = [ f()P ()
n—>00 g [

holds. From this definition of weak convergence and from (1) it follows
that

(%) Tq, Pn — T,P whenever a, — a and P, —P.

In particular,

(+*) if @, —0 and P, — P, then Ty P, — Ey.

A commutative and associative P-valued binary operation o defi-
ned on P is called a generaliced comvolution if it satisfies the following
conditions:

{i) the measure B, is a unit element, i.e. B,oP = P for all Pe P;
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