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Intermediate spaces and interpolation, the complex method

by
1

A.P. CALDERGN (Chicago, TIL)*

Introduction. In this paper we discuss in detail the so called complex
method of interpolation which was originally introduced by the author
in [1], and later, independently, by J. L. Lions in [5].

The paper consists mainly of two parts. The first one comprises
paragraphs 1 to 12 and is devoted to those propertiés of the intermediate
spaces which are consequences of properties of the interpolating spaces.
In the study of duality we are let to a second ecomplex method.of inter-
polation yielding intermediate spaces [B,, B,T (see paragraph 5). This
method, which is closely related to but not identical with the first, is
also discussed in some detail in the first part. The rest is devoted to the
determination of the spaces intermediate between given ones. We study
extensively the spaces between Banach lattices of funetions, these func-
tions being allowed to take values in a Banach space. We also consider
the problem of integpolating between various classes of Holder conti-
nuous functions, continuously differentiable functions etec. This we ac-
complish by considering a general class A(B, X) and obtaining a suitable
representation for functions in this class (see paragraph 14).

The presentation of the material is arranged as follows: paragraphs
1 to 14 contain the most important definitions and the statement of
results. The remaining paragraphs contain the proofs. Thus the statements
of paragraph @, 1 < r <14, are proved in paragraph «--20.

Throughout this paper we make systematic use of funetions with
values in a Banach space. We refer the reader to [2] for the general
analytical facts about such funections.

The reader interested in other methods of interpolation can consulb
the work of N. Aronszajn, B. Gagliardo, C. Foias, 8. Krein, J. V. Lions
and J. Peetre. The method of 8. G. Krein (see [3] and [41} 1 closely
related to the one discussed in this paper.

* This work was partly supported by the N.S. F. grant. GP.-574.
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The spaces introduced in 13.4 generalize a class originally introdueed
by G. G. Lorentz (see 1.

The spaces 4 in paragraph 14 include those studied by M. H. Taibleson
in his dissertation, where, among other things, he solves the problem
of interpolation between his spaces.

The reader may also be interested in the paper of E. M. Stein [7],
where he generalized the classical convexity theorem of M. Riesz to
operators depending on 2 complex parameter, and the paper of BE.M.
Stein and G. Weiss [8] concerning interpolation between I? spaces with
respect to different measures.

1. An snterpolation pair (B°, B') is a pair of complex Banach spaces
B, B', continuously embedded in a complex topological vector space V.
1f 3 is an element of BY, i = 0,1, we denote its norm by &l or |l -
If in B® ~ B' we infroduce the norm

2l ot = max (o, llals) s

then B® ~ B' becomes a Banach gpace.
Similarly, if we consider the space B°+B' and infroduce in it the norm

#5045t = 10k [y llo+ lI2lli]

where the infimum is taken over all pairs y,#, yeB’, zeB', such that
y+2 =z, then B"-+B' also becomes a Banach space.

Since B® and B are continnously embedded in V, it is evident that
B® ~ B* and B'-+B' are also continuously embedded in V.

2, Given an interpolation pair we consider functions f(&), &=
— g1t defined in the strip 0 <s <1 of the &plane, with values in
B+ B' continuous and bounded with respect to the morm of B4+ B
in 0 <s <1 and analytic in 0 < s < 1, and such that f(it) B’ is B'-con-
tinuous and tends to zero as |t] = oo, f(1-+it)eB' is Bl-continuous and
tends to zero as |f| — oo. In this linear space of functions which we denote
by #(B’, B') we introduce the norm.

lifls- = max [sup |f(it)fo, sup @+ a1

Then & becomes a Banach space.
3. Given a real number s, 0 < s <1, we consider the subspace
B, = [B", B], of B"+B" defined by B, = {& | # = f(s), fe# (B’, B')} and
introduce in it the norm
llzlls = llalls, = intfiflls;  f(5) = -

Then B, is a Banach space continuously embedded in B’ +-B". Further-
more, if 47, denotes the subspace of # (B°, B') consisting of all functions
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f(&) which vanish at & =s, then /# is closed and the quotient space
Z(B', BY)|#, is isomorphic and isometric with B,. This isometry is
effected by the mapping #(B’, B') - B, defined by f— £(s).

. If @eB’ ~ BY, then |zf; < el 5o, 1. This is seen at once by taking

= .

4. Later we will state a more general theorem but this one is an im-
mediate consequence of the definitions. Let (B, BY) and (C°, (") be two
interpolation couples. Let L be a linear mapping from B+ B to ¢°-(C*
such that zeB' implies L(z)eC' and

Mol < My o)z, ©=0,1.

Then zeB; = [BD7 Bl]s implies L(z)eC, = [GO; 01]3 and
\Lallo, < My~* M3 |jalp, .

) 5. Now we introduce a new space F of analytic functions. It con-
sists of functions f(£) defined in 0 < s <1, with values in B'+B' with
the following properties:

1) W (E)llgos 0 < e(L+1£1),
ii) f(&) is continuous in 0 < s <1,
iif) f(&) is analytic in 0 <s < 1,
iv) f(it:))—f(ity) has values in B® and f(l-+it,)—F(1-+4t,) in B
for any —oo < #; <, < oo and
Flite) —fity)
to—1t, |

|
; sup ‘
B0 i1ty

FOL ity) — (L4 ity)

max [sup {
P

ta,

Ll] — Ifis < oo

) ‘With the norm introduced in iv) Z teduced modulo constant func-
tions becomes a Banach space.

6. Given a real number s, 0 < s <1, we consider the subspace
B’ =[B°, B'T of B"+-B" defined by

d —
B={lz= i: (8); fe7 (B°, BY)}
with the norm

d ) =
T (s) = m.
Then B° is a Banach space continuously embedded in B°4+B'. If

Asis the subspace of Z consisting of all functions f 7 such that -Z% (s) =0,

Hellps = int|fllz,

then 47 is a closed subspace of Z and B is isometric with @i,
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The isometry is effected by the mapping Z — B"+B' defined by

Fo ).

7. If T is a linear mapping from B°+B' to (°+C' which maps B’
continuously into ¢ (i = 0, 1), then it also maps B° continuously into ",
More precisely, it M, is the norm of L as a linear mapping from B to
(%, then its norm as a linear mapping from B° to €' does not exceed
My,

8. The interpolation methods yielding B’ and B,, although clo-
sely related, are not identical as will be seen in 13.6.

Nevertheless we have the following relations between these spaces
and their norms (see 9.5):

B; < B, “m”Bs = ;l"l"”],»s for  xeB,.

9.1. Let (B, B') be an interpolation pair and let ¥ be a topological
vector space in which B’ and B' are continuously embedded. Let f(¢)
be a function with values in V defined in 0 < s < 1 such that for every
continuous linear funetional ! in a separating family of such functionals
H[f(&)] is continuous in 0 < s < 1, analytic in 0 <s < 1 and representable
a5 the Poisson integral of its values on the boundary of the strip 0 <<s < 1.
(For this it is sufficient that I[f(£)] be O[e™%(~9] for some & > 0 an |¢|
— co.) Suppose in addition that

i) if f(it) e B is continuous and tends to zero as [t] — co and f(1-+it) e B’
is continuous and tends to zero as |t| — oo, then fe&# (B°, B');

i) if [f(6t,) —f(its)1/(t,—1,) Dbelongs to B and has bounded norm,
[f(A4t,) - f(14it,)1/(t,—1,) belongs to B' and has bounded norm, then
feF (B®, BY).

9.2. Consider the functions in #(B°, B') of the form

N

=2 &

f(g) — % Z z, elm’
n=l

where z,eB' ~ B', ), is real and & > 0. The set of such functions and
the set of their linear combinations which we will denote by % (B’, B')
is dense in & (B, BY).

9.3. An immediate consequence of the preceding statement is the
following: B° ~ B' is dense in B, = [B’, B'];, 0 < s < 1. Furthermore,
B, = [B', B'], is a closed subspace of B® and its norm coincides with
that of B’. We also have #(B', B') = #(B,, B,), [B’, B'], = [By, B.],
0<s <1, and #(B', B) = #(B,, B), [B’, B'T = [B,, B,T.
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9.4. Functions in & satisfy certain inequalities which have various
applications in this theory. Let us denote by Ho(&, 1), u(&,1t) the Pois-
son kernels for the strip 0 <s < 1. They can be obtained readily from
the Poisson kernel for the halfplane by mapping conformally the half-
plane onto the strip. Explicitly these kernels are

—m(t—1) o5
e SIS
Ho(§,T) = v, & =stit,

sin’ms + [cosms— e - OT

e " ginrg
sin®zs + [coszs + e~ "I

Hilg, 1) =

s & = s-1t.

Then for every function f in # (B, B') we have the following inequal-
ities:

) 10g 1f(5)ln, < [ [log £ )]0 (s, )+

+ [ Doglf(L+itllumls, nat, 0<s<1;

y 17 s
i) 11f(s)lim, S[t; f ”f('it)llm,un(s,t)dt] X
1 -‘m\ T AN ©
<[5 [ e, al
W) 176, < [ 1@ omals, Ot [ 1F(L+ i0)] s, 1.

The following is a consequence of i).
Let f,e# (B, B') be such that

J Tog it} o+ log a1 4 it 1e ="t

— o0

is bounded and suppose that f,(it) tends to zero in B® for all  in a set of
positive measure; then [if,(s)]l, — 0 for 0 < s < 1.

95. Let f e}(B°, B') have the property that for all ¢ in set of po-
sitive measure

o .
o LGt ih) — fin) |
converges in B’ as h tends to zero. Then

F(8)eB, = [B', B'],, 0<s=<I1,
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-~

In particular, if B° is reflexive this limit exigts for almost all ¢ and
any fs.? (B°, BY) and consequently [B°, B}, = [B°, B']. Furthermore,
the norms of these spaces coincide. In the general case we have
[B", B'],  [B’, B'T and if we[B’, B'], then [alz, > ll2lz-

9.6. The following property of interpolation pairs is useful in establish-
ing complete continuity of certain operators. Suppose there exists a directed
get of operators m; on B°4+B' such that = (B") < B' and the norms of
7, a8 operators on B are bounded, 4 = 0, 1; m(B°) is finite dimensional
and, for every @eB’, |lmw— g — 0.

Let K be a compact subset of B°, ¢ a constant and F a set of positive
measure of the line. Then for each s, 0 < ¢ <1, there exists a compact
subset K, of B, such that fe# (B°, BY, |lIfIll <¢ and f(it)eK for tek
imply that f(s)eKs.

101, Let (4, B;), ¢ =1,2,...,m, and (4,B) be interpolation
pairs. Let L(wy, ..., %), #1c4; ~ B;, be a multilinear operation defined

n

in the direct sum @ (4; ~ B;) with values in 4 ~ B and such that
i=1
n n
VL (s, gy ooy @allla < Mo [ [ oillayy  E(@05 @y ooy @alls < My ] [ il
1 1
Then if ¢ = [4, B], and C; = [4;, B;]; we have
ML (@sy @, ooy 2o < M50 [ [llmille,, 0 <5 <1,
and thus L can be extended continuously to a multilinear mapping of
n .
@ G.,', into C.
1
10.2. The preceding result can be extended in the following fashion.
n
Let .# be the space of multilinear mappings L of @ 4; ~ B, into A+B
: 1

with the norm

LiF = sup | L(wy, ..oy Za)ltsm .,
and #, and #,, the spaces of multilinear mappings of @ (4;~ By)
1

loillgymm; <1,y

into A and B respectively with the norms

IZlly = sup |L(@y, ..oy Balllay  Iwilla, <1,
and

Ly = sup ‘[‘i;(wly o @alles  lille; <1

Then #, #, and #, are Banach spaces and we have .4, < A
and [|Z||; > ||L]|, that is, the .#; are embedded continuously in .#. Con-
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sider now the multilinear mapping L (L, ®,, ..., %), Led#, s;edin Bi,
into A+B, defined by
L(Ly ®Byyeney®Bn) = Ly, oy By).

Then if Let = [ My, #,]s, We have L(wy,...,o,)eC =[4, B,
and

(@1, -y @)llo < 1Tl [ | lmille,

and L can be extended to a bounded multilinear mapping of gB C; into C.
In other Wo}ds, [#,, #,]s is contained in the space of bouI;ded multi-
linear mappings of é [4, B]s into [4, B], and by the preceding inequal-
ity the embedding i;; continuous.

10.3. Sometimes it is desirable to establish the boundedness of

a multilinear mapping under legs restrictive assumptions than those of
the preceding paragraph. Suppose L is a multilinear mapping defined

n
on @ (4; ~ B;) with values in a locally convex topological vector space V'

1
in which A and B are continuously embedded. Suppose there exists a se-
quence of functions {Fy}, FyeF (#,, #,), with the following properties:
i) for a given s, 0 < s < 1, every continuons linear functional ¢ on
V and z;ed; ~ B;, we have,
kli.mt [Fr(8) (@1 «ces @n)—L(@1, ..., Ba)] = 0.

+oo

40
i) [ log*|Fy(it)laysols, Nat+ [ log* [Fill-tit)eyma(s, )dt < o

—0 00
where y, and u, are defined as in 9.4.

iii) for ¢ in a set of positive measure Fy(it) converges in .#,. Then
L(wyy...,%,)eC =[4, B], and

IZ @y, ..o, @alle < e [ [loidlle,  Cs = [4i, Bils
1

10.4. Let L be a bounded multilinear mapping of @ 4; into 4. We
1

will say that L is completely continuous if the image of the seb [lzills, <1

is a totally bounded subset of A. As in the case of completely continnous

linear operations, the set of completely continuous multilinear operations
n

from @ 4; to 4 is a closed subspace of the space of all bounded multi-
1 n
linear operations from @ 4; to 4.
1
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Referring to 10.2, let (&) e F(Myy M) be71 such that F (i) is

a completely continuous multilinear mapping of (—BAi into 4 for all ¢

in a set B of positive measure of the line. Suppose in addition that the
pair (4, B) has the property 9.6. Then for each s, 0 <<s<<1, F(s) is

a completely continuous multilinear map from G? [4;, B;]s into [4, B],.

10.5. Let (4, B) be an interpolation pair and suppose th'at A and B
are Banach algebras with the property that multiplications in 4 and B
coincide in 4 ~ B. Then A ~ B'is a subalgebra of both A and B and
for each 3,0 < 8 <1, and #,ye4 ~ B we have

leyle < lellefyle, € =T[4, Bl

so that multiplication can be extended continuously to C, which then
becomes a Banach algebra. This statement is a special case of 10.1.

111. Let L(z,, ..., ,) be a multilinear mapping defined for », =
Ay +By, 2 =A; ~ B; (@ =2,3,...,n) with values in A+B. .Suppose
that for #,ed,, & eB, we have L(®y, ..., #,)ed, Ly, ..., 2,)eB and

n

M, H lilLs
i, H ko,

[4,, B, 0 <s <1, we have L(=z, ...

1) ”L(‘nl’ . ;J'n)H.l

r)) ||L(.Z'1, ceey iy “b
respectively. Then for x,¢C, =
.y @p)eC =T[4, BT and

MLy, s 2o < A3 [ [l
. 1

BT and O; = [4yy Bils, ¢ =2, ...,0. 7!fl‘hus L

can be extended continuously to a multilinear mapping of @ C¢; into
1

where again C; = [4,,

¢ = [A, BY with norm not exceeding My *JI;.

11.2. Given the interpolation pairs (4, B) and (4, By), J :11
2,...,m let # be the space of bounded multilinear mappings L of
k1)

@(Ai ~ B;) into A+B and 4, and #, the subspaces of # consisting
of the multilinear mappings in .# which map @(A ~ B;) boundedly into

Aand B respectively with the eorrespondlng norms. Evidently .#, and
J#, are continuously embedded in .# and are an interpolation pair,
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Then the space 4" = [#,, .#,]° consists of multilinear mappings L map-
n

ping @(4; ~ B;) inte € = [4, BT and such that
1

Il H sl

= [4y, B;];. Evidently each such L can be extended uniquely

HL(JU]_, cery X ”C

where (;
n

to a multilinear bounded mapping of @[4,, B/, into [4, BT.
1

12.1. In this paragraph we discuss the dual of [4, B];. Without
loss of generality we may assume that 4 ~ B is dense in both 4 and B.
We denote by A%, B*,... the duals of 4, B, ... If y is an element of 4%,
its value at x,xed, will be denoted by (r, y>. By restricting bounded
linear functionals on 4 and B to 4 ~ B we obtain continuous embedding
of A*and B*in (4 ~ B)*. Let ¢ = [4, Bl,and €' = [4*, B*] = (4 ~ B~
Then for yeC’ and xed ~ B we have

<'JJ, y> < ”m”G“yHG:

that is, y is continuous with respect to the norm of ¢ on (4 ~ B)*. Since
A ~ B is dense in O, this linear functional can be extended uniquely
to & continuous linear functional ¥, on C, with |t <|lyllo.. Conversely
every continuous linear functional ¥ on C is of this form, that is Ha) =
= 1,(z) for some yeC’ with [ly|le < Hllce. This y is uniquely determined
by ¥ and thus (" = [4*, B*]® is isomorphic and isometric with C*.
Given ye(” and xeC the value of §,(x) can be calculated as follows:
let feF (A4, B), f(s) = and geF (A*, B*), g’(s) = y; then

4o 0o
(@)= —i | <f(it)uels, 1), dg(it)>—i [ (F(L+it) (s, 1ydg(1+it)>
— o0 -0
where u,(s, t) and p, (s, t) are the Poisson kernels in 9.4 and the integrals
are to be interpreted as explained in 32.1.

12.2. If one of the two spaces A, B is reflexive, the same is true for
C=1[4,B), 0 <s<1.

123, Let Al = [A, Bls, Bi=[4,Bl;, 0<a<f<1, and let
(I—o)at+of =s, 0 <o <1. Then [4,B], and [4,, B,], and their
norms coincide plonded that (4 ~ B)* is dense in 4, ~ B, with respect;
to the norm of 4, ~ B,. This condition is automatically satisfied if A > B
or B> 4.

In the following paragraphs we discuss interpolation in spaces con-
structed by means of lattices of measurable functions. These spaces in-
clude the complex Koethe-Banach spaces and in particular the Lebes-
gue, Orlicz and Lorentz spaces and many of their generalizations. We
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will first develop that part of the theory of Bamach lattices which is
necessary for the formulation and derivation of our results.

13.4. Consider a totally o-finite measure space .# and the class of
real valued measurable functions on . Two functions coinciding almost
everywhere will be identified, and relationships between functions will
mean relationships between the values of the functions which are valid
almost everywhere. A subclass X of measurable functions is a Banach
lattice on 4 if it has the following properties:

i) X is linear;

ii) there is a norm defined in X with respect to which it is complete;

iii) feX and |g| <|f| imply that geX and [gllx < [flx. Evidently
[filx = 0 implies that f equals the zero functions or f = 0, where 0 denotes
the zero function.

13.2. Let u(x) be a positive integrable function on « and for any
two meagurable functions f and g on # let

: lf—gl
af,9) = y m#(”)dﬂ?-

Then, if we introduce the distance function d(f, g), the space of all
meagurable functions on .# becomes a complete metric vector space V,
in which X is continuously embedded; in other words, [fa—fllx —0
implies d(f,,f) - 0.

Let f,«X be such that ) ||fulx < co. Then there exists an element f
of X such that

i | sl =0,

the series }f,(#) is absolutely convergent and its sum is f(x) for al-
most all wesd.

13.3. Given a Banach lattice X, others can be constructed by various
methods.

Let ¢(w, ) be a function which for each wes# is a concave increasing
funetion of ¢ in 0 <t < oo vanishing at # = 0 (no measurability assump-
tions on ¢(x,?) are necessary here), and consider the class, which we
will denote by ¢(X), consisting of all measurable functions g(z) on 4
such that |g(a)| < Jp[a, f(2)] for some f(@)X, ||f|x <1 and 4> 0. De-
fine the norm |jgll,x) of g as the greatest lower bound of the values of 1
for which an inequality like the preceding holds. Then ¢(X) becomes
a Banach lattice.
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For example if X is L'(#) and ¢(o,t) = (u(z)""?)(1), where
u{w) is a positive measurable funetion of », then, as readily verified ¢(X)
is the IP(.#) with respect to the weight function u(s).

Suppose on the other hand that ¢(z,?) = ¢ () where ¢(f) is the in-
verse of the convex increasing function @(i). Then, if again X = L'(.#),
@(X) is the Orlicz space L, (see the definition of L, in [107, (I), p. 173).

13.4. Given a measurable function f on .# which is integrable on

sets of finite measure, we associate with it the funetion f**(£), 0 < ¢ < oo,
defined by

1
7w = [inas,

where the supremum is taken over all measurable sets B in .# of measure
< t. Then we have
i) if 1 is a constant, then (Af)** =
i) (f+9)™ <f™+g™;

i) if >0, >0 and 0<s<1, then (ffg)* <(f™ (g™

iv) if f > 0, and ¢ is a concave non-negative function in 0 < < co,
2(0) = 0, then p(fi** < p(f*).

Let now X be a Banach lattice on the halfline 0 < # < co; we denote
by X* the class of measurable functions f on .4 such that f** X and in-
troduce in X* the norm ||f]|z» = ||f**]x. Then X* becomes a Banach lattice.
For example, if X is the space of functions g(t), 0 < ¢ < oo, such that

1A1£*%5

oa

lolx ={[ 1

0

t)]qt‘l"""dt <oo, l<p<oo,l<

g < oo,

then X* is the Lorentz space Ly,.

135. Let now X, and X, be two Banach lattices on .# ; they are
both continnously embedded in the space of all measurable functions
on .# with the metric introduced in 13.2, and consequently X,+X,
and X; ~ X, with the norms introduced in section 1 are also Banach
spaces. Furthermore, they are Banach lattices on .

Let 0 <s <1 and consider the class X of functions f such that
If(@)] < Alg(=)]""°|h(2)] for some constant 4> 0 and some geX;, heX,
with Jgllx, <1 and |&x, <1, and let [|flx be the greatest lower bound
of the values of 1 for which such an inequality holds. Then X, which we
will denote also by X} °X3, is a Banach lattice on .#. This construction
arises naturally in interpolation and for this reason it may be of interest
to obtain more direct descriptions of X;~°X3. This can be done for exam-
ple in the following cases.
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Let X be a Banach lattice, ¢ (x,?) and @5(m, 1) t\\ro coneave fnn(z-
tions as described in 13.3. Then P () e (X)° is1 iqulvalc:nt to f/‘(A)
where ¢(z,t) is the concave function ¢(x, 1) = L (w,.t)(p‘z(m, 1). Here
equivalence means that the two Banach lattices consist of the same
elements but have merely equivalent norms. . .

Tn what follows we shall assume for simplicity that .# is non-atomic.
Let X, and X, be two Banach lattices on the ha:lflin? 0 < 3 < o0, ‘ancl
let X7 and X5 be the lattices agsociated with X ?md A , a8 in 13‘.4-. ’J.h_e.n
(X)'-°(X%) is contained in (X7~*X3)* and the inclusion map is conti-
nuous. Under some additional conditions the two lattices coincide and
their norms are equivalent. One such condition is the following:.consider
the group of operators H'f(t) = &Pf(te’), —oo < s < o0 .171118 group
should be strongly continuous in both X, and X, and satisfy the in-
equality Bl < ce™, a < & -

A second condition, which is a consequence of the 1)reccl*d1ng, is this:
funetions f() in X, or X, should be integrable on finite intervals and
the operators

1
i) sof = [fwas,  8uf =

should be bounded in both X, and X,. ‘ '
For example, consider the lattice X of funetions f(x) in 0 <w
sueh that

< 00

| i)t ] = Il < e, 1 <p< ool oo
0

Then it @(z,t) = a7, according to 13.3 we have X = (L)
where L' is the space of functions integrable in (0, co). We also have
1Hfllx = e"P~Y)f| <, that is X satisfies the first condition above. Let
now X, and X, be two such spaces with indices py, ¢, and P, ¢a, ves-
pectively. Then if 0 < s <1, X1°X; is also a space of the same kind
with indices
1—s s 1 1—s8 §

1

= e e y = +

p 1 [} q 1 '

respectively. '
Consequently (X3)~°(X3)" and (X} °X35)* coincide and have equi-

valent norms. The lattices XF, X7 and (X;°X3)* are respectively the

Lorentz spaces Ly g, Ly,g, and IL,g. Thus (Lphql)l“”('l}i,ﬂ,qﬁ)" and L,

coincide and have equivalent norms.

13.6. Let now B be a complex Banach space. A function on .4 with
values in B is said to be measurable if it is the limit almost everywhere
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of a sequence of simple B-valued functions. A function with values in B
is said to be simple if it takes finitely many values, each on a measurable
subset of .#. Evidently, if f(x) is B-valued measurable function then
lf(@)llz is a real valued measurable function. ’

Given a Banach lattice X on .# we denote by X(B) the class of
B-valued measurable functions flz) such that ||f()lzeX and define
Ifixgm = [[(If(2)l5)|x. With this norm X(B) is a Banach space,

Let now (B,, B;) be an interpolation pair and X o and X, two Banach
lattices on . Then X,(B,) and X,(B,) are continuously embedded in
(Xy+X,)(By+B,) and thus they also are an interpolation pair. Setting
X =X;"X] and B =[B,,B,], 0<s<1, we have the following
results:

i) [Xo(Bo), Xi(By)]s = X(B) and the inclusion is norm decreasing.
These spaces and their norms coincide if X has the property that fe.Y,
Ful <Ifl and f,, — 0 almost everywhere imply |Ifallx = 0.

ii) X(B) = [X,(By), X;(B,)]" and the inclusion is norm decreasing.
If the unit sphere of X(B) is closed in Xy(Bo)+X,(B,), these spaces and
their norms coincide.

Combining i) and ii) with 9.5, we obtain the following result: if X (By)
is reflexive, then [Xo(B,), X;(B,)]; = X(B) = [Xo(B,), X;(By)T and the
norms of these spaces coincide.

‘With ii) we can construct an example showing that in general [4, B],
#[4,BF. Let By = B = B, be the complex numbers, X, the bounded
funetions in (0, co) and X, the class of functions f(z), 0 < 2 < oo, such

that «°|f(2)| is bounded, and let iflx, = esssupa®|f(x)]. Then one verifies
readily that

1—-8ys o
<L «,’1:-Xs

and that the unit sphere of X,(B) is closed in X,(B)+X,(B). Conse-
quently by ii) we have

X:(B) = [X,(B), Ty(B)T.

But, as easily seen, X,(B) ~ X,(B) is not dense in X¢(B) and by
9.3 this implies that

Xo(B) # [Xo(B), X,(B)],-

14. This paragraph is devoted to interpolation of function spaces
related to the spaces of Lipschitz functions in Euclidean space. For this
purpose we study the spaces A(B, X) below and establish some general
results on them by which the interpolation problem is reduced to that
of interpolation between the spaces discussed in 13.
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14.1. Let B be a complex Banach space and 7y, yeR”, a Strong.ly
continuous representation of R® into a group of isometries of B., that is,
such that for every weB,myu is 2 B-valued conti‘nuou.s function of y.
Tet X denote a Banach lattice of meagurable functions on the half-
line (0, co) such that ) ) )
(i),fun)ctions in X are integrable on closed intervals contained in the
open half-line (0, o), _ .
P ii) there is aj positive integer k associated with X such that the in-

tegrals .
ds 3 t\F ds
[of [ool) s

are absolutel_y) convergent for geX and represent bounded operators

on X. . . .

Let now ¢(y) be an infinitely differentiable, spherically symmetrie
function in E™ with moments of orders less than k equal to zero. For
weB let F(t) = Tu be the B-valued function of 4, 0 <t < oo, defined by

1
Tu = tf (ryu)p (t 7/)d'y-

The integral here is to be interpreted as Riemann vector valued
integral, and Tw is then a continuous B-valued function of {. Now we
introduce the space A(B,X) as follows:

A(B, X) = {u | ueB, |Tullz = [|F()[z<X};
and define a norm in A(B, X) by
Tl = lell+ (1T wliz)lx -

Then we have the following result: the space A (B, X) is complete
and its embedding in B is continuous. Furthermore, up to equivalence
of norm A(B, X) is independent of the choice of the function ¢.

These spaces include several “classical” spaces as shown by the fol-
lowing result and examples.

iii) Suppose that X, in addition to i) and ii), has the property that
the integral

t
ds
t’fg(s);m,
0

where r is‘an integer 0 <7 <k, is absolutely convergent for geX and
represents a bounded operator on X. Then A(B,X) consists precigely
of those elements % of B which have the following properties:

* ©
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T is a bounded B-valued function of ¥ with bounded continuous
derivatives up to order r; if m >k—r and

dyu = 2(7) (—Lryu,

[}

then i"||A,w||z e X, where w is any derivative of z,u of order r at y = 0.
Furthermore, the norm of A(B, X) is equivalent to the smallest upper
bound for the norms in B of 7,4 and its derivatives up to order », and
f(;r ||t’||£(l;zw[]3”X, where |¢| =1 and w is a derivative of order r of T,u
at y = 0.

For example, let B = I?(R"), 1 < p < oo, so that the elements
of B are functions u(x) on E". Let 7,u — u(z—y). Let 5>1 be an
integer and X the class of functions g(¢) such that ~**°¢(t) is bounded,
where a is fixed and 0 << o < 1, and let |jg]lx = ess sup|(t~**+°(t)|. Then X
satisfies the conditions of iii) with r = £—1. Consequently by setting
m =1 in iii) we find that A(B, X) consists of functions in L”(R™) with

* derivatives up to order k—1 in I”(R"), and with derivatives w of

order k—1 satisfying the condition that
7w (5 — t2) —w (@),

is uniformly bounded in ¢ and 2, |2] = 1.

If a =1 in the preceding example, then the conditions of iii) are
satistied with ¥ > 2, r =%k—2, m > 2, and

7w (0 —2t2) — 2w (2 — 12) 4w ()]

is uniformly bounded in ¢ and 2, |¢| = 1.

Further examples can be constructed by replacing IP(R™) by the
class of continuous bounded functions in R". This yields classes of Lip-
schitzian functions or functions with Lipschitzian derivatives. Or one
may use different spaces X ; for example, the spaces studied by Taibleson
in his dissertation [9] can be obtained by suitable choice of B and X.

14.2. As we have seen above, 4(B, X) is defined as the inverse image
of X (B) under the mapping 7. Now we construct a mapping of the direct
sum X (B)®B of X(B) and B into 4(B, X) as follows.

Let p,(y) and ,(y) be two infinitely differentiable spherically sym-
metrically functions in R" with compact support. Given FeX(B) and
ueB let )

b 20 = [ o wnwars [ 0] [[o7(2) %(ty)]dy}dt.v
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Then the integral on the right is absolutely convergent in B and &
maps X (B)@X continuouslty into A(B, X). Furthermore, given the
funetion ¢ in 14.1, it is possible to select y, and v, in such a way that

S (T, uw) = U,

that is, if for ueA(B, X) we define £ u = (Tw, u), then 4 maps A(B, X)
isometrically into X(B)®B, & maps X(B)®B onto 4(B, X) and &
is a left inverse of #, The existence of such an operator & will permit
to reduce interpolation between spaces A(B, X) to interpolation between
spaces X(B).

An additional congequence of the existence of & is this. Consider
the operator S&; since & is onto, it maps X (B)®B onto the range
of £, since (SFY =S (SIS = JS¥, FP is a projection and thus the
range of S, which coincides with the range of #, is & complemented
subspace of X (B)®B. Consequently A(B, X) is isometric with a com-
plemented subspace of X (B)®B.

14.3. Let now (B,, B;) be an interpoiation pair and 7, a representa-

tion of B™ in a group of linear transformations of B,+By, such that 7, -

regtrieted to B; is a strongly continuous group of isometries of B, ¢ = 0, L.
Let X,, X, be two lattices of measurable functions on the halfline (0, oo)
satisfying conditions i) and ii) of 14.1. Then, since A(B,, X,) and 4A(By, Xy)
are continuously embedded in B, and B, respectively, and these are in
turn continuously embedded in By+B,, the pair A(B,, Xy), A(By, X))
is an interpolation pair and we have the following result:

The linear transformation T, restricted to B = [Bq, Bi}: 18 & strongly
continuous representation of R" inio a group of isometries of B; the space
X = XI°X%, satisfies conditions 1) and ii) of 14.1. If X(B) = [Xo(Bo)s
X,(B)], then A(B,X)=[A(B,, Xq), A(By, X1)]s up to equivalence
of norms. If [Bo, Byl = [By, B;]s and X(B) = [Xo(By), Xy (BT, then
A(B, X) = [A(By, X,), A(By, X)T up to equivalence of norms.

21. One merely has to verify completeness of B® ~ B' under the
norm described, all other required properties being evident. Suppose
that {z,} is such that |lw,—zullg,.z — 0 a8 n, M —> oo Then |z, — Zmlo
— 0 dnd @y — @l — 0, i. e. @, is a Cauchy sequence in both B' and B!
and therefore converges to a limit in each of these spaces. But B® and B'
are continuously embedded in ¥ and therefore these limits are also limits
of the sequence in V. Since limits in ¥ are unique, it follows that these
limits coincide. If & denotes this limit we have z<B° and weB' and con-
sequently @eB°® B'. Furthermore, |@,— x|, — 0 and |z,—x|; - 0 and
consequently z, converges to z with respect to the norm of B®~ B

Concerning B°+B', the homogeneity of the norm introduced and
the triangle property are readily verifiable. Let us show that ||z, ;1 = 0

icm
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implies # = 0 and completeness of B°4B' with respect to its norm
It |l#llgo, ;1 = O there exists two sequences YneB®, 2,¢B" such that |y, ]].
=0, gl = 0, y,+2, ==z Now we have also Y,-+2, =2 and con:ef
guenfly Yn—Y1t2n—2 =0, OF Yp—Y1 =2—2,. NOW yp—Yy; - —¥
in B® and thus also in ¥, and y,—y, = 2,—a2, ~2, in B' and thus als;
in V. Consequently —y, = lim(y,—y,) = 2, whence = — Y+2, = 0. To

show complete: it is i i
pleteness grt is enough to show that if 2, is such that zll’ﬂw"”B“ 5l
< oo, th =3 in B'4B' imi
oo, then sy %‘.c,, converges in B"4B' to a limit. Let 2, = ¢, 2,

With  y, € BY 2neB’, [nlls < ltallpo, jn+27" el < 240, 127" Then

o

%—,’ llynllo < oo and ‘12”2"” < oo, and this implies the desired conclusion.

22. .Evidently the quantity introduced has all required properties,
and again we merely have to verify that & is complete. Suppose that

fn 18 such that ||f,—fumls — 0. Then for each & = st (0 <s<1)
we have N

1fal8) = fu (Ol gy g1 < max [Sltll) 1 (0)llg04 515 SUP [ F (L8850, 1]
< fa—TFals =0

fmd con.sequently fa(£) converges in B'+B’ to a limit function f(£) which
is continuous and bounded in 0 <s <1 and analytic in 0 < s < 1.
Fux-thermore, we have ||f,(3t)—fm()| 0 < |l fa—fulls and consequently
Jn(it) converges to a limit in B° which must coincide with its limit in B°-- B,
Qonsequently flt)eB® and ||f,(it)— f(@)go — 0 wuniformly in ¢ which
implies that f(it) is continuously B’-valued and tends to zero as & — oo.
The corresponding conelusion also holds for f(1-4f) which shows that
f(&)eF (B, B'). Since ||fa(it)—f(it)] 0 — 0 and ||f,(1+it) — F(1+8)]|,, — 0
uniformly in ¢ it follows that ||f,— flls — 0 and our assertion is estabﬁ'shed‘
23. Evidently B, is the image of #(B°, B") under the linear mappi
Z(B', B')  B°+B" defined by f-»f(s). That this mapping is Efﬁf
nuous follows from

1 )ligoym < 1A SUP [|f(#8)ll 0., 528U I (1 +-B)lipo, i < [fll5

A; is then the kernel of the mapping and B, is simply gi
ot (B B L g s ply given the norm
, 241 In f:)he first place it is clear that L is a continuous map from
B'-B' to ¢"+C". Given weB, and ¢ > 0, there exists fe#(B’, B') such
that f(s) = 2 and ||flly < |lwlis,+ e The function g(£) = M M*LIf(£)]
evidently belongs to #(C°, ¢") and [l9(&)]s < |jalp,+e. Thus
lzllz,+e > lgls > g (e, = I Ms™ " M7 Lf(8)lc, = M~ My ®| L],

Studia Mathematica XXIV, 2
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whence
|Ealle, < Mo~ M3 (llolls,+ &)

Since ¢ is arbitrary, the desired conclusion follows.

95. Tt is clear that # is a linear space. Furthermore, if [|flF = 0,
then (i) and f(1-+4t) are constant, which implies that f(£) is constant.
Let now f, be such that ||fu—fnl® — 0. Then from the inequality

\f(é%—ih)—f(é)i

1180+ B!
ity)— £ (it 1+ dty)— f(1+ it
< max | sup Fits) —1(5%) , sup 1A+ -1 1) ] < |Ifll#
ity to—1ty BBl fah ty—1, B4 Bl
we obtain
., <

and consequently
17 (E)—F(O)lgos i < |€1 il

Thus f,(&)—f(0) converges uniformly on every compact subset
of 0 <s<1. The limit function f(&) obviously satisfies conditions
i), i), iii). Furthermore, for every pair i, t,, fu(if:)—fa(it,) converges
in B°, consequently f(it,)—f(it,) belongs to B® and

F(ty) —f(ity) _ Ja(its) —fu (i) |
ty—ty ta— 1t

y:

A similar conclusion holds for f(14 4t).
Ilf—Fallz —~ 0.

26. From the inequality

Consequently feﬁ' and

||~ @  <ifis

it follows that the mapping # — 15e°+13l defined by

i+ L
is continuous. The kernel .#, of the mapping is closed and the range

iz B’. The norm we have introduced in B’ is precisely the norm of Z| /i s
and B’ is therefore complete.
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27. Let (B°, B') and (¢, 0") be two interpolation pairs. Let L be
a linear mapping from B°+B' to €°4+(" which maps B into ¢° with
norm M;,i = 0, 1. Let # < B° and f# such that—fs— =,z <zt
Consider the function

E
| (log My—log M) M3~ M L[ f(n)1dn,

o

9(8) = M\ MLLIf(m)]];—

where the integral is taken along any path joining the points 0 and £
and contained in 0 <s < 1. If the path has all its points exeept ¢ and

perhaps £in ¢ << s < 1, since 'Zl—t'I' =1L a and _fE is continuous and

=
has bounded norm in B°+-B' in the tiip 0 < s < 1, and I is a bounded
linear mapping from B°-}B' into 0+ (', we find that d—tsz( f) is con-

tinuous and has bounded norm in C°4C". Consequently we may inte-
grate by parts the integral in the preceding expression obtaining
9(&) = [ M7 MT"ALLf(n)],

9

where the integral is to be interpreted as a vector valued Stieltjes in-
tegral. From this it follows that [g(&)l|. 4oi < ¢|£]. Furthermore, since
L[f(it)] bas values in C° and is a (°-Lipschitz function, it follows that
g(ity)—g(it,) eC® and ||g(8t,) — g(45,) [loo does mot exceed M;?' times the
total (°-variation of L[f(éf)] in the interval (1,,f,). Now as readily seen
this in turn does not exceed M, times the total B’-variation of f(it) in
(ts, t;) which is less than or equal to [t,—4||flls < [ta—t((llellz+ ).
Hence

[ta—til(llzll g+ €) -
In a similar fashion one obtaing

llg (1 -+ ite) —

llg (its) — g (it )l o <

g(1+it1)“01 < ‘tz—t1|(||w|lgs+ e).

Thus we have proved that geZ(C°, ¢') and that | <
Now

d
g'(s) = Mﬁ"MFSa—EL(f)]s:s = My MiL[f(s)] = My~ My L(w)

which shows that L(z) = M; *Mig’(s) belongs to ¢° and that
(@)l e < Mo~ * Mi(Jloll o+ 2).

Since £ is arbitrary, the desired conclusion follows.
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291, Tet p,(&,%) and p,(£,%) be the Poisson kernels asgociated
with the strip 0 < s < 1. Consider the function

+ro

+o0 A
g8 = [ flu(&,ndts [ fO+it)m(E, ndi;

—t0 —00

then g(£) has values in B°+B' and is continuous there. Furthermore,
if T is 2 continuous linear functional in the family we have

4-00 + o0
Ug(d) = [ UWHEIe(E, i+ [ U+ )] p(E, it = LF(E)]

and gince the linear functionals ¢ form a separating family, it follows that
F(E) =g(&). Now, from the definition of g(¢), it follows that (&) is bounded
in the case i) and that llg(&)llz, z; <e(L+ &) in the case ii). Finally, since
f(£) is continuous in B°+B', may form the expression

Lot

mi n—& ’

fle)—

where the integral is taken over a circle contained in 0 < s <1, and &
is a point interior to this circle. Then

[fm—;—; f—” j=1[;f(é)]*—}—.] [f’ll =0

n— 27 o
whence the expression above is zero which shows that f(£) is analytic.

29.2, Since |€®°F(&)—f(&)l# — 0 as 8 — +0 for every feF (B, BY),.
it will be enough to show that every g(&) of the form g(§) = e"szf( &),
fe#, can be approximated by functions in the class described above.
Let such a g(&) be given and let

+o0
(&) = 3 gle+2mijn), n>1.

J=—o00
Then clearly g,(&) has values in B°4-BY, is analytic in 0 < R(£) <1
and continuous in 0 < R(&) <1, and is periodic with period 2nin. Fur-
thermore, g, (4t} e B, g (1 +it) e BY, llga (i) — g (it)l]o— 0, llgn (1 + &6) — g (L +-0)llx
~> 0 ag n —> oo, uniformly on every bounded set of values of ¢, and ||, (6],
and ||g, (14 42)|, are bounded, uniformly in #. Now it is easy to see that
these properties imply that eséggn( EYeF for every s > 0, and that given

&> 0, a proper choice of & and » will yield

e g, (6)— 9(Ell= < ¢/2.
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Now g,(%) has a Fourier series representation

+-00
(1) g"('s) = E a’kneké‘m7 E :S'i"l'f«,
where
1 RmM
Uy, = Y [ gulsHit)e Mg =1 9

— TR

Because of periodicity, the value of the right-hand side is indepen-
dent of m, and on account of the analyticity and boundedness of the in-
tegrand, its dependence on s is arbitrarily small for sufficiently large m.
Oonsequently Gy, 18 independent of s and

1 = =
O, = ——— gu(it)e Mgy — I ’ g1+ a1y e~ Ry
2mn . 2nm e * ’

Now g,(it)eB® and is B’-continuous, which implies that the value
of the first integral is in B’ that is ay,<B’. Similarly, the second expres-
sion of ay, shows that ay,<B' and we conclude that ag,eB’ ~ B'. Consider
now the (C, 1) means of the series (1). We have

\ﬂ ( || i - ( dt
O Yn — - = - .
g ? E) m- 1 Aoy, © » ‘[L gn(f )I{m 2l n "y

— uL

where K,,(s) is the Fejér kernel. From the B’-continuity of g,(it) it
follows that |6, (gn, 48)— ga(it)]|, — 0 as m — oo, uniformly in ¢ for each
n. Similarly, we find that |lo,(ge, 14+ it)—g,(1+it)]; - 0 as m — oo,
uniformly in ¢t for each =. Consequently for each s> 0, n, we have
e [0n(gn, &)= gu{E)]l5 — 0 as m — co. Thus for suitable s, m and n
we have

=2

1% 0 (g §)— 985 <

Now ¢® Gm(!]m £) is a function of the desired form and 9.2 is established.
29.3. Let zeB; be given and let & > 0. Then there exists f«# (B', B)
such that f(s) = 2. By 9.2 we can find a function g(&) with values in
B’ ~ B! such that ||[f—glls < & Consequently, we have [f(s)—g )z, =
ls—g(ls, <If—glls < & since g(s)eB’ ~ B! our first assertion is
ebta.bhshed That B, c B® is evident. Let us show that the norm of an
element zeB, coincides with its norm as an element of B°. Given &> 0
we can find z, ¢ B® ~ B such that |z — @4]|5,<< &. Consider f (&) = 2, &M e,
Then clearly f(0) =2, and ||flls < |lz4f/50 +el“"l|m1]|B1 Consequently ||z,]|z,
< llogflpo +¢' " |wsllp and letting n — oo we find [@iils, < [l Now
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from the definition of the norm of B, we have ||z < [z, [l6— @450 <
< lle—allz, < & Thus (lzlz, < |2z, +e < [#4lls0 + & < |2llzo + 2&. Since
& is arbitrary we obtain [#|z, < |o|z which combined with the reverse
inequality above gives |2z, = |lzllo. To prove the last statement we
observe that if f(&)eZ (B°, BY), then f(if)eB, and f(1-it)eB,, and the-
refore f(&)eZ (By, B;). Thus & (B, Bl) c #(B,, B;). Now the reverse
inclusion is evident whence & (B°, B') = # (B,, B,). That the norms of
these spaces coincide follows from the equality of the morms of B* and
By, 1=0,1.

29.4. Let ¢,(t) and p,(¢!) be bounded infinitely differentiable and
such that ¢q(t) = log|lf(it)||ze, @i(f) = loglif(L+4t)|z. Let P(£) be an
analytic function whose real part is bounded and continuous in 0 < s 1
and such that R[D(it)] = ¢,(t), R[P(1+4t)] = @, (¢). This function exists

and
+00

00
RIOE] = [ eoldpel&, Ddt+ [ g,(t)pa(, t)it.

Furthermore, the differentiability of ¢, and ¢, implies that D(&)
is continuous in 0 < s <1. Consequently e~ ®®F(£)e# and since

le=@f (it)zo < e~O||f(it)lm0 <1,
le= ¢+ Of (L4 it < e~ O f (L4 i)|m < 1,
it follows that e~"@f(£)]# < 1. Consequently

lle~*Of ()l|z, <1
and
+o0

+00
log|f()llz, < BIBE)T = [ pol®mols, i+ [ p(t)uals, 1)ds.

Takjal]‘g now a decreasing sequence of functions @, and ¢, converging
o log|lf(it)|lze and log|lf(1-dt)|jz respectively and passing to the limit,
we obtain i). To obtain ii) we observe that

400 “+o0
[ #ols, 0yt =1—s and [ pas, tyit =s
—00 —00

and from this from Jengen’s inequality it follows that

. 1 +ae1 ) 1 +o0 .
@i | °g”f(“)ﬂﬂ°ﬂo<s7t)dt]< T [ 160 (s, vty

@) . )
1 ' e
» ‘\exp[—s—x»_ £ 10g|if(.1+if)llylﬂl(8,t)dt]<-1— [ 1@t il s, war.
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Multiplying and dividing the first and second terms of the right-
hand side of i) by 1—s and s respectively, taking exponentials and using
the preceding inequalities, ii) follows.

To obtain iii) we use the inequality

ea+b < (1_8)ea,/(1—s)+seb]s’ 0<s< 17

which is a consequence of the convexity of the exponential function.
Replacing a and b by the first and second terms of the right-hand side
of i) and applying (1) again we obtain iii).

To prove the last assertion in 9.4, we merely have to observe that
for 0 < s <1 we have

Bo(s, ) <oe™™,  py(s,1) <ce™™,
where ¢ depends on s. Thus if E is the set where ||f,(if)]z, tends to zero
i) yields
logl|fu(s)llp, < ¢ 7:[10g+ 1 £()llz,+10g [ fu (L +8)llm, Je ™ e +-
+ Jroghfalngmo(e )

and the right-hand side tends to —oo as n — oco. Thus {[f.(s)lls, —~ 0.
29.5. Let

ful8) = [f (5+ %) —f(s)]—:?-

Then ||f, () —fm(t)]pe = 0 as » and m tend to infinity for teE.
Further, we have e fn(E)eF for every &> 0. From inequality 9.4, i)
we obtain

400
Log ™ [fu(8)—fn(8) s, < [ 10gll6™" [fu(it)—Fim (88) 0 ols, 1) i+

+00
+ [ loglem " [f (Lt it)— fin (1+ it) gt oa (s, £) .

Since [|f, (i) —fm (it)l|50 < 2|fllz and
X +it)—fm(L+ i)z < 2[fli#
and since ||f, (9t) — i (it)]|z0 = 0 for teE, and w,(s, #) > 0, it follows that
the right-hand side of the inequality above tends to —oo as 7, m — oco.

Consequently log|le™ [f, (s)—fu(8)lls, > —co and [[fa(s)—Ffm(®)lz, > 0
which means that f,(s), which belongs to B, converges in B, as n — oo.
But f,(s) also converges to f'(s) in B°+B', whenee f'(s)eB, = [B°, B'l,.
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Suppose now that B° is reflexive. Then f(4t) is a continuous B°-valued
funetion and therefore its range lies in a separable subspace M of B
For each t, let 8, (t) = M be the weak closure in B°® of the set {f; ()},
k>=m, and S(t) = (8,(t). Since the §,(¢t) are bounded and weakly

closed and the unit sphere of BY is weakly compact, the §,(t) are weakly
compact and S (#) is non-void. Let g(t) be a function such that g(t)eS (1)
for all ¢. Since §(f) = M, g(t) is separably valued. Furthermore, if % is
a continuous linear functional in BY we infer that t[f(it)] = p(t) is
a Lipschitz function of £, and

. 1
1fuli)] = n [q, (t+ »};) ~q!(t)j.
Now, the image of §,(¢) under ¢ is the closure of the set
e [r/‘ (t+ 5) - (t)]l ke
[ AR 2 ’

and the image of S(f) is contained in the intersection of all these sets.
If ¢ is a point where @(?) is differentiable, then this intersection reduces
to a single number namely ¢’(¢) and consequently the image of §(f) un-
der I is precisely ¢'(t), and in particular ¥[¢(¢)] = ¢'(t) wherever ¢'(t)
exists, that is, almost everywhere. Since this is valid for every I, we
conclude that g (i) is weakly measurable, and since it is separably valued,
it is also a strongly measurable B-valued function. Furthermore, since
the sets S(7) are uniformly bounded, g(¢) is bounded and

t
Hf(it)] = ip (1) = i (0) +zjqo

‘whence

©)dz = Hf(0) ]+ajm )1dz,

3

f(it) = f)+i [ g(z)d,
0

which means that f(it) has a strong derivative in B° for almost all ¢, and
the first statement in 9.5 asserts that f'(s)<[B°, B'],. Since this holds
for every fe#, it follows that [B?, B']* < [B°, Bl],. Let us consider
now the norms of these spaces. If w¢[B?, B']’, there exists an f(£) «# [B’, B']
such that f'(s) =, ||[fl# < |lzs+e Consider as before the function

i) = e[+ 2 ) )

%

This funetion belongs to #(B°, B') and its norm as an element of & does
not exceed ¢flz, which implies that |h,(s) (8)ls, < €lifllz < e [|wll ot €],
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But, as we saw previously, {]h,,(s)~ess'm]]g —0 as # > co, and thus we
obtain |zl < e'[|inllzs +&]. Since & is a.rbltrary, it follows that lellz,
< e*flalps. If we now drop the assumption on the reflexivity of BY, given
xe[B°, B']; and fef (B°, BY) such that f(s) =2 and s < l2lls,+ ¢

we set g(¢& ff(n )dn. Then it is readily seen that geZ, lglz = lfls

and 9'(8) = 2. Consequently, ze<[B°, B'T, and |z|lzs < gl = [Ifls <
< |[llz,+¢, and since ¢ is arbitrary, we find that [z < lwllsg. This,
combined with the opposite inequality obtained above, yields the de-
sired result.

29.6. First, let us observe that if K is a compact subset of B given
o > 0, there exists x such that for 2>y the image of K under I—u=,
(where I is the identity operator)is contained in a sphere of radius o of
B°. For let N be a bound for the norms of x; as an operator on B, ¢ =10, 1.
Let (@, ..., 2,) be a finite subset of K such that every point of K is at
distance less then ¢/2(N41) from it. Let 1 be such that |lw;— om0
<o0/2,j=1,2,...,n Then, if xeK and z; is such that |jz— &z <
< ¢/2(N+1), we have

o~ il < ([0 — ) — g (0 — 25) a2y — gy

_ o No Lo
T (N+1) ™ ov+1y e T

Thus if we set

O(2) = supljw— =iy,
we have d(1) — 0. Since =; is a bounded operator on B", ¢ =0,1, with
norm not exceeding N, =x; is also a bounded operator on B°4B! with
norm not exceeding N. Let D, be the range of =, restricted to B® and
D; = D; ~ B® ~ BY; then, if feF (B, BY), mf(&)eD;. In fact, since f(£)
is a B'4-B'-valued function which is eontinuous in 0 s <1, the same
holds for m;f; now if ¥ is a continuous linear functional on B+ B! which
vanishes on D,, since f(#)eB?, we have m,f(it)e.D, and i[x,f(it)] = 0,
which implies that the analytic function #[z,f(&)] vanishes identically.
Since this is true for every ! which vanishes on D,, it follows that =,f(&)
eD; (*). On the other hand, since f(1-+4t)eBY, =;f(1-+4it)eB* and con-
sequently =,f(1-4#t)eB' ~ D;, but D; < B® which implies B!~ D,
=B~ B'~ D, = D;. Hence m;f(1+it)eD;. Let t be a continuous
linear functional on B0} B! which vanishes on Dj; then i[x,f(1+it)] = 0,

(Y) Ohserve that since D, is finite dimensional, it is closed.
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and therefore &[x,f(&)] vanishes identically, which implies that m,f(£)eD;.
Now suppose that feZ (B°, Bl) satisfies the hypothesis of 9.6. Then

If (@) —mwf (it)lzo < e(1+N), Nf(1+it)—mf(l+it)lm < c(1+N).
Furthermore, since f(it)eK for ¢ in F,
1f(it)—mf(id)llme < 6(4)  for tek.
Applying inequality i) of 9.4, and assuming ¢(1-}+N)
1g | £(s)— af (s) 15, < [log 8(2)] [ mo(s, t)dt+logo(1+N),
B

> 1 we obtain

whence
a>0.

¢N and =,;f(s)eD; consequently
e(14+N)8(1)%+
+{z | llolz, <

1f (s) — maf (8)ll, < 6(1+)8(2)%,

On the other hand, |mf(s)ls, <

F(8) = Lf(8) —mf )]+ mf (s) e{w | lloll, <

< cN } ~ D;
and since this holds for all 4, we obtain

J(s)e Q e | s, < o(14+N) 6()"} + {2 | |]ls,

Now the set {z||lzlz, <oN} D; is a closed bounded subset of

the finite dimensional space D; and hence, a compact set. Since §(1) — 0,

the spheres {# | |jzllz, < c¢(1+¥ )6(1)% have arbitrarily small radii and

this implies that the set in the expression displayed above is totally boun-
ded. Thus 9.6 is established.

30.1. Let D; (j=1,2,...
subspace of D;. Let L(x,, ..

;) be Banach spaces and M; a dense
-y %a)y, B¢ M;, be a multilinear function de-

fined in @ M;, with values in a Banach space D and such that
d=1

n
<e[]lan,-
1

Then L can be extended uniquely to a multilinear function T defined

LAy @5 .. -3 @)D

on @Dj with values in D and satisfying the preceding inequality. In
fa.ct this mequahty implies uniform continuity of L on any bounded

subset of @MJ IE @, y;¢ My, liwjllp, < o1 Ilyllo, < ey We have

(1) L@y, @4, cony @) ~L (Y1, Yy -y Yn)llp

- N
<2, L5 +eos @y @yany ey 30) —L(Ys, ¥, o3 Yy Big1y ooy Tulllp

0201 ”w:i_%”Diy

j=1
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so that L can be extended continuously in only one way. That this ex-
tension is multilinear and satisties the required inequality is immediate.

Congider now the spaces #; = # (4;, B;) and their dense subspaces
¥ (4;, B;) consisting of functions in & (4;, B;) with finite dimensional
range contained in A; ~ B;. Let Z(f;,...,fn), fieZ(4:, B;), be the

n
multilinear mapping from @®%(4;, B;) into F (4, B) defined by
j=1

F=2(f0nfa)y 6 = M MILIL(8), fal€), .., Ful O]
Then
12 (frs - Fllls < [ ] Ifills
1

and consequently .# can be extended to a multilinear mapping from
(-%ﬂ’j into & satisfying the preceding inequality. We will denote this
elxtension also by Z. Let 0 <s <1 and set

ZLolfsy fay oo Ja) = F(8) €0,

n
where f = Z(fi, ..., fa). This gives a multilinear mapping of (—IBE'} into
= [4, B. '

We will prove that Z,(f,fs,...,fs) depends only on the values
of f; at s. First let us observe that if ¢(&) is an analytic bounded conti-
nuous funetion in 0 <& <1, then L(gfi, fay.-esfn) = 0L f1sfay v fn)-
This is certainly valid for f;e%(A;, B;) and, by continuity, it is valid
also for f;e%#;. Suppose now that f;(s) = 0. Then

¢ ins

) = () where g
Thus if f = %(f., sy -.., fn), we have
F=2L(pgsy s oy -eensfn) = @L(G1s vy foyeensfn)
where ¢ = (6™ —¢™)/(™ —¢~™), and consequently f(s) =0, i e.

Lo(fry .oy fn) = f(8) = 0. More generally, we have that Z;(fi,...,fn) =0
if one of the functions f; vanishes at s. Let now f;, g;¢#; be such that
75(s) = gy(s). Then

Ls(fryeoos Ja)—Lslgrs -5 gn) = Z["gs(gly s fa)—

’.fl'?.fj—'rld

—Ze(G1y ees g;fyf:iJrlv cen )l = 22’3(91, '“7f7‘_gi7f7'+1’ vy fa) =0
=
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n
sinee fj(s) — ¢;(s) = 0. Consider now @®C; and the multilinear function
1
Le(yy ..., @), #;¢0;, defined by
Ls(®yy ...y Ty) = Zo(f1s '-';fn)]utllﬁ

where f;e#; and fi(s) = #;. According to what we have just shown I,
is well defined. If x;ed; ~ B; and we set f; = constant = z; we obtain,
as easily seen,

M5l

Lg(Byy ooy @) = L{®1,y ...y 2).

Thus L, is an extension of L to (—DO As was seen above Ly maps

@0 into C. Let us estimate the norm of Lo(®yy ..., 2y). Given ¢ >0 we

can find f;e#; such that fi(s) = z;, |fill#; < lojle;+ e
According to one of the preceding inequalities setting f = 2(f,,

.., fa), We have
n

H(u‘/m + )

s Iallle = My "M F($)le

Il < [] Ifilz; <

and thus
”Ls('l’ly R ] ‘I:n)”(! = H]u;‘é;u;yv(fl! e

n

< MM flls < M | | ol + o).
1
Since e is arbitrary, we obtain

1L (@, ey @)l < g~ [ 1 l7les
Now L, is an extension of L and consequently the same inequality
holds for .IL.

30.2. Suppose we first restrict L(L,xy,...,%,) to Les#y ~ A, in-
stead of Les. Then by the preceding 10.1 we have

o Ballle < LN [] eyl

 Now if Let" = [ My, M, ], since #, ~ A, is dense in A4, there exists
a sequence L,e#, ~ .#, such that ||L,—I| 0. Now Lo —Lllw g,
< [[Ln—Lll4 and since .#,-.4#, is continuously embedded in ., it fol-
lows that [|Ln(wy, ..., 2)—L(®, ..., %,)||lap — 0. On the other hand,
1 Ln—Lnlly- = 0 as n and m — oo, which implies that

(VACIRR

1579 €A wn) Ly, (@, .20y 2)le

<NEo=Lnalls [ [ llzsle; - 0.
1
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Gonsequently L,(x,, ..., #,) converges in ¢ and A-+B, since limits
are unique, we find that L(ax,,...,z,)eC and

<L f [l

30.3. Let my(t) = sup ||F; (i) — F,(58)]L. #p J =k, ¥ =k, then if Fy(it)
converges in .#, as k — oo for ¢ on a set of posmve measure E, it follows
that m(f) converges uniformly to zero as k —» oo for ¢ in a subset H,
of B, of positive measure. If tsuEpm;c(t) = &, applying 9.4, i), we obtain

ety

K!IJ(J"U ey u {’('

Tog{iF;(s) = F ()l = log i T, — Lyl - << ’ log |l F (1) — Fy (1) [y 19 (st) Al -+
£ [ logliF (1 it)—F;(1+it) | aym s, 1) dt,

N = [# 0, "”1]&

From the inequality log(a+b) <logTa-log*b4-log2 replacing
log|lF, (i) —Fs(it)|w by log*||F)le+log | F;le+log2, and |F,—Fyl 4, by
& for teE, above, we obtain

log|lLy—Lilla < 2¢4-log24-loge; fﬂo(sy t)dt
L5

and since g — 0 a8 k — oo, it follows that ||[L;—L;]l, — 0 as j and t — oo,
Consequently L, converges in .4 to a limit L, and Ly(s,, ..., ®,) con-
verges to Ly(ry,...,x,) in C =[4, BJ,.

On account of i) we have

Z[L(xl’ et wn)] = hml[LL(xl, RS 'Tn)] = Z[Lo(ml) e mn)]
koo

for every continuous linear functional on V. Therefore L(z, ...

Loy, ..

1y <
L@y, s @alle = o (@ss -y 2alle < allar [ [ limslle; < ¢ ] Izl
1 1

30.4. Let A be a Banach space and let S be a subset of A with the
following property: for each &> 0 there exists a totally bounded set
T, such that every point of 8 is at distance less than ¢ from 7,. Then X
is totally bounded. In fact, given 6> 0 let {#;} be a finite set of
points such that each xeT,, is at distance less than 46/2 from {z;};
then since each point of § is at distance less than /2 from Ty, it
follows that each point of § is at distance less than & from {=;}.

) wn) -
"5 p)eC = [4, B],. Finally, from 9.4, i) and ii), it follows that
¢’ whence || Lyl < ¢ and
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Let now L, be a sequence of completely continuous multilinear
maps from @A, to A convergmg in norm to L. Let S be the image of

the unit sphere iy, <1 of @ A; under L and S, that under L,. Clearly

8, is totally bounded, and glven e > 0 the distance between §,, and §
is less than e as soon ag the norm of L,—L is less than . Hence § is
totally bounded and L is completely continuous. Consider now the func-
tion (). Let f;(&)e#(4;, B;) (?) be such that [|fjlls; <1. If for a given
& we caleulate the multlhnear function F(§) atb the point f,(&), f (&

.y fn(€) of (-B(A, ~ B;) we obtain a function f(é) eF (A, B) (this rea-

dily verified on account of the multilinear character of F (&) and the

fact that F(&)(2y, ..., o,) is for fixed @;ed; ~ B; a function in # (4, B).

As we will see, for each s, 0 < s <1, f(s) belongs to a totally bounded
n

subset €, of [A4, B],. Let §; be the image of the unit sphere of @A4;
1
under F(if) and consider the set US,

Given ¢ > 0 we can find a ﬁmte set {t;}, t;eE, such that for each
teX there is a t;e{t;} with the property that |F(it)—F (it)|.«, < ¢ Which
implies that the distance between S; and 8y is less than &, and this in
turn implies that every point of | J&; is at distance less than & from 8y,

1el 3

but the sets §,; are totally bounded and consequently so is L_J;S’ti. Since
this holds for every ¢ it follows that (8, is totally bounded.t Returning
to the function f(£)e# (4, B) we have fZ;I:;eUSt for all te F, and ||f (14 4t)||p
<s1t1p1117’(1+ it)|l.«,. Hence, by 9.6, it follot;v}: that for each 5,0 <s <1,

there exists a compact subset K, of [4, B];such that f(s)e K,. Now the
points [f1(8), ..., ful8)]y fie 4 (44, By), |Ifills; <1, are dense in the unit
kg

sphere of @[A4;, B;], and consequently the image of this sphere under
1

F(s) is also contained in K,.
314, Let us begin observing that under the given assumptions we
also have

ML Tyyeesy Bn)lla 2yedy,

< Moy, H oyl aynm; it

M@y )l < Mjs, n el aynm, i @yeBy,

(%) See 9.2,
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where M = max(M,, M,). Suppose now that z, e 4,+B, and set @y = Y+

42, where y,ed,, 2¢B;, |yills e, < ll#1lla,4.,+&; then the pre-
ceding inequalities give

L(wla ey *T'n) = I’(yly Loy eony mn)“!“L(zl’ Ly ~-~>mn)7
where
IL(1s - Ba)lla < Myl H 5!l
(s ..., @a)llz < M|z, n ey
Thus
M@y ooy 2alllare < M(sllaym, + E)n Ity 3y
and since ¢ is arbitrary
(1) L@y, ey B)larp < M[3llayrm, H 2]y,

Let now f,e# (4,, B,) and f;e%(4;, B;), i = 2, ...

(2) 1(8)

, 1, and set

= [MI ML (), faln), oo Fum)dn (8 = sty 0 <3 < 1),
I

where I'is a path joining the point § with the point £ and entirely con-

tained in 0 < s < 1. We will show that fe# (4, B) and that

Ifls <z, [ ] 15,
Where #; = F(4;, By), #, = F(4,, By).

From the multilinear character of L and (1) it is clear that the in-
tegrand of the integral above represents an (4 --B)-valued, (4-B)-
-bounded, (A4 -B)-analytic funetion in 0 < s << 1. Thus f(&) is (4+B)-
-analytic and uniformly (44 B)-continuous in 0 <s <1 and it can
therefore be extended to an (A-B)-continuous funection in 0 <s < 1.
This extension, which we will also denote by f(&), clearly sa.tlsfles the
inequality ||f(&)lla+z < e(L+ (&)

Let now k be a positive real number and let 3(k) be the smallest
real for which

”f7 E-Fit) "f]
JM5+11—1J[;§_1t_

Magnm; < 6(h), 0<t<h,0<s<1,j=2,..,m,

M MTé < 8(h)/min(M,, M), 0<t<h, 0<s<1,
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and let ¢ > |f(8lan+1, ¢ > 1f(E)lynm; then from 30.1, (1), and
31.1, (1), we obtain
NG M T LI (B i), fa i), oy fu(E )] -~
—ﬂWﬁ’Lﬂlf*L[f{(H'17?5),.7’2(5), o JulEY My
< wMmin(M,, M;) '¢"a(h).
Integrating this inequality with respect to ¢ between 0 and 7 we obtain

If(&ih) —F(&)— M5 AUTALLf, (6 6h)—F1(£), fo(E)y vovs FulENlasr
< nMmin( My, M) e*s(h)h.
Setting
K ,
& =1E&+]-- (j==0,1,2,...,m)

by addition we obtain

m-1

If(&+im)—f(&)~ D MFTMTILLf (5 +1)—

7=

AW . )
=fi(&)s Jal&s)y ooy L (8 Maan < 'H]?(S(;%)o"ﬂlmm(ﬂlo, M)t

By continuity this inequality is valid for all & in the strip 0 < ¢ <1,
and since 6(h) = 0 as h — 0 it follows that the sum

m—-1

(£, h) 2 M ML (&) —Fa (&), Fal&), oy FulE)]

converges to f(&-14h) —f(é) in A4B as m—>o0, 0 <8 <1,

Now suppose that & = 4t; then f;( &ir1)—f1(&) ed; and thus the value
of the preceding sum belongs to 4. Furthermore, if m = 2% and % —» oo,
8.(&,h) converges in 4. In fact, let now 4(k) be the smallest positive
real such that

Ifilit+ i) —f(it)ly, < 8(h), 0 <7 <h,

AEI M M < S MTY, 0 <7 < .
Let
t ijh

-——-zt—}—“ (J =0,...,m);
then from 30.1, (1), :md 31.1, (1), we obtain
HmlleI—“L[fl(fi-}l)“fl(fj)lfa(":t); "~7fn(it)]_

=M MYLLf (8,0 —Fu(8), fald), - fulé)ll < wé(h)c"'(-%;—) MMy,

Intermediate spaces and interpolation 145

where

1 .
¢ > ';[fl(it‘}_if)_fl(ﬁ)]gdl_'_l and ¢ > |Ifi()lly, (G=2,...,m)

for all ¢ and 7.
Summing over j we get

125 MLy (it i0) — £ (), Fa(38), -, Fou(88)] — Sualit, 1)L
< né(h)e"h M My!
and from this inequality by addition we obtain

h
185(3t, B) — Sy (38, )4 < n(‘"é(l) hM M.

Since 6(h) - 0 as & — 0, from this we conclude that 8,(4t, h) con-
verges in A as k > co. Thus

flit+-3h)—f(it) = E—?;Szk(":t} h)ed.

To estimate the norm in A4 of f(it+ih)—f(it) we observe that, on
account of 11.1, (1),

NE L (it B) — F(68), Fa(t), -, Fait)Tla
< M |Ify (6t 30)— Fi (i), H ;o) < MohIIfl, n Il
where #, = F(4,, B)), #; = #(4;, B;), whence by addition we get
8:m (it B)lLe < BlIfill, H 17l

From this it follows that

% 1 (e 2h) —Flit)le < ]lf1ll§11J 1£ille, -

In a similar fashion we would obtain that f(1--4t+ik)—f(1+4it)eB
and

1 n
7 W tdi+ih) —fL+it)lls < Ifillz, n”fj”ﬂ-‘i-

Summarizing, we have proved that f(&)eZ (4, B) and that

ke < ik, [ [ 15+

Studia Mathematica XXIV, 2 10
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Consider now the multilinear map
Ll foonslids FueF Ay B, LI B, §=2,00m,
with values in # 7 (A, B) defined by

g(fufz: -"’fn) ’—:f(E)

where f(£) is the function defined in 31.1, (2). We have just shown that %

is bounded with respect to the norms of # (4, B;) and &F(4;, B)),
j=2,...,n Furthermore % has the following obvious property: if g is
a complex valued function which is continuous and bounded in 0 s <1
and analytic in 0 ¢ <1, then for j >1

d
3) Eﬁ(fl,fz,...,gf,,.‘.,fn =9(8) 57 .?(fl,fz, fa), 0<s<1,

and if fi(§) = g(£)f;, then

d a .
4) —El?,f(fl,...,fn)=g(§)d—£$(f1:fzy---:fn)~

On aecount of its boundedness, as shown in 30.1, £ can be extended
to a bounded multilinear mapping Z ot F F (44, B)® @ﬁ (4;, B;) into

F (4, B). This extension # also has properties (3) and (4). To see this
let us consider the linear mappings 4" and 47, of F| (4, B)and F (44, By)
given by
A= [9m)f mdn, H#i(fo= [gmfimdn,
r r

where I' is a path joining the point } with the point £ As readily seen,
these are special cases of the multilinear mapping % introduced above,
and eonsequenily, a8 we have already seen .4 and 4, are bounded linear
mappings of #(4,B) and Z(4,, B,) into themselves. Now we can
reformulate (3) and (4) in terms of 4 and 4 1y a8 follows:

z(fufz;'-"gfiy---)fn) ='/V$(f17'--7fn); 2<j<%7
g(”lfl;fa! “-7fu) :'/V-?(fly ~-':fn)'
Sinee the mappings f; — gfy, f; —4".f, and f—=Af are continuous

in the corresponding spaces, the identities above are preserved by pas-
sages to the limit, and thus they hold for the extended multilinear

ma.ppmg.i’ ‘
Let now 0 <s<1. If 2L (f15 - Lfn)—'f set §(f11 ) '—‘f(s

Then elearly 2, is a multilinear bounded mapping from # (4,, B))® @

icm°®
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F (4, B;) into [A, B'. We will show that the value of .#, depends only
on the values of fi(s) and f;(s), 2 <j < n. First let us show that if either
f1(s) =0 or fi(s) =0 for some j, 2 <j<n, then £ (f;,...,f.) = 0.
Let us assume first that f;(s) = 0. Since the value of .% only depends on
fi, by subtracting an appropriate constant from f, we may assume that
also fi(s) = 0. Consider now the function

71(5) =f1

(17 8)

where I' is a path joining the point } with the point £. It is easy to see
that f;e# (4., B,). Furthermore

= 7 ‘E—"'g)
f(8) = f(8) (?—l: .
Consequently by 31.1, (4), we have

Py - ,fan=[E_s a E(}l,...,f,l)]fgszo.

-?s(f:l’ 7fn) [ §+8 dé

On the other hand, if f;(s) = 0, j > 2, we set

- £-+s
fi= s

Then clearly j;e# (4;, B;) and so, by 3), we have

— I

Folfay e f) = [d—df.@(fl, ..-,fn>]

t=8

[§+i ¢Zd§ £ (fas - "ﬁ""’f”)]ezf 0.

Let us set 0 = [4, BT, €, = [4;, BT, 0; = [4;, B;]1; and consider
a multilinear mapping L; of @ 0; to ¢ defined as follows: if 2;¢0;, j = 1,
—_ 1
.y, and fieF (4;, B)), fieF(4;, B;), are such that fi(s) =2, f;(s)
=%, j=2,...,n, then

Ly(@y, oy @) = My MIZo(fr, ..y f)-

First of all let us verify that L, is well deﬁj_ned. Suppose that for
e# (4, B), |, =F(4;,B), we also have Ji(s) =g, fis) =g,
ji=2,...,n
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Then
Es(fli '“ifn)"-gs(;u ey )-‘n)

22[—§s(}1;---7ﬁ';f7+13- yf'n +$ fly- 7f:/ 15f1" ’fn
=1

II

fl? fi’ ufi fﬂ ’fn)

Since f; (s) Fi(s) = 0 for 2 <f < m and fi(s)—Fi(s) =0, as we saw
above, all terms in the lagt sum vanish. Congequently

Lo(fuy s ) = Zalfasoos o)

and L,(z,, ..., @,) is well defined. If we choose fiy ooy fu in such a way
that [fll#, < lollo,+& Ifils; < lole,+2 §=2,...,m, we find that

”Es(wu vy Ta)llo = Myt My ”-?s(fu ceoy fullle

< MM (s - Sl < MM IR, [ ] 15l
< 5845 [ | Clalle, + o).

Now it is readily verified that if #,¢0;, and @;e4; ~ By, then
Ly(y, ..., ®,) coincides with L (s, ..., #,). For this purpose it is enough
to set fi(&) = 2, &, f;(£) = const =#;, j = 2,...,m This concludes the
proof of 31.1.

31.2. Our statement is a special case of 11.1. In fact, we consider
the multilinear functional £ (L, 2y, ..., #,) with values in A4 B defined
for Led -+ #,, 0;¢(4; ~ B;) by

L(Ly Byy ooy @) = L@y, .00y By)
and apply the result in 11.1.

32.1. We begin discussing the duals of certain Banach space valued
funetions. Let 4 be a Banach space, A* ity dual. Consider the space
A’(4*) of functions with values in some space containing 4* and such
that g(t.)—g(t)ed* for any ¢, and ¢, and that

|

We reduce this space modulo constant functions and in the quotient
space A(4A*) we introduce the norm

g(t)—g(ts)
1— 1,

1 )
_tj[g(tz)"!}(ﬁ)l A_QM; by .

by

A.'.

Malls = sup
tdy
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We consider on the other hand the space C,(4) of continnous A-va-
lued functions f(f), —oco < ¢ < oo, with compact support. In Cy(4) we
introduce the norm

+oo
Il = [ NF@iLads.

The completion of C, with respect to this norm can be identified
with the space L'(A) of strongly measurable 4-valued functions f(f)
such. that

+oo
1l = [ 1f()llade < oo

reduced modulo functions vanishing almost everywhere.
For f(t)e0y(4) and geA’(A*) we define

&N [ <), ag@)>
a8 the limit of the Riemann sums

DF), gl — 9 &)y 4 <7 <ty
as sup(f,,—13) — 0. On account of the uniform continuity of f(t) this
2

limit is easily shown to exist. Furthermore, since

| 37<f), g () — g @] < 3 IF ()Ll (tr0)— 9 (8)Lao
< D F ) lalglalln—1t),

we have

+00 +oo
(@) | [ <r@, dg@n| <lgls [ 17@Nadt = lglalfl,

which shows that, for given g, the integral (1) represents a linear functional
of f which is bounded with respect to the norm [|f]l, and the norm of this
linear functional does not exceed |[g|l,-

. More generally, if f(f) is a continuous A-valued function such that

J IIf(®)ll4dt < oo, there exists a sequence f,()eCo(4) such that [[f,—JI

— 0 and we define

+00 +00
J <), dg@y = m [ <), dg (@)

Evidently for given g this generalized integral still represents a linear
functional of f which is bounded with respect to the norm Jfl of f, the
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norm of the funchional not exceeding ||gll. Suppose now that f(¢) has
the form ¢(f)z where zeA and ¢() is a continuous integrable numerical
function. Then from the definition of (1) it follows that

400 oo

[ <, a0 = [ e@)aie, g,
where the integral on the right is a Stieltjes integral. Since (z,g(2)) is
a Lipschitz function of ¢ we can write

+o0 +o00 a
®) [ g aw = [ oo o o)
— —00

Conversely, every linear functional ¢ on 0,, which is bounded with
respect to the norm |f], has the form (1), where |jg], does not ex-
ceed the norm of 1. To show this we first extend ¢ to L*(4) and consider
1[z*(t)] where weA and x(z,f) is the characteristic function of the in-
terval [0,7) if = > 0, or minus the characteristic function of [z, 0) if
7 < 0. Clearly i[#*(r,%)] is a continuous linear functional of » for each
given 7. Consequently

it (z,1)] = <@, gz,
where g(z)eA* On the other hand,

I9(z) =g (zlllar = supHa g (72, ) =2 (72, O}, Iblla <1,

lg(z2)— g (za)llas < SHP[IZII f (715 8) — 2(7a, 1)1Ladlt

<[®l f 2 (ey ©)— (72, Dt = [Hl[va—7s].

Consequently g(t)ed’ and |lg|l, < |].
Let now f(t)eCo(4) and S,(t) = f(k/n) if /n

<t < (k+1)/n. Then
01 = 8 (OIHf (1) —8,(0)]

R AR IS -
= SUlR AL Gl 0-s
—Z<f () o (E22) () atso-sacn

icm°®
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Now, as n — oo, |[f(1)—8,(f)| — 0, and the sum in the last expres-
sion converges to

+oo
[ <f), ag(eyy.
Consequently -

+o0

(4) W = [ <f@),agt),

where [jg], <|fl. But as we saw above, we also have ]| < |lgl. whence
[l = llgila- By continuity this representation of I(f) is also walid for
continuous A-valued functions f(f) such that

+o
I 1f)ladt < oo.

Consider now the interpolation pairs (4, B) and (4*, B*). Since
both A* and B* are continuously embedded in (4 ~ B)* we have a bi-
linear functional on (4 ~ B)®(A*+B*), which we will denote by <z, ¥,
which is the value of the continuous linear functional ye(4 ~ B)* at
ze(A ~ B). Clearly, if yeA* or B* we have

Kz, )| < lollaliyllee  and Kz, 93] < [ollzllyls-
respectively, and thus by 11.1 we also have
Kz, 91 < lwllolyle

whenever ye(’ = [4*, B*F’, where ¢ = [4, B],. Thus with each yeC’
there is associated a linear functional on A ~ B which is continuous
with respect to the norm of C. Sinece A ~ B is dense in € this linear func-
tional can be extended uniquely to €, with norm not exceeding |jy|lc.

Let now fe%(4,B) and ge F(4*, B*). Let 0 < s < 1, and consider

+00 +00
I=—i[ [ <fOuels, 0, dgliny+ [ <FA+i0)mls, 1), dgL+in)],

where u, and u, are the Poisson kernels for the strip introduced in 9.4.
Since f(£) = Yu;f;(£) where ;¢4 ~ B and the f;(&) are complex valued
continuous functions in 0 <s<1 analytic in 0 <s<1 and tending to
zero at infinity. By (3) we can write I as

+00 a
1= =i D[ [ i <o gt ats, Dt

T @ ,
+] B+ )7 G, g0+ i s, 0]
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Now consider the functions

a
2163 =<991; -d-é?g(é)>-

They are bounded analytic functions in the strip 0 < s <1 and have
non-tangential limits almost everywhere on the boundary of 0 < s < 1,
equal to

o d . . d .
—igy <@ git)y and - —i— oy, g(1408),

respectively. Consequently
I= Y5606 = (X afi(s), g'(6)) = <f(s),'(5))
7

Thus if @ = f(s) and y = ¢'(s) we have (z,y> = I. Now suppose
that <0G = [4, B]; and that fe# (4, B) is such that f(s) = #. Then if
fae¥(4, B) are such that ||f,—flls — 0, that is, such that Ifn (38) — f (8) L4
0 and [[fp(1+44)—f(1+4it)|p — 0 uniformly in ¢, we have

fu(8)—2lle = lfals)—F(&)llo < llfu—Fle — 0

and consequently

CIR =£ﬂ;dn(s), g'(sp

4o +00
=1im [ [ Calitpo(s, 0, dg (0 [ <fullt it (e, 1), dg(1+ it)y—

+00 400
=i [ <Pt (s, 0, dg0>—i [ <FQL+ithuy(s0), dg (1 +50))]
which is the desired representation of the linear functional on ¢ associated
with yeC'.
Now suppose that ¢ is a bounded linear functional on ¢ — [4, B],.

Since C is a factor space of # (4 , B), 1 induces a linear functional ¢ on
F (4, B) with the same norm.

Consider now the mapping ¢: & (4, B) - L'(A)®L*(B) given by
@) = (i) o (s, 8, F(1+it) iy (s, 2)].

Thls mapping is linear and one-one. On the image of # (4, B) under
¢ define the linear functional 4 by

Ale(NT = 1(f).
Then by 9.4, iii), we have

PleN]l = R(HT = BLAON < HIFE),

©
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EN-1Y +00
<I[ [ UF@0lapals, D@+ [ IFL+i)lspls, ] = Fllp(NI,

where |lp (f)|| stands for the norm of p(f) as an element of L'(4)DIL*(B),
which shows that 1 is & bounded linear functional with norm not exceed-
ing |[#ll. Now we extend A to all of I*(A)@L*(B) with preservation of
norm and represent it as in (4) obtaining

®  Alp(N1 =1
+o00 +00
= [ <fli)po(s, 1), dge(>+ [ <FA+i)p(s, 1), dgs(t)),

where go(t)ed’(4%) = Ay, ¢:(1) = A'(B) = 4; and max(|gollsys I92ll,)
= [|A]] < |}l. The functions g,(t) and g¢,(tf) are determined up to an addi-
tive constant. Suppose now that zed ~ B and that 2(&) is a complex
valued function which is continuous in 0 <s <1, analyticin 0 <s <1
and tends to zero at infinity. Setting f(£) = «h(&) we obtain

U] = HFE)] = () Ua)
e a v a
= [ Mt oo a8 [ MO, 0 g @ .

Evidently, if 2(s) = 0, then the right-hand side of the expression
above vanishes, and this, as we will prove, implies that the functions

a d

E(m: go(t)> and 'd;<$,gl(t)>
are the boundary values on s = 0 and s = 1 respectively, of a function
k(z, &) of & which is analytic and bounded in 0 < s < 1. Let us accept

this fact for the moment and draw coneclusions from it. First of all k(z, &)
clearly depends linearly on . Furthermore

d
@ {z, gl(t)>H

d
[k, &) < ma-X[sup —- <&, §o(8)> |, sup
t dt t

< max [[loflallgollsy, l2llpllgille,] < o)l mmaxligollsy, lglla,]

which means that %(z, &) is, for each £ in 0 <s < 1, a bounded linear
functional on A ~ B. Define now the function % (&) with valuesin (4 ~ B)*
by

<a77 k(£)> = k(wy E)'

Then, since the elements of (4 ~ B) form determining space of linear
functionals on (4 ~ B)*, and since (w, k(&)) is analytic in 0 < s <1,


GUEST


154 A.P. Calderén

for each zed ~ B, it follows that k(&) is an (4 ~ B)*-valued bounded
analytic function. Consider now the function

9(&) = [T(n)dn
I

where I' is a path entirely contained in 0 < s <1 and joining the point
1/2 with the point & This function g(&) is uniformly (4 ~ B)*-conti-
nuous (since its derivative is (4 ~ B)*-bounded) and therefore it can
be extended continuously to 0 < s < 1. Furthermore, if §isin 0 <s <1
and @ed ~ B we have

h
<@, gE+ih)y— <o, g(£)y =i [ (o, h(§-4iv)dr
0
and by letting s — 0 in & = s+4t, since

d
o, bls it 7)) > — (0, 17>

for almost all = we obtain
13

d
@, g+ )= g(i) = i [ — @, golt+7)>dr = i<w, golt-+1)— g1

0

and since this holds for all #, we obtain
(6) g (i) — g (it) = [go(t+h)—go(t)] e A"
and

1
|]~,; [g(it+z‘h)—g(it)1” = H%—[go(w h)-gom]H <lgolly-
A* A%

Similarly we obtain

o gL+ it+ih)— g(1+it) = i[gy(8+h)— g, ()] < B,

1 o N
“5 [9(1+ 2+ 9h)—g(14-it)] “B. < [|9allay
and by 9.1, ii), we conclude that g(&)eZ (4%, B*) and [gllz < max (igolls,

Tlgalla,) < 1l
Now, from (), (6), and (7) we obtain

IfE1=t(f
i +oo
= —i [ <Fltmols, 1), dg (0> —i [ <G+ Do, 9), dg(L+ i)

and as we saw above the value of this integral is precisely <f(s), g’ (s)>.
Thus, we have ¥[f(s)] = <f(s), ¢'(s)> or, setting ¢'(s) = y and f(s) = =,

icm
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(w) = <z,y> where yeC’ =[4%, BT and lyllo < llgllz <[Fl. But as
we showed already, for linear functionals of this form we bhave || <|lylle,
whence [lylc- = [[f|. In other words, with the bilinear functional {z, ¥},
2e A~ B, ye[A*, B*T, extended to [4, BL,®[4A*, B*T, [4*, B*T be-
comes the dual of [4, Bl.

There remains to prove our assertion about the functions <=, g,(?)>
and (%, ¢,(¢)> being the boundary values of an analytic function. Let
0<o<1, and let £(n) be a function mapping conformally the circle
In] <1 onto the strip ¢ < s < 1, such that £(0) = o.

We may take for example

1 e—iﬁd— 81'1:0'
) = Se1og 7],

®) p—1

where log stands for the prinecipal branch of the logarithm. Evidently
the mapping &(z) can be extended to a continuous map from |7 <1
with the points 5 = 1 and 5 = "™ removed onto the closed strip 0 <s
< 1. Let now u(¢) be a complex valued bounded continuous function
in 0 <s<1 which is harmonic in 0 < s <1. Then

+o00 +oo
[ wtiuoto, @+ [ p+itmlo, Ddt = u(s) = ulé(0)]

an '
1 .
— o [ uls@as.

Since the boundary values of u(£) are continuous and bounded,
but otherwise arbitrary, if g,(t) and g;(f) are two bounded continuous
functions in —oo << £ << oo, and h(f) = g,[—i£(e®)] if the real part of
£(¢") vanishes, and h(0) = g,[4—i£(e)] if the real part of £(é) is 1,
then

+o0

Tﬂo(o, Do dt [

—co

2n
1
® mlo, 09,08 = [ h(o)d0.
L]

This identity evidently holds also for any two bounded measurable
functions g, and g¢,, provided %(0) is defined accordingly. Suppose now
that g, and ¢, have the property that

+o0 +oo
(10) [ g polo, i+ [ FOL+it)gy(t) pa(o, Bt = 0
for every function f(£) which is continuous and bounded in 0 <s <1,

tends to zero at infinity, is analytic in 0 << s < 1, and vanishes at £ = o.
Then setting
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ing ei‘n:s

n
£2
&) = (161'1:5__6—1'1:5) e, >0,
¥

and letting & tend to zero, we conclude that (10) also holds for

inf__ e’i—n:ﬂ

€

f@:) = (einé__e—imx

n
), n=1,2,...

Applying (9) to the left-hand side of (10) with

einf_e'hrs n

&) =\
we find that if h{6) is the function associated with the pair gy(t), g.(t)
then

an o0 400
- f hw)mﬁ:i f(‘it)go(t)uu(a,t)dt+_£ FLi8) gy (D (0, Dt = 0.,

Therefore the Fourier series of h(f) containg only terms with non-
negative index, that is

o0
o) = Y a,e™.
2 n
Since %(0) is bounded, the function
W(n) = D any”

is analytic and bounded in |y| <1 and has non-tangential limit % (0)
at 5 = ¢° for almost all 6. Tf we set g(£) = h(n) where &(y) is given by
(8) we obtain a bounded analytic function in the strip whose non-tan-
gential limits at s = 0 and s = 1 coincide almost everywhere, with g,(t)
and ¢,(f), as we wished to show. This completes the proof of 12.1.

32.2. To prove our assertion we will use the theorem of Eberlein
according to which the unit sphere of a Banach space is weakly compact
if and only if every sequence of elements in the sphere has a subsequence
converging weakly to a limit, and the fact that a Banach space is reflexive
if and only if its unit sphere is weakly compact.

Let 0 =T[4, Bl,, 0 <5 <1, and let u,¢C, |[z,]l0 <1. We will show
first that it is possible to extract a subsequence {,} from {w,} so thatb
l(a:,,v.) converges for every continuous linear functional t on C. Once this
is established we will prove the existence of an element » to which {wn}
converges weakly.

To show that we ean extract from {m,} a sequence {,} such that
l(:a,,j) converges for every ! it will be sufficient to prove the following
slightly weaker statement; given a sequence {2}, ®neC, |wnllo <1 and

icm
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a positive number &, there exists a subsequence {:vn].} of {x,} such that
lim [ (2, — n)| < ||l for every I. If this holds, then it is possible to
7 i—>00

extract from {z,} a weakly convergent sequence by an obvious diagonal
process.

S0 let #,¢C, |l <1 and &3>0 be given. Let f,eF (4, B), lf.ls
< 2 be such that f,(s) = x,. Assume that A4 is reflexive, and let a be
real and such that ¢'~%% < ¢/8. Then for the functions h, (&) = f,(&)e¥9*
we have hy(s) = @y, [ (i0)lla < 267, |Ba(14 )]z < 26077° < /4. Con-
sider now the A-valued functions h,(it)pu(s, )*. The norms of these

- funections are uniformly square integrable, that is, these funetions belong

to a bounded subset of the space I*(A) of the strongly measurable A-va-
lued functions of #, —oo << < oo, of square integrable norm (see [8]).
By a theorem of Phillips, if A is reflexive so is, I*(4) and consequently
any closed sphere in L*(4) is sequentially weakly compact, and the se-
quence hy(it)u,(s, 1) has a subsequence hy(if)u,(s,#)'” which conver-
ges weakly in I*(4). Let now ¢ be a continuous linear functional on C.
By 12.1 we have

€]
+o0 +

Yaa) = —i [ hal(it) pols, 1), dg(it)>—s [ <ha(L4-it) (s, 1)dg(l+it),

where geZ (4%, B*) and |gllz < 2.
COonsider the space Cy,(A) (see 32.1) and the linear functional 1 on
Co(A) defined by
+oo

Afy = [ <Fmls, 1), dg(it)>.

Then as we showed in 32.1, (1),

+o0

+o0
RO =] [ <@ nols, 0, dglat)>| < lglitdla [ 1FE pmals, P lLadt

+o0
<l [f17ona] ™ | mte, na]”,

that is, 2 is continuous with respect to the norm of I7(A4). Since (y(4)
is dense in L*(4), A ecan be extended to a bounded linear functional on
I’(A), which we will also denote by 1. Returning to (1) we can write

+00

an) = —iAR, (i) o (s, )]~ 4 f Chn(LA-4tY py (5, 9), dg(1+dt))

~00
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setting # = n; above, since &y, (4} (s, t)¥* converges weakly in I*(4),
Al (i) o (s 5 )%] converges and eonsequently

1im |1z, —@,,)| = lim | f (g (L it — Ty (1 68) T (8, 1), g (1 it)))|
7,l00 s oo 3
and applying 32.1, (2), we find that

+00
| [ <y (L t) = By (L )10y (5, 1), g (L+ i8))

400
<ol [ DL i0)llm+ o (L4 Dl o (s 1) &t

+o0

<2[Hi(ef2) [ mls, t)dt < Hfe.

—o0

Thus -
,-I,lzl,nmlt(m"f_m”")l < [Plle

ag we wished to show. Consequently if @, ¢C, |#,lo <1, there is a sub-
sequence {z,} which converges weakly.

Now we will show that the sequence {z,} has a weak limit. Let as
before f,<# (4, B), |If,ll# <2, be such that f,(s) = ®,. Consider the A-
valued funetions fn(it) 2o(8, 1), As we pointed out above, these functions
have bounded norms in I*(4), and since I*(4) is reflexive, we can select
a subsequence from f, (it)uo(s,?)' which converges weakly to a limit
in I*(4). By a theorem of Banach there exists a sequence of finite convex
combinations of the f,, say

Bn(t) = ) o, (68),
F)
am]_=0]'.‘fj<m, Uy 2 0, Zamj=1’

such that &, converges strongly to the same limit in I*(4). By restricting

ourselves to a subsequence of the {,} we may assume that h,,(f) con-

verges in 4 for almost all &. Let h, (&) = Zamjfnj(f). Then by 9.4 we see
7

that
hn(s) = X anfy (s) = 3 tnm,
7 7
converges in ¢ = [A, B], to a limit ©. Then
limie,,) = lim o l(a,) = lml( Y onm,) = 1(a),

which shows that # is the weak limit of the sequence a,,. This completes
the proof of 12.2.
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32.3. Let C = [A, B]; and 0, = [4,, B,],. We will show first that
0 < O, and |zllo > lzlle, for every zeC.

For let fe#(A,B) and g(£) =fla(l—&)+pE]. Then g(it) =
= fl(f—a)it+ Eleg = FIE+it(B— )]~ )., and consequently

g (@)la, <NFLE+2(B—a)lls = || flls,
g (@8)1L, < IFTE+i8(B— )16 s
and the expression on the right tends to zero as |¢{j— co. Furthermore,
llg (it +ih) — g (i) Ley < UfLE+4R(B—a)]1—F(£)llyy

and the right-hand side of this inequality tends to zero with A. Conse-
quently g(if) is an 4,-valued continuous function of #, tending to zero
at infinity and g (@)L, < |fl=-

Similarly one shows that g(1--4) is a B,-valued continuous function
tending to zero at infinity and |]g(1—]—12t)[131 < |Ifll=. On the other hand,
g(&) is a bounded (A4 B)-valued analytic function and so, by 9.1,
geF (4;, B;) and its norm, as an element of this space, does not exceed
Ifls. Now given z¢0 = [4, B];, we let feF (4, B), f(s) = =, [|fls < llollo
+& and ¢(€) = fla(l— &)+ B&]. Then g(o) = f(s) = «, and therefore
#e0; = [4;, B,], and |loflo, < llglls < |fls < lwllo+e. Since & is arbitrary
the desired conclusion follows.

Similarly one shows that if ¢ =[4, B]" and C, = [4,, B,]’, then
0 = 0, and |wllo = |vlle, for every z¢(. For let feF (4, B) and

98 = 2= fla(l— &)+ p2],

B
then ge# (4,, B;) and the norm of g as an element of this space does
not exceed [f|lz. Given weC we find feZ (4, B) such that f'(s) = |tllo+e.
Setting

9(8) = = fla(l— &)+ pe]
B—a

we get ¢'(o) = f'(s) = @, whence x0; and
lelle, < llgllz < Iflz < [ollo+-e.

Consider now the spaces (4 ~ B) and (4, ~ B,). Since 4 ~ B is
continuously embedded in both A, and B, the inclusion map I of 4 ~ B
into A; ~ B, is continuous, and so is the adjoint I* of I which maps
(4; ~ By)* into (4 ~ B)*. Furthermore, since 4 ~ B is assumed to he
dense in A4, ~ B,, I* i3 one-to-one. Let A} and A4} be respectively the
subspaces of (4 ~ B)* and (4, ~ B,)* of linear functionals which are
continuous with respect to the norm of 4, and introduce in A} and A%
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the norm of linear functionals on A. Let Bf and B}, be similarly defined,
Then clearly I* maps Afj, Bf; and Af;+Bj; isometrically onto 4}, B*
and A}4Bf tespectively, and thus also [A5;, Bh], onto [4}, B,
Let now 7 be a continuous linear functional on [4, B];. Then 7 is of the
form I(z) = <x,y)> where ye[4*, B*]. Now as we saw above [A*, B*f
< [AY, BiT the inclusion being norm decreasing; consequently there
is a ze[A};, BLT such that I*(s) =y and |j2] <|ly|| = |lil. Furthermore,
for ¢4 ~ B we have
Hz) = <@, 4> = <@, ),

whence [lzlle = sup [I(s)] < sup|<=, 2)| < [zllg,, since <=z, z)v i3 a conti-
<t <1

nunous linear funetional on €, (see 12.1) of norm equal to the norm of 2
in [4}, BL]° (3). Since 4 ~ B is dense in [4,B], and the norms of
[4;, B,], and [4, B], coincide in A ~ B, it follows that [4, B, is iso-
metrically embedded in [4,, B,],. Now by assumption 4 ~ B is dense
in 4, ~ B, with respect to the norm of 4, ~ B, and therefore it will also
be dense in 4; ~ B, with respect to the (smaller) norm of [4,, B,],. Con-
sequently, since [4, B], is a closed subspace of [4,, B,],, from [4, B],
> 4 ~ B follows [4,B], > 4, ~ B;. But 4, ~ B, is dense in [A4,, B,],
and therefore [A ~ B], o [44, B,],.

Finally agsume that A < B. Then of course we have 4 = 4 ~ B
but the norms of these spaces need not be equal. Nevertheless they are
equivalent. In fact, both 4 and B are continuously embedded in a to-
pological vector space V and this implies that if {w,} is a sequence of
elements in A sueh |jz,—a,), — 0 and [, —a,)z — 0 then z, - @, and
@y, — %3 in V whence @, = #,c4. Therefore the inclugion map of 4 into B
is elosed, and since it is everywhere defined on 4, it is continuous, and
llxlls < ellzlly for med. Consequently

lelle < lolans = max(lolLy, o)) < |, max(1, o).

On the other hand, A4+B = B and the norms of these two spaces
are again equivalent, since the identity mapping B~ A+ B is norm
decreasing, and therefore continuous. Furthermore, the mapping is onto
and therefore has & continuous inverse. Now let us show that 4, < B,.
Let we 4, and let fe# (4, B) be such that f(a) = @. Congider the funetion
g(&) = e(é"’)gf(fg). Then g(¢) is an (A4 B)-continuous function of &
in 0 <8 <1 tending to zero at infinity, g(it) is A-continuous and tends
to zero at infinity, and g(L+4) is (4 +B)-continnous and therefore also
B-continuous and tends to zero at infinity. In other words, g(£)<# (4, B).
Thus # = f(a) = g(f)e[4, B]; = B, and A; < B;. From this it follows

(*) Thus the norms of ¢ and 0, coincide on 4 ~ B.
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that the spaces 4; and 4; ~ B, coincide and that their norms are equi-
valent. Since 4 ~ B is dense in A4,, it is also dense in 4, ~ B,.

32.2. That V is a complete metric space is well known. It is also well
known that if the sequence f, converges to f in measure on every set
of finite measure, then d(f,, f) — 0. Consequently, to prove that X is
continuously embedded in ¥ it will be enough to show that ||f,|lx — 0
implies that f, converges in measure to zero on every set of finite measure.
For suppose that for some positive number & and a subsequence fn}.
of f, we had [f,] >¢ on a subset E,. of measure larger than 9§, 6 > 0,
of a set F of finite measure. Then if y; denotes the characteristic function
of the zet En). we would have ey; < 1fn].] and consequently |yllx — 0. We
now select a subsequence of y;, which we will also denote by x;, such

N

00
that ligllx < co. Let Sy = 3y; and suppose that lim Sy is finite almost
1 1 N-»c0

everywhere; then outside a subset D of E of measure less than §/2 we
would have limSy < M for some M < oo, and [ Sydz < M|E—D|.
N. E D

On the other hand, we also have
N N
[ 8yaw = > [ ydo = D (E—D)~ B,| > NoJ2
E-D 1 E-D 1

and this would be impossible for sufficient large N. Consequently Sy — oo
on a set of positive measure and Sy — oo uniformly on a set D of posi-
tive measure. Let y be the characteristic function of D; then given any
integer m we would have m < Sy for sufficiently large N and

8

\ - 1 ! 1
izl < m [8xilx < L Hazillx -
1

But since Y|yllx is finite and m is arbitrary this would imply that
1

llxllx = 0 and consequently y = 0 almost everywhere, and the set D
would have measure zero, which is a contradiction.

o
The proof our second assertion is immediate. If f, is such that 3||f.lx
1

<< oo, then Sy = }f,] converges to a limit in X. Consequently the series
of functions }|f,| converges, in measure on every subset of finite mea-
sure of .#. Since the series has positive terms this implies that the series
converges almost everywhere. Consequently the series Y 'f, (%) converges
absolutely almost iyerywhere on #, and its limit must be f(x) almost

everywhere since )'f, converges in measure to f.
1

Studia-Mathematica XXIV, 2 11
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33.3. Let @(f) be a concave non-negative function on 0 < < oo,
@(0) = 0. Let 2, and a,, be two sequences of positive numbers and suppose
that 31, < co. Then we have the inequality

00

2 All«

1

41? Lag (@) 20,
I e
E Z‘ﬂ
1

which is the analogue of Jensen’s inequality for convex functions. The
analogue of Jensen’s integral inequality is also valid for concave funec-
tions and is proved in a similar way.

Let now ¢(=, t), zef#, 0 <t < oo, be a concave non-negative func-
tion of ¢ for each x vanishing at ¢ = 0. Consider the space ¢(X). This
clags of functions is evidently closed under multiplication by scalars.
So to show that it is a linear space we merely have to prove that g,, g,e
@(X) implies that g, g,ep(X). Let |g;(#)| < L[z, f(x)] almost every-
where, j = 1,2, with fieX, f; > 0 and ||fjx = 1, then '

1+ gsl < Lag(z, f1)+ degr (2, fo) < (}»1‘1‘}»2)‘1‘[-”7, %I{%j?ﬁ]
1T 4

and consequently g,+ goep(X).

Let now g, be a finite or infinite sequence of elements in ¢(X) such
that 3, /lyx) < oo. Then we can find numbers 4,, 4, < llg./lx -+ /2" and
functions f, >0 in X with ||f,lx <1 such that |g,| < 1,¢(,f,). From
the inequality for concave functions stated above we obtain

Mg < N, <olr, 205 (33

LI Z AN

Now aceording to 13.2, since 3[2,f,lx < 34, <e+ g, lx, it fol-
lows that }'1.f,(z) converges almost everywhere to a function f(») in X

of norm not exceeding ;‘ln. Consequently '|g, (x)| is finite almost every-

where and belongs to ¢(X) and since ¢ is arbitrary we find that (13191 )
< Zl]gnll,,,(x). Thus the norm introduced in ¢(X) is subadditive. Ufhe {10-
mogeneity of the norm is clear so that the only property of the norm that
remains to be shown is that llgllpzy = O implies g = 0.

It |lgllecxy = 0 for each n, m > 1, there exists foeX, £, 20, |fullx <1

1
such that |g} < ~n~3-zp(w ) ) almost everywhere. Clearly this inequality will
also hold almost everywhere simultaneously for all n. Now since (1)

* ©
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is concave in ¢ and p(2, 0) = 0 it follows that for 0 < i <1 we have
(2, At) = Ap(z, t). Consequently
1 1 1
ly] = ”3-(,‘(.10, 1)< o x, i fa for all n, almost everywhere.

Now the series Z

] Xis convergent, and thus, by 13.2, the series

1

=T
1 . . 1

Z—n-g f,. converges almost everywhere, and, in particular, 5 f, converges

. 1 1
to zero almost everywhere. Let now » be a point where |¢| < —¢ (r ) s fm)
n "

1 -
holds for all n, and where — f, =0 as #n — co; ab such a point g must
n

obviously vanish. Consequently g¢(z) = 0 almost everywhere.
Finally let us show that ¢(X) is complete. For this purpose it is
oo
enough to show that if g, is such that legﬂ[lq,(x) < oo then the partial
N 1
sums D' g, converge in X. We have shown above that under these assump-
1

tions the series )'|g,| converges almost everywhere to a function in ¢(X);
and this implies that the series ) g, also converges almost everywhere
N 00

to a function g in ¢(X). But then we have g—>'g, = 3 ¢, and, as we saw
. 1 N+1

~
abave, the pointwise sum of the series ) g, has norm not exceeding
N+1

o0
Nzlﬂynﬂm(m- ‘
 Thus lg— > ulloxy tends to zero as N — oo.
1

33.4. Properties i) and ii) of the function f** are obvious. Properties
iii) and iv) are immediate consequences of the inequalities

ffggl‘sdm < [ff(lm]s[fgdm]l_s,
1 & #

L [otpas <2y [—1— [ sao] @[l fdm], Bl <t,
T, 1 1B i

E B B
valid for non-negative functions. The first inequality is nothing but
Holder’s inequality, and the second follows from the analogue of Jensen’s
integral inequality and the fact that ¢(it) > Ap(t) for 2 <1. From pro-
perties i) and ii) it follows at once that the norm introduced in X* is
actually subadditive and homogeneous. Furthermore, if ||f]lx« =0
implies that [[f**|x = 0 whence f** = 0 almost everywhere, and conse-
quently f = 0 almost everywhere.
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To show that X* is complete consider a sequence of functions f,
in X* such that Y|fullzx < co. Then }|Ifa*llx < co and consequently,
by 13.2, the series )Y fr* converges for almost all ¢; but if ¢ is value for
1

which Y fi*(f) converges, we have
' N N 00
k¥ % - "
(D)7 < Yft < Y5 < oo

which shows that the integral of é’vlfnl on any set of finite measure has
a bound independent of N, and b}lr the monotone convergence theorem
it follows that the series i’]fn[ converges almost everywhere and that
(S’[f,l‘;)** < g‘f’** for almost lall t. Let now g be the sum of the series g‘ fn

Then ¢** < Y|fl™ = 3'f3* and this last function belongs to X on account
1 1

of the fact that Y'[[f3*|x < co (see 13.2). Consequently g e X*. Furthermore,

00

N ™ .
”!]— _ijn = “ qu x < ”(Zlf'n‘)** IX
T N¥1 Nl
<|| S5 < St = >l
Nt N1 N1

and the last expression tends to zero as N — co. Consequently the partial

sums* of %‘ Ja converge to a limit in X*, which proves the completeness
of X*.

33.5. That X,+X, and X, ~ X, are Banach lattices is clear, except
perhaps for the validity of the inequality }|g|]x1 +X, < | e, + x, Whenever
lgl <If| almost everywhere. Let f = f,+f, with [f,llx, + [fallx, < [flx,x,
+é&; then g = fig/f+fag/f, where g/f is defined to be zero wherever
f=0. Bince [fig/fl <Ifil, we have ||fig/fllx; <|fillx, and consequently
gl x, < Ifallx, +fellx, < flz,x,+ e Since ¢ is arbitrary, the desired
inequality follows. Concerning the space Xi~°X% let f, be a sequence of

functions in X = X;°X, such that }fulx < co. Then given ¢ > 0 there
1

exist positive numbers » and funetions g, and h, in X, and X s Tespec-
tively such that ‘

I < anHX‘f' 5/271;

Monllz; <15 hall x, ST, [ful < Dulgal*" B)".

* ©
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Then from Holder’s inequality we obtain

Dl X Al il < (X Aga) T 3 2 h)’
1 1 1 1

SIS ) (Sa] TS m) (S5

Now the expression within the first pair of square brackets on the
right represents a function in X; of norm not exceeding 1, and the ex-
pression in the second pair of square brackets represents a function in

X, of norm less that or 'equal to 1. Consequently >'|f,| is a function in X
o 1
of norm not exceeding 3’4, = > l|fullx+ ¢, and since eis arbitrary, it fol-
0 1
lows that | Yfallx < 3 Ifullx. This gives, in particular, the subadditivity
1

of the norm introduced in X. The homogeneity of the norm is clear so
that the only remaining property of the norm we have to prove is that
Ifllx = 0 implies f = 0 almost everywhere. Suppose that ||fix = 0; then
for each integer n, n >0, there exist functions ¢,¢X, and h,eX, such
that |lgullx, <1, [hallx, <1 and |f] < 77 ga" %R, . But then we have

D70l < ooy N, < oo
and by 13.2 we find that #="'~%g, and "%, tend almost everywhere
to zero as n — oo. Consequently, since |f] < jn=YC0=9g, "% |n=""h,|° almost
everywhere for all n, it follows that f = 0 almost everywhere.
To show that X is complete, let f,eX be such that 3|f,llx < oco.
Then, as we saw above, ) |f,| is finite almost everywhere. Let f be the

pointwise sum of the series 3 f,. Then |f] < Y|f,| and, as we saw above,
1

the right-hand side of this inequality is a function in X. Consequently
feX. Furthermore,

N ] ]

i P i ! el o~ N

ﬁlff qu‘lx = H Efn‘lix < “Elful‘!l:x = Z Il
1 N+1 N1 N1

which tends to zero as N — oo. Consequently the partial sums of the
series ) f, converge to f in X.

Next let us consider the space @, (X)'*p,(X)°. Tirst let us show that
if the functions ¢,(x,?) and @,(x,t) are non-negative and concave in f,
80 18 @17 (i, t)pa (2, 1)°. In fact, we have

%[‘7’}—“(‘1": t1)¢;(w7 tl)‘l“‘?ibs(ma tg)ng(.I), 15)]

@1 (@, b))+ (2, 8) 7 [@a(, ) T wa (@, )] |, it SRR LAY
S e e B e el 2| COE o A LR e §

2 2
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On the other hand, since ¢, (%, 0) = ¢,(%,0) = 0, we hfmve Agy(, 1)
< gi(2, A) whenever 0 < A <1; furthermore, since g;(x,1) is 2 non-de-
creasing function of t, if ¢, <7, we have

b+, b4ty
Fil®, ) = i (”"7 : 2 ) Z 21,

1
gilwy t) = i, k).

Consequently

g1 (8, 1) g5 (@, 1) <

From these inequalities we find that if

I <2
almost everywhere, then

R\ h
]f]<;21¢4,3<w,1gr:|h|)qﬁ(w’1g|j:|w) _ 21¢($,JQJ§;LU),

where ¢(z,1) = ¢~ °(z, t)¢5(2,t), which shows that @, (X)'"%p,(X)" is
contained in ¢(X) and the norm in the second space does not exceed twice
the norm in the first. The reverse inclusion and the fact that the norm
in the first space does not exceed that of the second, are obvious.

Next let us consider the lattices X*. Let X, and X, be two Banach
lattices on (0, co). Let fe(XY)'"*(X;)°. Then given ¢ > 0 there exist g X}
and heXf, g > 0 h >0, ][g][X‘ <1, ||h[]X. <1, such that |f] < Ag*"he
with A <[lfl|l+& where [|f]| denotes the norm of fin (X¥)"°(X¥)°. Then
from inequality iii) in 13.4 it follows that f** < A(g"~*h°)™ L A(g**)'~*(B*™*)*
and since [g**||x, = ][g]lxl, P**llx, = lIkllxy, it follows that f**eX1~°X}
and that the norm of f** ag an element of this space does not exceed 1,
and this in turn implies that fe(X]~"X5)* and that the corresponding
norm of f is dominated by A.

The proof that (X]°X5)* = (XF)'~°(X¥)° under the additional con-
ditions postulated is more complicated. We begin with some remarks.

If the measure space . is non-atomic, given a positive ¢ less than the
meagure of the total space .# and a subset B, of . of measure less than 1
there exists a second subset B, such that B, > F, and | B, = ¢. Conse-
quently the definition of f** can be modified as follows:

1
[

2, lgl)gs(@, [h)

o = suw [ ifide,
i
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where the supremum is taken over all sets of measure equal to ¢, if ¢ is
less than the measure of .#, or B = . in the remaining cases. Given
a measurable function f(z) on 4, we denote by () the distribution
function of |f(x)], i. e. the function in (0, co) whose value for any given 7,
0 < < oo, is the measure of the set where |f(z)] > 1.

Of course, we allow oo as a value for f,(f) and we complete the
definition by settmg f.(0) = 4o, even if .# has finite total measure.
Furthermore, if f, (f) = 4-co for ¢ < {,, we modify the value of £ (o),
if necessary, and set f, (4,) = --oo.

The distribution funetion is non-increasing and continuous on the
left. On the other hand, we denote by f*(¢) the left-continuous non-in-
creasing rearrangement of |f(z)| in [0, co) for which f*(0) = +oco and
f*(4-00) = limf*(t). The function f*(t) is uniquely defined and is related

tsoo

to f,(t) as follows:

(1) LIFF@I =t fIm] =t

an analogous relation between f*, f, and |f(#)| is given by the inequality
(2) P = If (@

which follows from the second inequality in (1).

An equivalent way of defining f*(¢) is this: f*(¢) is the non-increasing
left continuous function in (0, co) which is equimeasurable with f(z)
that is, such that the sets {#||f(z)] > 1} and {17 > A} have the samc
measure for 1 >0, and for which f*(0) = oo and ff(co) = flpl}]gf* 1).

It is not difficult to see, and well known, that for all ¢ less than the
measure of .# we have

&up f]f z)|de = [f Yds,
and, if the measure of .# is fiuite,
. 4
JIf@)\de = [f*(s)ds
[}

whenever ¢ > [.#]. Consequently we have

3
fww=%mem

or in terws of our operator S, f** = §,f*. Bvidently we have f**(£) > f*()
Consider now the operators §; and S,. If ¢(¢) = 0 we have
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f ~ [ ™~

s Cgle) ge)
(3) 88,9 = Y f_lj vydo = ’ dv ’j re ds -+ '{J du} o s
i o

=%f 0)dv +f I0) 4y — 8,g+840.
On the other hand, if g,(f) and g,(¢) are non-negative functions,
by Holder’s inequality we have
b S[ ‘ ( )dn]
v
y g2 'D

"° Ao [ dv]
st = [t mor <[[um

= (8201)" " (8242)

Now we are ready to show that condition i) implies the desired re-
sults. Let ¢ be a bound for the norms of the operators 8, and §, in X,
and X,. Suppose that fe(X1~°X3)* and let us denote by ||f]l its norm in
this space. Then, if 1 > [|fll, there exist two functions g,(f) > 0 and ¢,(#)
>0 in X, and X, respectively such that [igoflx; <1, |igallx, <1 and
(1) < 2g,(8)'°g(2)". Let

1 1 .
b = —(;?Szg” by = c-zszgg, hi(0) = oo,  hy(--o0) :llimhi(t).
Then from the preceding inequality and (4) we obtain S,f** <
< A8:(g17°03) < A(8291) " (829a)" = A~ hs.
On the other hand, we have f** = §8,f* whence by (3) we find that

(8) Bof™ = 88uf* = 8if* +8.f* = f*
which combined with the preceding inequality gives
(6) I* < chi°Rs.

Define now f,(#) = hy{f,[If(@)[]} and ful@) = hoff, [f(@)|1}. Since
If(z)] and f*(t) are equimeasurable, f;(x) —h{f*[[f )1} is equimeas-
urable with h;{f.[f* ()]}, which, since %; is non-increasing, is a non-in-
creasing funetion of 1. Oonsequently 1) = hfi [f*(£)] except perhaps
at the points of discontinuity of ff(f). Now the first inequality in (1)
and the non-increasing character of h;(t) imply that &, {f,[f*#)1} < hi(t
and this combined with the preceding result, implies that fi (1) < hy(t )
except perhaps at the points of discontinuity of f}(t). Hence we obtain

1
™= S]_f: < Slhi = Fﬂlszgi.
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But the operators 8§, and 8, are bounded in X; and their norm does
not exceed c. Consequently fi*e X; and [ff*]x, <1 which implies that
fieX$ and Ifilx; <1. Now from (6) and (2) it follows that

)] <L FNT < e (0@ D £ Uf (e
_())fl(fl *fa ()"

Since fie Xf and |ifilxy <1, it follows that fe(XT)'"°(X7)" and that
its norm as an element of this space does not exceul &1 = (|fll+2),
where ||f|| denotes the norm of f as an element of (X} °X3)*. Since e is
arbitrary the desired conclusion follows.

Now we will show that the assumed properties of the operators H*
imply that i) is satistied. We will limit ourselves to show that the integral
defining 8, is absolutely convergent and that it represents a bounded
operator in X;, an almost identical argument being applicable to &,.

First let us consider any positive number a, and the integral

o 0
[ePE f(t)ds = [f(te°)e*ds

where f(t) is a non-negative function belonging to, say, X,. This integral
can be interpreted in two different ways. Bither as a possibly divergent
Lebesgue integral depending on a parameter t, or as the Riemann in-
tegral of the X;-valued function H°f(¢) of s. In the second sense the in-
tegral is meaningful because of the assumed continuity of the X,-valued
function H*f(#) of s. In other words, the Riemann sums of the integral
are functions in X, which converge to a limit with respect to the norm
of X,. But convergence with respect to the norm implies convergence
in measure on every set of finite measure and consequently the Riemann
sums of the integral converge in measure with respect to ¢ on every set
of finite measure, and the limit is finite almost everywhere. Assume now
that f(t) is integrable on every interval (b,c¢), 0 <b <e¢. Let ¢ and 6
be two positive numbers and let f = f,+f, where f, is continuous and

; 1
If2(t)] dt < %eé.

bexp(-a)
0

Since f; is continuous, the Riemann sums of f f.(te’)e*ds will con-
—u

verge to their limit uniformly in b <t < ¢ On the other hand, if —a«
=g, <8 < ... <8, =0 denotes a subdivision of (—a,0) and s; < oy
< 85,1 We have

(:1 uuwl ) nﬁl 1: 1

, u\; falte e sy —s) @< D (sp ys)) [ IfuDidE < ) e

1 1 bexp(—a)
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50 that, if the subdivision is so fine that the Riemann sum of fa(te®ye’
differs by less than /2 from the corresponding integral for all ¢ in (b, ¢),
the set of values of ¢ in (b, ¢) for which the Riemann sum of f(te®)e” differs
from the corresponding integral by more than ¢ has measure less than e.
Thus the Riemann sums of f(te’)e’ converge in measure to the Lebesgue

integral
0

[' flte")e'ds
—a
on every interval (b, ¢).

Now these Riemann sums also converge in measure to the integral
in the veectorial sense, whence it follows that the two definitions of the
integral coincide almost everywhere provided that f(f) is assumed to be
integrable on every interval (b, ¢). Now we shall remove the assumption
of integrability of f(#). Suppose that f() i3 non-integrable in some interval
(%", b) and let f,(Z) be the function f(?) truncated at height n. Then

0

[P f(tyds = [P, (1)ds = J falt

“a “a

Ye'ds = -

j Fuls)ds

Y(xn[ -a)

where the two first integrals are taken in the vectorial sense and the
remaining ones in the sense of Lebesgue, and the first integral represents
a function which is finite almost everywhere and the lagt tends to in-
finity with » for all ¢ in the interval (b, be**), which is impossible. Hence
f(?) must be integrable on every closed interval contained in 0 < § < oo,

Consider now the integral f ¢PH f(t)dt. Since the norm of H*
does not exceed ¢! where a < 1 / this integral, taken as a vectorial
integral, converges absolutely and represents a bounded operator on f.
If f>0 we have in addition

[ 0 0 :
[ermma = [ePHY(nar = [fue)eds

where the last integral is taken in the sense of Lebesgue. This shows that
the Lebesgue integral f f(te®)e'ds is finite for almost all ¢ and is majo-
rized by f SPHSf( t)dt Hence the Lebesgue integrals

ffte eds:—«jj =8, f

represent a bounded operator in X, as we wished to show.

e _®©

icm
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To obtain the same conclusion about S, we argue as above with the
integrals
fls), _ o
j ~~—ds = f () ds = [ e SHf(1)ds.

t

33.6. We begin by showing that X (B) is complete with respect to
its norm. For this it is enough to show that if f, e X (B) is a sequence such

o
that 3 |fullxm < oo, then the partial sums of the series > f, converge
1

to a limit in X (B). In fact, let g,(x) = ||fo(2)]|z; then on account of the

definition of the norm of X (B) our assumption is that Y |lg.lx < oo.
1

o0

Since X is complete, the partial sums of the series ) g, converge to
1

a limit in X and thus they converge also to the same limit function in
measure on every set of finite measure. Since the limit function is finite
almost everywhere and g,(#) > 0, convergence in measure of the partial
sums implies convergence almost everywhere to a finite limit, that is

=)

D @) = Y lfal@)llz < oo

1 1

for almost all =, and the series 2’ fn(z) converges in B for almost all x.

an(w

Let now h(x) = then

N ©
! 3 PR N IR
iy — Nfule) < Sida)n,
1 Nl
N )
i !{ -
i‘h"“Efn iX(B) = !‘ _En.fn “1)"; S v”fn X@B)
T Nt " .\1 1

and the last expression tends to zero as N — oo, that is X (B) and the
partial sums of Y, converge to % in X(B).

Before proceeding to the proof of i) and ii) we will establigh some facts
about vector valued measurable functions. First of all let us observe
that if B, is continuously embedded in B,, then a B;-measurable
function is also B,-measurable. Thus if X, is continuously embedded
in X,, then X,(B;) is contained in X,(B,) and the inclusion map is
continuous.

Assume now that (B,, By) is an interpolation pair. Let f(z) be a fune-
tion with values in B, ~ B, which is both B, and B;-measurable; then f(x)
is also (B, ~ B,)-measurable. To show this let ¢, (») and h,(x) be two se-
quences of simple functions with values in B, and Bj respectively such
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that |l (z)—f(z)s, —~ 0 and V(@) —f (2)]lp, > 0 almost everywhere,
Let BicByc..cB,c.. be sets such that 4 — | B, has
measure zero and that g, (z)—f(®)ls,+ b (z)— f (@)l — 0 uniformly
on each of the sets B,. For each m let » = n(m) be such that [g,— f”BU
+ fn—fllp, < 1/m on E,, and split B, into a union of finitely many
disjoint sets B, in such a way that ¢, and h, be constant on each of
the sets B,. Now select a point @ on each set H,,; and define s, ()
= f(zz) for zeF,y and s,(z) =0 for x¢H,. Then for xek,, we have
() = gu(2r), hn(z) = hy(2r) and consequently

fsm (@) —F(@)n~n, = If{2) —F(@)ngnz, S @)—F @)z, + I (00) —F (@),
L (o) — g (i), + 1F () = g () 22y + 1F () — P (2012,

9

+ @) = hu@)ils, < —;—7’

Consequently, as m — oo, 8, converges uniformly to f with respect
to the norm of B, ~ B, on each of the sets B, F,,..., ete. Thus f(z)
is (B; ~ B,)-measurable.

Next consider the space X (B). We will show that functions in X (B)
with countably many values form a dense subspace of X (B). In fact,
let f(z)eX(B) and let g,(#) be a sequence of simple functions and B,,
a sequence of disjoint sets with union .4 such that |jg,— fllz tends uni-
formly to zero on each of the sets E,,. Further, let D, be the set where
If#)iz >1, and Dy, k>1, the set where 1/(k—1)> |f(@)llz > 1/F.
Given e > 0, for each pair (m, k) let » = n(m, k) be so large that g ()
—f @)z < ek fllzi in B ~ Dy and define h(x) = gu(@), n = n(m, k)
for wely ~ Dy, and h{z) =0 if |f(z)llz = 0. Then clearly h(z) has
countably many values and ||h(x)—f(2)|s < al\f('w)]l;gllfj]}(lm, ‘whence it
follows that heX(B) and that Ih—fllxm <e.

We are now ready to prove i). Let F(s, &) be a function in
F[X,(B,), X,(B,)] of the form

Pz, &) = & 3 f,(0)6™*,

where & > 0, the 1, are real and f, <X, 0(By) n X, (B;). We know now that
fn is measurable as a function with values in By~ B; and consequently
it is also measurable as a function with values in B. By 9.4, ii), for any
given x we have

B @, 9)ls
1 too X 1—sr ]t s
Q[I-:S_L ]IF(:G,ﬂ)”.rzﬂﬂu(s,t)(lt] [?_fm ]IF‘(m,ly'f“'b"ﬁ)H_r,-l/h(-?,t)dt].
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i
Setting R
o0) = = | 1P, iy (s, Dt
we find that .
I 1 R ) "
@) R s L Y
< [, 0l pats, D

‘We postpone the detailed justification of this last inequality and
proceed with the proof. Denoting by |||F|{| the norm of F as an element
of F[X,(B,), X;(B;)] we have

W (2, i)l lx, = 1 (2, iB)llxymy < T

Thus from (2) we obtain
1 -
lgllx, < HIFIH—l—: ( Lols, Dat = [|IF]]].
Similarly we find that ||bllx, < |||F|||, where
1 +oc
ha) = < [ 186, 14l nls, it

Thus (1) can be expressed as
1 (2, s)ip < g(@) " (x)"
where geX,, heX,, |glx, < |IF||| and |hlx, <|||F|i| and this implies
that [F(x,s)peX. Consequently F(z,s)eX(B) and |F(z,s)|xz) =
= [|(lF (x, 8)liz)ilx < |||F|[|- Let now f be an element of [X,(B,), X1(B)]s
and F(z,z2) a function in F[X,(B,), X,(B;)] such that F(z,s) = f(z)
and [[|F]]] < |fll+ & where {|f|| denotes the norm of f as an element of
[Xo(Bs)y X,1(By)]s- Let F, be a sequence of functions in #[X,(B,),
X,(B,)] such that |||F,—F||| — 0. Then we have

N (2, 8) = f(@) = [IFa(z, 8) —F(x, )| < ||[Fy—Fll] = 0

where the first two expressions denote norms in [ X, (B,), X,(B;)];. Con-
sequently #,(x, s) converges to f(z) in [Xo(By), X;(B;)l. On the other
hand, we have

B, 8) —Fu(, 3)“.\'(11) < | y—Flll 0,
N8 (@, $)llx < MF = NI < ifil+e.
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nsequently F,(x,s) also converges to a limiﬁ in X(B) of norm
not Szc%d%ng ]]j%—l—a.( l\,Tow, X (B) and [XO(BO),XI(EI)] are both e(?n-
tinuously embedded in (X,+X,)(Bo+By), whence it follows that the
limits of F,(z,s) coincide. Consequently feX(B) and ||fllxm < Ifl-+¢;
now e is arbitrary and therefore we have || flxz < IIfl- .

To prove the second half of property i) let us cons1d§er the class »?’,
of simple functions in X(B) defined as follows: feS, if and iny if
there exist g(x)eX,, h(z)eXy, Hg[[xo <1 )z, <1 such that ||f(2)lp =
(14 ¢) Ifllxz) g (=) °h{z)’ and the mnon-zero values of g and 2 have
positive upper and lower bounds.

Given f(2)eS, we can write

fla) = _\_; i (@)1,

where the y; are characteristic funetions of disjoint measurable sets anj
;e B. Let now g;(£) be functions in #(B,, B,) such that ¢;(8) = u;llullz
and [|lgjl|] < 1-+e, where ||lp;]jl denotes the norm of ¢; as an element
of # (B, B,), and seb

P(o, &) = 1+ ) |flxmg @)~ h @) D @) (),

it Jf(@)lz #0 and F(z, & =0 otherwise, Then for each @, F(w, &) is
a function in #(B,, B,), which is continuous, uniformly with respect
to @. If y(x) is the characteristic function of the support of |f(#)|lz, then
1P (@, &)lysn, < cx(x). Bub |If(x)]lz is simple and therefore we have y(x)
<co|f(®)|lz which implies that x(@)eX c X,+X,. Consequently
1P (@, &)llzys 5, e Xo+ Xy or F(w, &) e(Xo+X,)(Bo-+-B,) for each £. Now
for each £ in 0 < ¢ <1 we have

|- 1 Plo, 8- B0, )
1}77‘ [F (2, E+n)—F(z, &)]— dE Uy 1}%]{04711_!

<e(n)y(x)

with ¢(y) tending to zero with #, which implies that the inecrement quo-
tient has a limit in (X,+X,) (B,+B,) when 5 tends to zero. In other words,
F(z, £)is a function of & with values in (X ,+X,)(B,+B,) which is analytic
in 0 < ¢ < 1. Furthermore, since '

1 (2, &) —F (@, Ellngsn, < o(&y, £ x(@),

where ¢(&;, &;) tends to zero with |£,— &, — 0 uniformly for &, and &,
in the interval 0 < ¢ < 1, we infer that F(z, £), as a function with values
in (Xy4X,)(Bs-+B,), is continnous in 0 <o < 1.

@ ©
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Now let us consider the values of F(z, &) on & = it Evidently, for
cach # we have F(z, it)eB, and

U (e, )]s, < e(t)z(),
IFLe, i(t+)] - B (e, it)in, < e(t, 1)y (),

where ¢(f) and ¢(t, ) tend to zero as |t —> co and 7 —> 0 respectively.
But since both g(z) and (z) are bounded below on their supports which
contain that of [f(x)llz, it follows that y(x) < ecg(x) and thevefore
x(w) e X,. Thus the preceding inequalities imply that, for each t, F(x,it)e
X,(Bo), and that as function of ¢ with values in Xy(By), F(z,it) is con-
tinuous and tends to zero as [f| — co.

Similarly we conclude that F(z, 1--14) is 2 continnous X, (B,)-valued
function of ¢ which tends to zero at infinity.

Now we apply 9.1, i), and conclude that F (s, £), as a function of I
belongs to #[X,(B,), X,(B;)]. Now we estimate the norm of F as an
element of this space. Since |{|g;]|] <1+, we have llos (#)|m, < 1-+& and

1 (2, i)z, < (L+ &) flxamg (@),
whence it follows that

WF (2, i) xymy) < (14 €)2fllxem;
similarly we obtain

[E (2, i) % my < (14 €)% filxem

which implies that the norm of F as an element of #[X o(Bg), X1(By)]
does not exceed (14« flixm. But F(z,s) = f(z) which shows that
FelXo(Bo), Xy(B))]s and |Ifll < (14 ¢)*fllxs), where ||f| denotes the norm
of f as an element of [X,(B,), X:(B;)l;.

Now we will show that S, is dense in X (B). Given fe X (B) and 6 > 0,
let % ¢ X (B) have countably many values and be such that ||f— klxm < 6/2.
Since ||k(z)|[peX, there exist two functions g and h, geX,, he X,, llglx,
<1, [blx, <1 such that [k(z)llz < (L4 ¢/2){|k(®)xm g @) (@)’ Let
Uz, Uay oevy U,y ... DE the non-zero values of %(x) and let y,(z) = 1 if
k(@) = u;, j <m, and 1/m < g(@) <m, 1jm <h(®) <m and g,(@) =0
otherwise. Evidently we have |1, ()% (z) — k(@) < [[k(2)|z and ||y () k()
— k()| —> 0 as m — oo for every ». Consequently (I 2 () B () — & (20) || )i
= ltmk—Fklxm — 0 a8 m oo and |gmklxE — Iklxm as m— oo
furthermore ||z (2)k(2)|lz < (1+ ¢/2) [kllx(s) [1m (@) 9 (2)]° [m (2) R (@) and
taking m so large that (14 &/2)[k|xm) < (14 &) [ pm Fllxe and |z — Ellxm)
< 6/2 we will have

L (@) k(@) < (1 46)llgm ke H‘\'(R) [oom .(]('T’)]l-s Lt P ()T


GUEST


176 "A.P. Calderén

If we had equality sign here, since [ymgllx, < llgllx, and ||;5,,JL”Y1l
< [Ib]lx, and the positive values of gmg and y,h are between 1/m and m
it Would follows that y,keS,. Actually, the equality sign in the relation
above can be obtained by replacing h, if necessary, by a smaller function.
This new function, as readily seen, also has its positive values bounded
away from zero. Thus we can conclude that ymkeS,. Since [’lxmk— fHX(I,,)
< Jomb— Elxez + e —flxm < 6, we have proved that §, i3 dense in
X (B).

Let now f be any function in X (B). Given &> 0, we construet in-
ductively a sequence f, of functions in 8, as follows: we select first f,
in such a way that |f—fill < Hlfllxm and (fiilxe < (1 +e) [fllxqm . Hav-
ing chosen fy, fay ..., fu in such a way that

1
”fm”X(B) < 57‘;{,

m 1 ‘
~ j B xim) < bl L+ &) lfllxea

we select f,,, in such a way that the above inequalities be valid with m
replaced by m+1. Due to the density of §,in X (B) this is always possible.

o
Consider now the series D f,; its partial sums obviously converge to f in
1

X(B). On the other hand, since f,eS,, we have f,e[Xy(By), X (B)]
and

Ifmll < @+ lfulxe < 5w (146 Iflx),

2711

where ||full denotes the norm of f, in [X,(B,), X;(B;)].. Consequently

the series Z fm also converges in [X,(B,), X;(B;)]; and its sum has norm
T

not exceeding (14-¢)®|fllxz) - But the two sums of the series coincide.
Consequently we infer that fe[X,(B,), X,(B,)], and |f]] <( '1+a)3]|f||X(,—,-
where [f]| denotes the norm of f as an element of [X,(B,), X,(B,)]-
Since & iy arbitrary, it follows that ||f]| < |[flxz). Thus i) is estabhshed
except for the justification of (2).

Referring to 2) let us observe that [|[F(x, it)lls, is & continuous fune-
tion of ¢ for all #; consequently for any given a > 0, and all # we have

3) f B (@, it)ll,mo(s, 1) dt = lim B, (w),

Nerco

where E,(#) is a Riemann sum of the integral corresponding to the sub-
division of (—a, a) into intervals of length a/n. On the other hand, we
have

W (2 e+ )y~ B @, 0y < WP (2, i+ ih)—F (o, it
= IF (@, it )~ (2, it)] xyqm»
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and since F(z, i) as a function of ¢ with values in X,(B,) is continuous,
the last expression above tends to zero with & for each t. But then the
first expression also does, which shows that | F(z, i)z, a8 a function
of ¢ with values in X, also is continuous. Thus the R, (2), which as elements
of X, are also Riemann sums of the integral in (3) interpreted as a vee-
torial Riemann integral, converge, in X, as n — co. Buf if I(z) is the limit
of R, in X,, then R,(z) also converges to I(z) in measure, and since R, (z)
tends to the integral in (3) for all @, it follows that this integral coin-
cides with I(x) and

“ .;:a”F(m, 'ét)”liol‘n (s, t)dtHXu = iin;!an“Xo‘

Let now g, be the Riemann sum of the integral
+a

I WIE @, t)lls,)llx, (s, )t

—a
constructed with the same points of the interval (—a,a) as R,; then
evidently ||[Ba|lx, < .. Since g, tends to the preceding integral as n— oo,
it follows that

+a
@ | 1P s, 0 = lim|Rx, <lime,

+a

= [ WP (2, it)lp,)llx,mols, )t <

-0

Finally, since ||F(x, it)||5, < Y[fa(#)|ls, where the f, are the functions
that enter in the definition of ¥, we have

b
| 1 3 W@ layiols, 03],

)
= | D 1a@lizg||x, [ rls, D,

+o
I WP (@, i0)]ls,) 0 (s,t)dt.

o8, tdtl]X
a<b,

and the last expression tends to zero as ¢ - +oo or b - —oo. Conse-
quently

J I (@, it)limypo (s, 1) dt

converges in X, as well as pointwise everywhere as o tends to infinity.
Letting @ tend to infinity in (4) we obtain (2).

We pass now to the proof of ii). We will show first that [X,(B,),
X,(B,)T <« X(B), the inclusion being norm-decreasing, provided that
X (B) is closed in X, (B,)+X,(By).

Studia Mathematica XXIV, 2 12
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Let f(#)e[X,(By), X:(B)T be given and let F(x, £) be a function
in .g?[Xo(Bo), X, (B,)] such that %F(m, £) = f(») and the norm ||[F][|

of F ag an element of this space is less than, say, ||fl+¢, where ||f]| is the
norm of f as an element of [Xy(B,), X;(By)I. Then

Fo(w, §) = 2 (B0, &+ hi)—Pla, 816, 1 >0,

belongs to F[X,(B,), X:(B;)]; now in the proof of i) we showed that
[X,(Bq), X1(B,)]s is contained in X (B) and that the norm of the former
majorizes that of the latter, without using the hypothesis on X made
in i). Consequently we can assert that ¥y, (», s) e X (B) and that || F} (w, s)]lx.w)
does not exceed the norm of Fy in F[X,(B,), X,(B;)], which 1.2 readily
seen to be majorized by e"}]lFH[. Thus we have ||F;(x, S)qus) <e'|P) <
< (|fl+¢). But as b — 0, Fy(z, s) converges to f(») in 'XO(BO)—E—XI(BI)
and belongs eventually to the sphere of X (B) with radius [|f|+ 2z and
center at zero. Since this sphere is closed in X,(B,)+X,(By), it follows
that feX(B) and [|flx) < [If+ 2¢ which, since ¢ is arbitrary implies that
= < I

Let f be a function in X (B) with countably many values and. let g X,
heX, besuch that |glx, <1, lhllx, <L If @)z = Ifilxe L+ e)g (@) ~*h ()",
Denote by 4, %g, ..., Um, .... the mnon-zero values of f and by y;(»)
the characteristic function of the set where f(z) = u,;. Let ¢;(£) be func-
tions in #(B,, B,) such that ¢, (s) = w;|lu,|z" and with norm in & (B,, B,)
not exceeding 1+ & Define now

(8) F (2, &) = Iflxm (L+2)g(@) k(@) D 1(o)e; (&)

if h(x)g(z) # O and F(z, £) = 0 otherwise. Let I' be a path in the strip
0 <o <1 joining the points & and 1/2 and set

Fi(@,8) = [ Fo,n)dy, Ty, &) = [ Fifo,n)dn,
r r

where the integrals here are understood as integrals of (B, B,)-valued
funotions depending on the parameter z. Now, for each & IF'(w, &) is
& (Bo+B;)-valued measurable function of @, and consequently so are
the Riemann sums for the first integral above, assuming that the same
points of I" are used to construct a given Riemann sum for all w; thus
F,(, £) which iz the pointwise limit of such sums, is also (Bo-+By)-mea-
surable. Similarly we conclude that F,(», &) is (B,-+B,)-measurable.
Bince |g;(£)llzy+n, <14¢, we have

(6) 17 (@, Ellzyrm, < L+ &)l llxim)lg (@) *h (@)f]
< (U+4e)¥Hfllxee L9 () F B (2)]
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and from this we obtain

IEy(@, &2)—F1 (2, &lpyrm, < (L+e)2fllxe [9(2) + ()] &— &4,

1y (2, 52)_F2(97:§1)—(§2_ &) Fy(z, El)HBmLBl
(7) &
| = | [ 1w, P, &01an 5.,
&
l

< (L&) lflze [9() + b (2)]] €3~ £, 12

Since (g+h)eX,+ X,, these inequalities show that ¥, F, and F,
have for each & values in (X,+X,)(B,+B,); that F, as a function of &
with values in this space is continuous in 0 < ¢ <1 and that Fy is the
derivative of F,.

Now the preceding argument can be repeated with £ replaced by
it and B,+-B, replaced by B,, and the inequality

Iy (@, 38) —Fs (@, it,)ll5, < (L+ &)*|fllxem 9 (@)lta— |

would follow, showing that F,(z,4t), as a function of t, has values in
X,(B,) and that

I1Fy (2, i) —F (@, ity)xymy < (14 &) fllxlta—1ti].
Similarly we would obtain
1Py (2, 1+ ite)—F (2, 1+ ity) |z, < (L4 £)2[flLxm lta— 1] -

_ From these two inequalities and (6) we conclude that F; belongs to
F[Xy(By), X;(B,)] and that its norm in this space does not exceed

(I+2)|fllx). But %Fl(s) = f(»); in fact, the increment quotient of

F, converges to its derivative in X,(B,)+X,(B,), and therefore also in
(Xo+X,)(By+B,), and it converges pointwise to F(x,s) in By+By;

since the limits coincide, it follows that the vectorial derivative %Fl

af 8 equals F(w,s), and, as readily seen, F(z,s) = f(w). Thus we. have
proved that f belongs to [X,(B,), X;(B,)T and its norm in this space
does not exceed (1-- &)lfllx . Since & is arbitrary, denoting with Il
the norm of f in [Xy(B,), X1(B,)T, we have [|fil < ||flx)-

Finally let f be any given element of X (B) and f, a sequence of fune-
tions in X(B) with countably many values such that Ifo—Fll @) = 0.
Denoting as above by |[k|| the norm of an element % of [Xo(By), X4(B1)T,
we have (f,—fn)e[X,(B,), X, (B,))I" and lfa—Tull < ”fn—fm“X(B) -0,
which shows that f, converges in [X,(B,) , Xi(B,)F to an element k.
Since [lfull < ifullxz); We have k]l = Lim||f,|| < Lim||f,||xm = Il - Now,
both X(B) and [X(B,), X,(B)I are continuously embedded in
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(X,+X,)(B,+By); therefore the two limits of the sequeunce f coincidg.»,
that is, f = k. Consequently fe[Xo(Ba), X:(B)T and Ifll < [/Mxm. This
concludes the proof of ii).

341, and 34.2. We begin by showing that under the assumptions
of 14.1, iii), the funetion min (£, ") belongs to X. For this purpose let
g(t) >0 be a non-vanighing element of X and let

i [
. ds ds
b = ¢ [a0) e+t [ECre

Then, according to ii) and iii), (%) belongs to X. Fwrthermore, &(t)

is continuous, positive, and
. k() ds
11m u r+1

O ¢ §

COR@) [ ds
>0, lm=e > [ 96) 5 >0

0

>fwg(8)

consequently, for sufficiently large ¢, we will have eh(f) = min(¢¥, &)
and this implies the desired conclusion.
Next let us prove that ii) implies that

: ds
!g(s)grg

is o bounded linear functional of g for 0 < j < r. Let x(t) be the charac-
terigtic function of the interval (1, 2). Then, if g > 0, we have

1 :
ds . ds
Z(t)ofg(s)ém <@ J‘g(s)s—l;?-

But according to iii) the integral on the right represents an element
of X of norm not exceeding c¢lg||x. Consequently, we have

1
d
Il [ 906) 557 < olgllx

and since [|g|lx > 0, the desired conclusion follows for g > 0. The general
case ig reduced to this by replacing g by |g|.

Let us now turn to the operator & in 14.2. Let us assume that X
satisties the condition postulated in 14.1, iil), and show that if y(y) is
any infinitely differentiable function with compact support in R", then

the integral
oo 1
= | @1 -
w 1[ {frylf’(t)w(ty)dy}dt

icm°®
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is absolutely convergent whenever F(i)eX(B) and 0 <j <r, and re-
presents an element w of B such that w,w is a continuous bounded

B-valued function. In fact
S
7 (5[ tmiana

lf tn~1+f{f
<of o R f P9l 55 < o1 Plxcn-

On the other hand,

o () |5 emias)a - fm po

B

Ieyo—els = | f el [ (%) [yt t9) ~ y(12)ds}

< f 1 F(%) ”B{ f [w(tz——ty)—zp(tz)[dz}dt
<[ GILAS lw(z—t?;)~w(2)ldz=dt-

But since u is infinitely differentiable, we have

[ lw(z—ty)—p()|de < omin(tly|, 1)

so that if we assume that |y| <1 we have
ym [~

”’vw_wﬂﬁ’Qﬂlyllf ij“F(—%—)HBdt-l—c ft“‘“'

1|

b (3{) [

1

ds d

= elgl [ WP G)lsgzrte [ 1P azzss
w 0

now as |y| — 0, the second term in the last expression tends to zero,
and 5o does the first. For if & is a positive number and |y| < § we have

: @ : d : d
) [ 176 = 91 [ P O)asgs 1ol [ 17 (6)lo g
141 wi 1
; d - d
< [ 1Ot U [ 1)

i é

and the second term in the last expression tends to zero with |y| and the
first is arbitrarily small if 6 is sufficiently small.
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This shows that if we differentiate j times, j < 7, under the integral
sign 7, applied to the second integral in the definition of & we obtain
an absolutely convergent integral representing an element w of B such
that 7,w is a B-valued continuous function of y. The same thing is evi-
dently true for the first term in the definition of &°. Thus every element w
in the range of % has the property that v,w as a B-valued function of y
has r continuous strong derivatives. Furthermore, if a = (a,, a5, ..., a;)
is a multi-index and we write

o\ a)ala B9\
lof = @yttt an ('a‘y) —(@: (55;) "'(a’y";)

where ¥y, U3, ---; Y are the coordinates of R", we have

@ LS ozt elFllzc-, 0 <af <.

oy
Let now w denote a derivative of order r of 7,[(F,u)] at y = 0,

let u(y) be a measure in R" with compact support and with moments

of all orders less than % — r equal to zero and consider the function

l (ﬁa—)ar,, [#(F, u)]

(2) G(1) =1 [ (ryw)du(y).
We will show that & belongs to X(B) and that
(3) IFlxm <cllullp-+elPlxz-

By differentiating 7,& r times under the integral sign, from 14.2,
i), we obtain

w = f(rgu)y);(z)dz—{— fs”‘“l“{f—rzﬁ’ (%) i (sz)dz}ds

where 1y} acndl vy are infinitely differentiable functions with compact
support. Substituting in (2) and inverting the order of integration we obtain

@ 80 = [ne] [vie—wane)]er

+f‘9n—1+r{f¢,}fﬂ (%)[fw}(sz~tsy) dy(y)] dz}ds.

Expanding v} by Taylor’s formula at the point # we obtain
vi(e—1t) = Py (2, ty)+Ry(e, ty)

wherfa }’1 is a polynomial of degree k—r—1 in the coordinates of ty whose
coefficients are bounded. functions of 2z, and the remainder E; is dominated

icm
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by clty|"". Since all moments of u(y) of orders less than k—r are
zero, we find that

| [vhe—m)du)| = | [ Radu()| < e
Since, on the other hand, we also have
| Be—tmaunm)| <,
it follows that
| vie—t)au@)| < emin(", 1).
Consider now the expression
S| vie—stm)du()|de = s [| [ vile—sty)duy)| .

If the supports of yi and u are contained in a sphere of radius o, we

have .
p1(z—sty) =0

for || > 2¢, ly] < o and st < 1. Consequently for st <1 we have
J|f ve—stauw)|ae = [ |[vie—sw)ant)|a
[8f<2e

< [ | Bates tsy)any) | @ < oot

1#1<%

On the other hand,

[ [ #hte—stn)duw)|de < [ | [ vl e—sm)ldz|alut) <e,
whence
f”ap}(szusty)dy (%) ldz < es~™min [(st)*", 1].

Substituting in (4) we obtain

16l < clulaming®, £)+of [ ¢ iF(i) H min [(sf)", 11ds
J I" \e/lz

o0 }4
d d.
= clullpmin(®, )+ [ 1T -+or [ P65
13 0

Since min (&, ') belongs to X, inequality (3) follows on account
of iii).

Suppose now that in the preceding situation we have r = 0 and
#(y) = ¢(y)di. Then

1
60 = [ wamody = [ cyute Loy = 1w
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and (1) and (3) show that w = & (F, u) belongs to Az, y) and
Iwlla < eluliz e Flxam-

Thus & maps X(B)+B continuously into A4(B, X).
Tet us turn to the functions y;, and v, in the definition of &. As we
will show below, for & to be the right inverse of # it is enough that

() [v:@)p(@)logle—y|dedy = —1,
(6) pa(y) = ft"'llfrp(ty—z)wl(z)dz] dt.
0

First let us show that condition (B) can actually be fulfilled. Congider
the function

[logly—=zlp(2)dz = 4~ [logly—2|p(e)de—A""logh [ ¢(2)dz, 2> 0.

Since the integral of ¢ vanishes, the last term can be dropped. This
shows that if

(7) [logly—z|g (4e)de

vanighes identically in y for 1 = 1, then it vanishes identically for all A.
Assuming this to be the case and denoting by u and ¢ (y) the distribution
Fourier transforms of logly| and ¢(y) respectively, the transforms of
@(4y) and (7) will be given by i "@(A™'y) and ud~"p(1~'y), and we will
have pd™"p(A"'y) = 0 for all A Since @(0) =0, this implies that the
support of u is the origin and that p is the Fourier transform of a poly-
nomial, which it is not. Consequently

[logly—2lp(2)de

is not identically zero. But since ¢(2) is spherically symmetric, the above
integral represents a spherically symmetric function of y and thus fhere
exists a spherically symmetric function () such that

Jw) [logly—2lp(e)de = —1
which is (5).
Let ws turn now to p,(y). Let
&) = [oply—2)pi(2)d.

Then, since ¢ and v, are sphericalty gymmetric, so is @, and, since ¢
has zero integral,

IG(’lj)dﬁ‘/ = f%(Z)frp(y—z)dydz = 0.
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If we calculate the integral of @ in spherical coordinates we find that
[do [ Gwm)i—'d =0
z 0
where |#] = 1. But the inner integral is independent of ». Therefore
o
[ ¢yt =o.
0
But @ has compact support, thus G'(i») = 0 for > ¢ and
a
[Gwyr-'ae = 0.
0
Now by definition we have

®) vay) = [ | [oy—r)m(e)de|ds = [~ )i
0 0

which shows that y,(y) is infinitely differentiable. Furthermore, if ¥ = ov,
where |y| = g, then

1 2
va(y) = [ G(ter)dt = o™ [ "G () dt.
1] 0
Thus y,(y) = 0 for ly| > a.
Now y,(y) is spherically symmetric, consequently

1

Juwiy = [ ay[t¢way = [¢] [ ¢ay)ay]a

W <a 0 wi<o

=fl? [ ewa =f% [ away
0 wi<ta b i<t
) _"flog%d[qug(y)dy] = qua(y)log(%)dy

and since the integral of G is zero, we finally obtain
vy = — [@)loglyldy.
But the expression on the right is precisely the integral in (5). Thus

[va()iy =1.
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Now let us caleulate ¥Fu. We have

(9) wru =£13:{f(r,,u)y;z(y)dy—]—jt““jlrﬂ[t"’f (rﬂ,u)rp(ty)dfy]mpl(tz)dzdt}.
Now the second term on the right ean be also written as

f (rﬂu){ f tm“l[ [o(ty—1te) '«pl(tz)dz] dt}dy
= f(r,,u){ft"—l[j<p(ty—z)1p1(z)dz]dt}dy

2
= f (ryu)[ft”“lG(ty)dt] dy.

Substituting in (9) and using the expression for y, given in (8), we
find that

i
#u = i [y [ =001
but
P 1
[e-taa = i [¢6 ty)dy = Pya(iy)
F ]

and consequently

I =l i [ (z,u)p, () dy.
2300

Since the integral of ¢, is equal to one and (z,u) is a continuous fune-
tion of ¥ in the appropriate topology, it follows that the limit above
must be equal to 7,u = u. Thus, we have shown that FSu = u.

Now let us show that, up to equivalence of norms, the space A(B, X)
is independent of the choice of the function g used in its definition. For
suppose we have two functions ¢ and denote by A,(B,X), A,(B, X)
the corresponding spaces, #, and £, the corresponding operators S
and &, and &, their left inverses. As we saw, the operator & of 14.2
maps X (B)PB into A(B, X), regardless of the choice of v, and y,. Con-
sequently we may assert that %, maps X (B)@®B into 44(B, X), and
since it also maps X(B)®B onto A,(B, X), it follows that 4,(B, X)
< A4(B, X). Similarly we conclude that 4,(B, X) = 4,(B, X). Con-
sequently 4,(B, X) = 4,(B, X). To show that the norms of these spaces
are equivalent we use the fact that they are both continuously embedded
in B; thus we may congider them as an interpolation pair and form the
space A;+4,, which coincides with 4, and 4, but has a smaller norm.

©
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Since the inclusion mapping 4, - A,+4, is continuous and onto, the
open mapping theorem implies that the norms of 4; and A,+ 4, are
equivalent. The same argument shows the equivalence of the norms of
4, and A4,+4,, whence the desired conclusion follows.

‘We pass now to the proof of 14.1, iii). Given z¢R" we define

) = 3 (’;”) (—1f8(y—je), m>lk—r,
j=o \J:

where § is Dirac’s é-function with support at the origin. Evidently all
moments of u, of orders less than m are zero. Returning to 1) and 2),
given ued(B, X) we set F = Tu. Then & (F,u) = & (Tu,u) = 4 and
1) becomes

[

On the other hand, setting u = u,, (2) becomes

B <clullptelTulxm = clully, 0<ld <7.

@) =1 [ (myw0)dus(y) = ¢ ) (’") (1w = ¢ dyw

=4V}
and (3) gives
I Az < ollull4.

As readily verified from the derivation of (3), the constant ¢ here
can be taken to be independent of z, provided that |¢| = 1. This shows
that the elements u of A(B, X) have the properties described in 14.1,
iii). Thus half of iii) is established.

To prove the second half, let  be an element of B with the properties
postulated. We assume first that r is even and choose any function 7 (2)
infinitely differentiable, spherically symmetric, supported in 2| <1 and
with moments of orders less than m equal to zero. Setting

b
A = —
; a(’!yz' Ty]v=o

7
we define

g(t) = t'ﬂlpllldzz(él"’zu)llz;-
Then geX and, for any z<R", we have

I A (A0l < Jel g (t]e]) -
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From this we obtain

a) | [fauarun@a|,

< [ <o [ R

h |2 <1
g - d : ds
s
= cfs"‘l_'g(ts)ds < afg(ts)w—,q;; < ct”fg(s) T
] b § § 8
On the other hand, since the integral of 5 is zero, we have
m
¢ [ autarapnois = o () <15 (5 e
=\ J Jt

Now it is readily seen that

kit 02 r/2
a(a) = ( 3 )

g=1 7
whence integrating by parts in the last integral we obtain

(11) r f (AP0 (@)l = 1= f (Tg'll,)(p(%z)dz
where

) 1 > m ;1 [z A
o L eI Ea o i
’ j’g(j)( Wgly) = (,Zaz) 7@

Sinee #(2) has compact support, £(z) does not vanish identically
unless 7(z) does, which of course we assume not to be the case. But then
neither ¢(2) vanishes identically, for, since ((z) has compact support,
there exists 2 such that Z(z/m) # 0 and Z(zfj) =0 for 1 <j <m. In
addition, ¢ is clearly spherically symmetric and its moments of order
less than m--r are zero. In fact, since the moments of #(z) of order less
than m are zero, the moments of £(2) of order less than m--» are zero
and consequently the same is true for p(z).

Combining (10) with (11) we find that TueX (B) and that |7 xs
< ofiglx. This concludes the proof of iii) when y is even. ?

‘When ¢ is odd we replace the left-hand side of (11) by

n 6 . 6
N Aw(a—y;fuﬁ“ Vi) 5o e e

J=1
and use the same argument.
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14.3. We begin proving that v, restricted to B is a strongly continuous
group of isometries.

That 7, is an isometry when restricted to B is an immediate conse-
quence of 4. To show that =, is strongly continuous given weB we let
F(&)eF (By, By) be such that F(s) = «. Then zyu—u = 1, F(s)—F (s);
but v, F(§)—F (&) is a funetion in &#(B,, B,) and the function

7, B (it) —F (i)

is & Bg-valued funetion which is uniformly continuous in ¢ and tends
to zero as ©— oo, uniformly in y. Since for each ¢ this function tends
to zero with y we conclude that

Sup |z F (i8) —F (if)iiz, — O

as y — 0. Similarly we obtain
sup [[o F (L+it) —F (1+ i)z — O
¢

whence it follows that 7,7 —F tends to zero in & (B,, B,) as y — 0. Now
this implies that ||r,4—ullz —~ 0 as we wished to show.

Next let us show that X satisfies conditions i) and ii) of 14.1. Let
g(t)eX; then |g(t)| < Ah(t)' k() where |hlx, <1, [kllr, <1 and 7
< 2[glix. Then

i i i t
y d d do ¢ do °
tkfig(o‘)lmo_kZI‘é }.tkfh(a’)l—sk(d)ﬂakzl <2‘|:1’kfh(q)olc—il] [tkfk(a)z’k—j‘j] ;
0 ¢ [] 0

but the expressions in square brackets represent functions in X, and X,
of norms not exceeding a fixed constant and this implies that the first
of the preceding integrals represents a function in X with norm not
exceeding ¢[|gllx. The other integral in 14.1 can be treated in a similar
way. Bvidently X,+ X, also satisties conditions i) and ii).

Let us now write B = B,+B;, X = X,+X, and consider the ope-
rators # and & introduced in 14.2 mapping A(B, X) into X(B)®B
and conversely, and let us assume that & has been chosen in such a way
that & is a left inverse of #. Bvidently X;(B,)®B; (1 = 0,1) and X(B)
@B are continuously embedded in X(B)®B, and A(B;, X;) (i = 0,1)
and A(B, X) are continuously embedded in A(B, X). Assume now that
X(B) = [X,(By), X1(By))s- Then gince # maps A(B;, X;) continuously
into X;(B;)®B; by 4, it also maps [A(By, Xo);A(By, Xy)]s into

[XD(BO)@Buy Xl(B1)®B1]S = [XO(BD)®X1(B1)]S® [Bﬁy Bl]s = X(B)(‘BBy

as the reader will have no difficulty in verifying.
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On the other hand, & maps X(B)®B onto A(B, X) and conge-
quently &£, which is the identity, maps [A(B,, X;), A(By, X;)], conti-
nuously into A(B,X). Thus [A(B,, X,), 4By, Xy)]; is continuously
embedded in A(B, X).

Now, & maps X;(B;)@B; continuously into A(By, X;) (i =0,1)
and therefore it maps [X,(Bo)®By, X1(B;)®B:], = X(B)DB into
[A(B,), X o, A(By, X;)]s. Bub the image of X (B)@B under & is A(B, X),
Consequently

A(B, X) c [A(By, Xo), A(By, X1)ls-

‘We already proved the reverse inclusion and its continuity, and thus
the open mapping theorem yields the desired conelusion.

In the case where X(B) = [X,(B,), X,(B;)]° the result sought is
obtained by using 7 instead of 4 in the preceding argument.
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A ring of analytic functions
by
R.M. BROOKS (Baton Rouge, La)*

This paper is devoted to an investigation of a topological ring of
analytic functions. Specifically, this ring, denoted by R, is the set of funec-
tions analytic on the unit disc with the usual addition and scalar multi-
plication, the Hadamard product for its ring multiplication, and the com-
pact-open topology. The ring R is identified algebraically with a subring
R of the ring of continuous functions on the non-negative integers X,
The operations in R are the usunal pointwise operations, and the structure
of R iy determined by considering its isomorph R.

In Section 2 we are concerned with the problems of identifiying
the maximal ideal space of B and describing the maximal ideals intrinsi-
cally. We first show, using theorems on general rings of continuous fune-
tions, that the maximal ideals are in one-to-one correspondence with
the points of the Stone-Cech compactification pX of X. We next give
an intrinsic deseription of the maximal ideals, using the properties of
the power series expansions of analytic functions. Using this description
we strengthen the previous theorem appreciably and show that the max-
imal ideal space with the hull-kernel topology is homeomorphic to 8X.
Finally, the Hadamard product is used to give a simple characterization
of the dual space of the topological linear space of analytic functions on
the unit dise. This dual space is isomorphic to the set of functions in B
whose radius of convergence exceeds one, which is exactly the intersec-
tion of the maximal ideals corresponding to points of fX—X (the dense
maximal ideals of R).

In Bection 3 we continue the investigation of the maximal ideals
by studying the structure of their associated residue class rings. The
complex number field C is isomorphically embedded in R/M, where M
is a maximal ideal of R. If M corresponds to a point of X, then R/M and
the isomorph C* of C are identical; whereas, if M corresponds to a point
of pX X, then R/M is a transcendental extension of C* having trans-
cendence degree ¢, the cardinality. of the continuum. Moreover, we show,
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