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Hypoelliptic and entire elliptic convolution equations
in subspaces of the space of distributions (I)

by

7. ZIELEZNY (Wroctaw)

The definition of hypoelliptic and entire elliptic convolution equa-
tions can be formulated in a general manner as follows. Let #' be a space
of digtributions.in R", which may be the space 2' of all distributions
or one of its subspaces with a topology stronger than that induced in
#' by 2'. We assume that:

(h,) # containg the space &' of distributions of compact support
as a dense subset.

(h,) #' is a module over the space &' under convolution, that is,
for each T'e #' and Sed&’,8*Te .

(b,) The mapping (8, T) - 8*T of & % #' into ' is separately
continuous.

Furthermore, let 0,(#': ) be the space of convolution operators
in ', i.e. the space of continuous linear mappings of # into #”, which
are convolution operators on & < #. 0.(#': #') can be identified with
a subspace of s’ (see section 1).

We introduce two classes of functions.

(I) &s#' is the set of all ¢>-functions fe #' such that, for any
SeO.(#': #'), the convolution S+f is a C™-function and 8§ — S*f is
a continuous mapping of 0 (#': #') into & — the space of ail ¢*°-func-
tions on R". We show in section 1 that, in fact, S*f is again in &3¢

(II) o' is a subset of £#7'. A function fe &' is in ", if, for
every Se0,(#': #'), the convolution kb = Q+*f can be continued analy-
tically in the complex n-space ¢" and the growth of the resulting entire
function is restricted in the following way. In any horizontal strip Vs
in O" around R" of width b, |h(2)| < |g(R#)|, where ¢ is a function of
#¢' depending on b and Rz is the real part of 2.

Consider now the convolution equation

(1) §+U =F,
where Se0,(#':#') and U, Fe .
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D.efinition. The convolution equation (1) and the distribution §
are said to be hg{poelliptia in s, if all solutions Ues#' are in &3, when
.Fe &;fl’/: Equation (1) and the distribution § are called entire ,ell'iptic
in o', if all solutions Ue o’ are in &/ #’, when Fe o/,

Remark. One can also consider convolution operators of #' into
anotl}er' space of (.ﬁstributions and adapt suitably the definition of hy-
poelliptic and entire elliptic operators o that more general cage.

' EMenpreis [2] characterized completely hypoelliptic and entire
falhptlc convolultion operators in the space 2’ of all distributions and
in thf: space Py of distributions of finite order. In both cases the con-
volgﬁqn operators are distributions of compact support. Recall that
2 dlstr}butlon 8e &' is hypoelliptic in 2, if and only if its Fourier trans-
form § has the properties
IS(&)] = 1€ for £<R, [§] > 4,

3¢

log|¢|

where o and A are constants ().

. If 8§ =P(D)s, w‘here P(D) is a polynomial of derivation and & the

Dirac measure, equation (1) turns into a linear partial differential equa-

gm_n with 00.11812&11.13 coefficients. Then, by a theorem of Hormander [61
is hypoelliptic in 2’, if and only if it satisfies the weaker condi‘uiori

(4) 92| — oo,

(3) ~ o0, when [{] - oo, £ 8(¢) =0,

when || - oo, €0, §(£) = 0.

Condition [4] is, however, not sufficient f i
O 7
_be hywoelliptio i 2 s r an arbitrary Se4&’ to
o On the other hqnd, condition (4) is implied by the requirement:
n t.he space of continuous functions of exponential growth in R", every
solution of the homogeneus equation '

8*xU =0

isa O“-f}lnction.” This result is due to Grusin [4]. It shows that condi-
tion (4) is necessary and sufficient for § = P(D)é to be hypoelliptic in
every sga;ce n&f’, thich contains all continuous functions of exponential
gfowth in E". Arbitrary convolution operators in s#' behave, in general.
differently. In fact, a convolution operator Se &, hypoel]ip’oiia in a spacé

of “Qdistributio: i
of "0 ns of exponent%al growth”, need not to be hypoelliptic

. .
(*) For a detailed study oi the sufficiency of these conditions see Hérmander [8].

icm
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The purpose of this paper is to characterize hypoelliptic and entire
elliptic operators in Schwartz’s space &’ of tempered distributions. In
part IT and part III we characterize hypoelliptic and entire elliptic con-
volution operators in the space %" 1 (= 4,) of “distributions of exponen-
tial growth” introduced by J. Sebastiio e Silva and M. Hasumi. Other
subspaces of 2’ and also partially hypoelliptic and entire elliptic opera-
tors will be discussed in future papers.

1. Convolution operators in #'. We identify the space 0 (#':#")
of convolution operators in #’ with the space of distributions, which
congists of all Ses# such that the mapping T — §+T of &' into #” can
be extended to a continuous linear mapping of #” into #”. The under-
lying isomorphism is clear. 0,(#": #') is thus a subset of #” containing
all distributions of compact support. We introduce in 0,(#': #') the
topology induced by the space £ (#', #') of all continuous linear map-
pings of #’ into itself, provided with the topology of uniferm conver-
gence on bounded sets in #'. Then the injection @ (#': #') - #" is
continuous and the bilinear mapping (8, T) —~ 8*T of O Ky X H'
into ' is separately continuous (*).

For S, 8,e0,(#": #"), the convolution 83+ 8, is also in O.(H': H').
Moreover, the bilinear mapping (8y, Sy) ~ 81* 8; of OL(H": H") X O, (A 258"
into O,(s#': #') is separately continuous.

In fact, if Te &', then

8 %(8,*T) = (S 8,)*T

and the mapping T — Sy*(8,*T) can be extended to a continuous map-
ping of #’ into . This shows that §,+*8, is in 0,(#": #'). The second
statement follows from general properties of the topology of the space
2 (#', #') ([1], chapt. IIT, § 4, Proposition 9). B

From the above we also infer that the convolution of g finite num-
ber of distributions of s, all of which but one at most are in @, (#": #'),
is associative.

Let now f be a function of &5#”, i.e. 2 ¢>-function of 5#', such that
§ — §*f maps continuously @ (#: #’) into &. Then, for any Soe0;(#':
: '), the convolution Sy*f is a O*-function of s’ and the mapping
8 — 8% (8p*f) = (8*8o)*f of o.(s#': #') into ¢ is continuous. Conse-
quently &5’ is a module over 0,(#"': ') under the convolution operation.

In the main part of our investigations the space #' will have addi-
tional good properties. In particular, #' will be the dual of a space #
of type s> in the sense of L. Schwartz ([10], Exposé 10; see also [5],
p. 95-96). We recall the definition.

(*) This continuity holds also, it the topology of O (#': #7) i8 induced by the
space £ (o, #”), provided with the weak topology.
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Let I' be a set of continuous functions on R" such that, for every
compach subset K of R", there is a funetion yel', the values of which
are on K different from zero. We say that a function Qe & satisfies the
condition of growth defined by I if, for any » (r = {rys ooy )y 7y — in-
tegers > 0) and any yel’, the function y(w)D"¢(x) is bounded on R",

A space o is said to be of type o>, if it satisfies the following con-
ditions:

(H,) ## consists of functions pe & satisfying the condition of growth
defined by I

(H,) 2 is a Hausdorff, complete, locally convex topological space
and the injections & — # — & are continuous.

(Hy) A subset Be s is bounded, if and only if, for any r ang yel,
the set of numbers y(z)D"p(a), peB, z<R", is bounded. ‘

(H,) On any bounded set B = I, the topology induced by 4 coin-
cides with the topology induced by é.

If o is a Montel space of type #™ and #' its strong dual, then the
convolution operators in s can be characterized by the following theorem
([10], Exposé 11, Théoréme 1; see also [5], p 103, Lemma 1):

A distribution Se ' is in O, (#': "), if and only f the function
8:y — 5,8 is infinitely differentiable with values in #' and such that

(E'), @y H for every pe o,

Here 7,8 denotes the translation of § by yeR" and {,> ate the
duality brackets.

2. The case #' = ¢'. We recall briefly the main notions and ehar-
acterize the basic spaces for the particular case, when s ig the space
&’ of tempered distributions on R*.

A function f(z) defined on R" is slowly inereasing, if there iz a con-
stant 4 such that

(5) f(@) = 0(le"),

a8 |¢] — co; f(x) in rapidly decreasing, if condition (6) holds for every
negative u.
We denote by & the space of C*-functions on R", rapidly decreas-

ing together with all their derivatives. The topology of % is defined by
the system of semi-normsg

%ilg) = sup (14 laof) Dp(a),
ZeR®, Ir)<l
where &, 1 are integers. & is 5 Montel space of type #>; each function

of & satisties the condition of growth defined by I' = {(1+[af*): %
=1,2,..).

@
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The dual &' of & is the space of tempered distributions. A. distri-
bution T e2' is tempered, if and only if T is a derivative of a continuous,
slowly increasing function. &’ is provided with the strong dualA topology.

We denote by T-¢ or T, ¢(x) the scalar product of a distribution
Tes' and a function ge¥. .

The convolution operators in &' can be easily. characterized by
application of the theorem quoted at the end of seetlonol and another
theorem. of Schwartz ([9], vol. IT, p. 100, Théoré.me I-X, 3°). 'l:hf:y a.pl?ear
to be rapidly decreasing distributions. A d-istn‘t?uplon Se2’ is ‘rap%dly
decreasing, if and only if, for every u > 0, § is a finite sum of dentfatlvcis
of continuous functions, whose products with |w!“ aire l.)ouné.led. in R".
0,(%': &'y is the space of rapidly decreasing distributions introduced

L i vol. II, p. 100).

* 0?[‘1112 ][i?cgu:gier traa’lsﬁ)orm @ of a function pe& is given by the usual
formula

&(5) — fq;(m)e‘z"iE'”dm,

where &2 = & @, +...+&,@, and the integral is taken over R". ¢ is

lso a function of &. . .
* For a distribution 7T e%’ the Fourier transform 7Te¢%’ is defined by

the Parseval-Plancherel equation
Tp-5(8) = Lo p(—a).

Fourier transforms of distributions of (9;(5"’:.5?’) form jﬁhe space
Oy of C°-functions, slowly increasing together with all their demfa-
tives (see [9], vol. IT, p. 99). The topology O,f Oy i8 Isuch that the Fourier
transform is a topological isomorphism of 0,(5": SP’ ) Aonto Ox . Moreo'vetr,
the convolution §*T of Se0,(¥': &) and Te¥' is transformed into
the product S7. .

° II)f Set,(&#: &) and T is a C*-funetion in &, then ‘the_con.volutlon
8+T need not to be a ¢®-function; it iz a tempered distribution. For
illustration we give the following example. o o

Example. Assume that n = 1. We define the distribution Se 0, (%":

&') by the formula
o 1
8= D)5t

7=0

Where §_j; is the Dirac measure with support at @ = —j. Take now
an odd integer % > 2-4-3n. Then the function

fl@) = cos(nk®)

Studia Mathematica, t. XXVIII, z 3
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belongs to &’ and is certainly infinitely differentiable. But the convo-
lution

1
57 €08 ()

\%E

(8xf){w) =

j=0

]

is a composition of the Weierstrass function corresponding to 1/2 and %
and the function k*. Thus i is a continuous function without derivative
at any point of R

One can also show that the convolution Sx*f of Se@,(9': %) and
fe0y need not to be a C®-function.

The set £’ coincides with the space ¢,(%': &') of very slowly in-
creasing C%-functions, which is the dual of 0,(5: &) (see [31, p. 130).
Recall that a ¢*-function f is in @0,(&": &'), if and only if its derivatives
D'f have the same rate of increase as a power of |z|. In other words, there
exists a constant u, such that

D'f(m) = O(Jz|")

ag o] - oo, for all the derivatives.

In order to prove the above coincidence we observe that each func-
tion fe £’ can be identified with the continuous linear functional on
0.(%': '), whose value at 8e0,(#': &) is the value of the convolution
S*f(—x) at the origin.

Conversely, for every Se@,(&': %) and fe0,(5': &'}, the convolu-
tion §*f is a C*-function and the mapping § — * fof 0,(5": &) into &
is continuous. This is a consequence of the following facts:

(a) f can be represented in the form f — Py, where P is a polyno-
mial and g belongs to 91— the space of C®-functions, which are in It
together with all their derivatives.

(b) The mapping § -+ §*g maps continuously ¢,(%': &) into Dy ([9],
vol. II, p. 104).

The set /%' consists of functions fe £9 extendable over C™ as
entire functions, slowly increasing in any horizontal strip V, = {z: |S%]
<b,j=1,2,...,n}. More precisely, an entire function fis in &, if
and only if, in every strip V,,

If@)l < M(1+2"),

where M and u are constants depending on b. -

W(:, have to prove that the set defined above as 7.5’ is a module
over 0,(%': &') under convolution. For that purpose. we use
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PROPOSITION 1. A distribution Te%' has as its Fourier transform T
an entire function f, slowly increasing in any strip Vo, if and only if the
product €Ty s in &', for every weR" (3).

If now T satisfies the “growth condition” of proposition 1, then
so does its product ¢T with any ge®,,. Hence, passing to the Fourier
transform and applying proposition 1, we obtain the desired result.

Remark. Distributions satisfying the “growth condition” of pro-
position 1 form the space @, (#:7) of convolution operatprs 1;11 Ay
(see [B])- O,(A 12 o) is shown in [11] to be the dual of @.(A;: A7), the
space of C-functions ¢ with the following property: There is a constant
u (depending on ¢) such that

Dg(w) = 0(e"™)

as |z| - oo, for all the derivatives.
A function f(z) analytic in the strip ¥, is said to be rapidly decreas-
ing in Vp, if
sup o [ (5)] < oo,
2Ty
for every » > 0.
‘We have )
PROPOSITION 2. A function peS has as its Fourier iransform @ an
entire function f, rapidly decreasing in any strip Vi, if and only if the
product ¢“p(s) is in & for every wek".
Proposition 2 was proved by Hasumi ([5], PropositiOI.x 4).
If f is an entire function, rapidly decreasing in any sfzmp Vs, Fh(?n
obviously fe@,(&': &') and, for every Te¥’, the convolution f+7' is in
&', by proposition 2 and proposition 1.

3. Differential operators of infinite order. In section 5 we use functions
of the form
n
a(e) = [[ (&7 +e7)

j=1

and the corresponding differential operators of infinite order
1 AzAIL DY
. on . = .
o (5m?) =2 2( )

(*) This result is contained in [5] (Proposition 8 and Proposition. 9); it is also
easy to prove it directly.
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here A is a non-negative number, 2 = (2, ..., %,)eC0" and r runs through
all n-tuples of non-negative integers. For any A >0, the operator

1
0, (:2—— D) is defined by equality

1 2\ Dy
n = 9" —
7 (mp)f 2( w) (2!
on a class of O%-functions fe¥’, such that the series on the right-hand

side converges in &’. A
If, for example, the Fourier transform f of f is defined as

N 1

f(‘f) = 7 (E),
where A is fixed, then the series

. (15)27' R

7 D i

converges uniformly in R" and its sum is the constant function = 1.
Therefore f belongs to the domain of the operator o, (;— D) and
271

al(il))f= d.

271

1
The operators o; (5;; D) have the following useful properties:

7

(a) Given any A > 0, a funetion fes/9 is in the domain of o, (2i D)
rix2

; 1 . . R
and the image o; (9—';& D) [ is also in &%’. Moreover, if f is the Fourier
transform of f, then the product ,()f; is in &' and

/\

o (ip)f(w) = a(&)fs-

2ni
(b) Suppose that, for some 10, 8e0,(¥': #’) is in the domain
1 1 ’
of Gl(ﬁp) and al(%D)Se@c(y’:y’). Then, for any Te%’, the

convolution S*7 is in the domain of o, (;-— D) and
. [y Tl:’l.

1 1
O')'(g'n:-ip) (§*T) = G)'(é;;iD) S*7,

The proof in both cases is simple and we leave it out.
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4. Hypoelliptic operators in %', It appears that in & a hypoelliptic
convolution operator is also entire elliptic. Moreover, the latter impli-
cation cannot be inverted: an entire elliptic operator in &’ need not to
be hypoelliptic in &’. Recall that, according to the results of Ehren-
preis [2], the relation between hypoelliptic and entire elliptic operators
in 2 and P is converse.

We now prove a necessary and sufficient condition for a convolu-
tion operator in &’ to be hypoelliptic in &'. We make use of the follow-
ing lemma:

TLEvya 1. Let T be a distribution, whose Fourier transform T is of
the form

(6) T= D' iy
j=1

where the ;& satisfy condition

(7) 6l > 28] > 2

and a; are complex numbers, such that
(8) @ = 0(|;¢")

for some u; then the series in (6) converges in &'. We assert that Te &5,
if and only if
(9) C o =o(E)
for every v = 0.
Proof. Because of (6) and (8),

00

T = Z o 62niz-j§7
f=1

where the series converges in &', If the coefficients a; satisfy condition (9),
then the last series and all its term-by-term derivatives converge uni-
formly in R™. Consequently 7 is a C®-function bounded together with
all its derivatives, and therefore belongs to &%

Conversely, let T be a function of &%”. Then, for every integer
v 20 and every ¢e#,

ezwiu.:c A Tx'QO( —z) >0

a8 |u| — oo, weR"™; here A" is the iterated Laplace operator. Hence, pass-
ing to the Fourier transform, we get

oo

(10) wllE700) 6(8) = D, al;E"pGE—u) > 0,

j=1
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as |u| - co. We fix a function ¢ such that

(1) [p(0) =1
and
(12) p(E) =0 for |§>=1.

Suppose now that condition (9) is not satisfied. Then there is a p > 0
and a positive integer w,, such that

(13)

e eyl = 0

for a subsequence of {a;}, which we may take as the whole sequence
without loss of generality.

We set now ;u = ;£ Making use of (7) and (12) we obtain

D) b0 (i =) = 0.
A
On the other hand, conditions (11) and (13) imply that

lal [ 1@ (0)] > o-

This confradicts the convergence (10). Our assertion is thus estab-
lished.

We are now in a position to prove

TEEOREM 1. If o distribution Se0,(&': ') is hypoelliptic in &', then
its Fourier iransform S satisfies condition (2), i.e. there are constants a
and A, such that

I8(8) = |&"  for E<R", £ > A.

Proof. Suppose that the condition is not satisfied. Then there are
;&EeR" defined as in lemma 1 and such that

(14)
The series

8Go < g

2 ‘S(ff)

J=1

converges in &' to U, say. Hence Ucs”’ and, by lemma 1, U is not in
&%'. But, on the other hand,

]

AN A .
S*U:SU: S(-”E)d(ﬁ)'

F=

Applyipg ‘now inequality (14) and once more lemma 1, we conclude
that 8§+ is in #”. Thus § is not hypoelliptic in &', q.e.d.

it

icm®
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Tor the proof of the convers to theorem 1 we need a parametriz
for 8, i.e. a distribution P such that

(15) §*P = 06—W,

where W is a function with suitable ragularity properties. For our pur-
pose W has to be an analytic function, rapidly dec.reasi.ng-in a horizox}tal
strip Vi, b > 0. However, we impose on W a more restr%ctlv.e a-ssumptmg,
namely, that W is an entire function, rapidly decr‘ea,s%ng in every strip
V,. In that case a distribution Pe0L(&: &') satisfying equation (15)
will be called rapidly decreasing parameiriz for S.

TaEorEM 2. If S e 0,(F: &) satisfies condition (2), then there exists
a rapidly decreasing parametriz for 8.

Proof. Let us take a (®-function p, such that

g <4,
[§] = A+1,

where A is the constant in (2). Then we define the Fourier transform P
of P by the formula

1 for

(16) 0 for

(&) =[

0 for ‘5! <A5
2o z[lm"f"’m for |£l>4.
8(&)

Obviously P is a C*-function, slowly increasing together with all
its derivatives, and so P is in 0.(&": &'). Furthermore,
B2 (&) =1—v(H),

whence, passing to the inverse Tourier transform, we see that Pis arapidly

i i ‘ i Vo= .d.
decreasing parametrix for S with W =, 'q.e - . )
From the existence of a rapidly decreasmg.para{ne’orlx for § it j}flolt
lows that § is hypoelliptic and entire elliptic in &'. For, assume tha

S*U = F, ’
where Se0.(F: &), Ues and Feds (or Fed S’ respectively). Then,
making use of (15), we can write
U Usé = Us(SxP)+T* W
= (U*8)*P+U* W = F+P+U*W.

But F+P is in £ (in #5') and U* W is in &%, so that U is in
&Y' (in HS"). )
Combining the above with theorem 2, we obtain
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THEEOREM 3. If Se,(¥": &) satisfies condition (2), then S is hypo-
elliptic and entire elliptic in ¥'.

From theorem 1 and theorem 3 we can draw the following corol-
laries.

CoROLLARY 1. Condition (2) is necessary and sufficient for S to be
hypoelliptic in S'.

COROLLARY 2. Every hypoelliptic in &' distribution Se0,(#': &) is
entire elliptic in &',

Finally we remark that condition (2) does not guarantee the ex-
istence of a solution of equation (1), even if F is in &. In fact, one can
easily choose the § and F so that the equation has no solution.

5. Entire elliptic operators in &’. As said before, an entire elliptic
convolution operator in %’ need not to be hypoelliptic. We illustrate
this by an example.

Example. Assume again that » = 1. We fix a 1> 0 and set

amn §(g) =

0,(£) is the function defined in section 3. Then § is a function of & and
therefore a convolution operator in &', Being a function of &, 8 is not
hypoelliptic in &’. But

1
(25} (‘2';‘:2 _D) S = 5,
because of (17) (see section 3). If now

8+*U =F
and Feo s, then

= 1 1 1
U=06+U= U;,(Z—m;l)) S*U = U"(Z_ﬁ%D) (8*T) = 0';.(2“7;:1)) Fed s,

This shows that 8 is entire elliptic in 5.

] The a.1m of. thja} section is to prove a necessary and sufficient condi-
tion for a distribution §e 0,(F": ') to be entire elliptic in &".

) LEMM.A 2. Under the conditions of lemma 1, the distribution T is
m AL if and only if

(18) a; = o(e™"H),
for every v > 0.

e ©
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Proof. If condition (18) it satisfied, then the series

o0
2 a g2k
j=1

converges uniformly in every strip V. Therefore T' is in «/%'; moreover,

T is bounded in every strip V.
The proof of the “only if” part runs parallel to the corresponding
part of the proof of lemma 1. Merely the iterated Laplace operator has

1
now to be replaced by the differential operator of infinite order o, (v2~7c—1 D).

The passage to the Fourier transform can be achieved by means of the
formula given in section 3.

Lemma 2 enables us to prove

TrEOREM 4. If o distribution Se0,(5': &) is entire elliptic in &,
then there are constants a and A, such that
(19) B(&) =™ for R (& > 4.

Proof. We proceed similarly as in the proof of theorem 1. Suppose
that condition (19) is not satisfied. Then there is a sequence {;£} defined
as in lemma 1 and such that

(20) 18(;8)] < &7
We take the distribution

U=

e

6(7'5) ’

i
e

i

which is in &’. By lemma 1, U is not in &%, Bub from (20) and lemmfm 2
it follows that the convolution §* U is in /&, its Fourier transform being
of the form

N . ®
§xT =80 = Y 8(:6) 8-
=1
Therefore § is not entire elliptic in &, q.e.d.

TuEOREM 5. If o distribution SeO.(&: &) is entire clliptic in &',
then there are constants o and A such that

(21) Q(ey#0 for &R, |8 =4
and
(22) b [ﬁ] =0y as |£] > oo,

for all the derivatives.
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Proof. By theorem 4, there are constants §

. . . aJ i ! . b
satisfies condition (21) anél # and 4 such that &)

1 0(e
NG () as  |& = oo.

We have to prove the existence of ich is
the deivatioes 1o (29) an a, which is common for ajl

Instead of the function 1/8(&), which i ine -‘ g
sider the function ) el 18 defined for 1¢ > 4y e con-

0 for |g < 4,
1(&) =1 1—9p(&)
—S’(‘*S— for |& >4,

where y(£) is given by e i i

3 quality (16). x(£) is a C®-function, "
2(€) = 1/8(&) for [§] = A1 e
o iEI‘llrzfl; ;vfel‘oblserve that, for any Te0,(#;: #7}), the product 4T is
also o (A'1: o). In fact, suppose that T'e 0, (o'y: o';) and 5T, ¢ 0.(A":
:A). Then, for a sufficiently large 4, Gl
L

03

2

is a tempered distribution, whi ;
e Lemper » Which does not belong to 0 (#y: 7). But

SlTl_z L—yp)T,

8T, =

03 0;

is in @(A7: o)), Tn view of iti i
: . proposition 1 is radicti
assurﬁpmon that § ig entire ellif:»tie in 9”” thia 18 & cantradiotion fo the
et i ane
i coﬁfrzvr {e%}‘ be a sequence of 0%-functiony with compact support
ges in 0,(: ) to the constant function == 1. Then thé

products yp; converge to y i
scalar products ge to y in &. Moreover, for any Te0(#}: A7), the

\ Toxyps = 4T-q;

converge, si (AL oA
(Dc(Jl’i:g ,;é ;)'81]1;(13; gl(‘ ;{ (?c (j{f 10 .%’ 1) Th:LIS the yp; converge weakly in
Consequently e (X711 A7) 18 a quasi-complete Montel space (see [11]).
s Tm;;qjghconverge t0 x in the topology of @,(x;: &) and
e requised g ows, })y the remark in section 2, that y satisfies
nir condition together with all its derivatives, q.e.d
onverse to theorem 5 also holds. We have e

TEEOREM 6. If Se0. (5 .
. . HE i s
it is entire elliptic in yf,< ) satisfies conditions (21) and (22), then

e ©
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Proof. Instead of a parametrix we take now the distribution
Qe@;(y': &), the Fourier transform of which is defined as

) 0 for |& < A4,
Q&) = 1—v(&) ) !
aHiE o =4

where p(&) is the (*-function satisfying equality (16). As an immediate
consequence of this definition we obtain equality

(23) aa(;l-.-v) (§+Q) = 3—W,
4t

with W = ».
Assume now that
S*xU = F,

Ues' and Fes/s”. Then, in view of (23), we can write

U=U*6= U*Ua(‘l‘.-D) (S*Q)+U*W
270

T

= o[, D) (WS W = o5 D) Q)+ THW.
27 2ni

Since the last two terms are in &', we conclude that Ued S,
and thus S is entire elliptic in &'

COROLLARY. Conditions (21) and (22) are mecessary and sufficient for
Se0. (&2 ') to be entire elliptic in &'

Partial differential operators with constant coefficients, entire elliptic
in &, are also hypoelliptic in &'. This follows from theorem 3, theorem 4
and 2 lemma of Hormander (see [7], p. 557, lemma 2). Thus for partial
differential operators with constant coefficients both notions “hypoellip-
ticiby in 9" and “entire ellipticity in #'” coincide.
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Abgolut p-summierende Abbildungen in normierten Riumen
von

A. PIETSCH (Jena)

Fine lineare Abbildung 7' von einem normierten Raum E in einen
normierten Raum F wird absolut p-summierend genannt, wenn es eine
nicht negative Zahl ¢ gibt, so dafl fiir jedes endliche System @, ...,k
von Elementen aus K die Ungleichung

k k
{2 i} < o sup] X e, ay}”
i=1 o<1 =1

besteht.

Im folgenden entwickeln wir eine Theorie (*) dieser Abbildungen,
die auch dadurch charakterisiert sind, daf sie alle p-summierbaren Fol-
gen in absolut p-summierbare Folgen iiberfilhren. Bs zeigt sich, dafl die
absolut 2-summierenden Abbildungen eine sehr natiirliche Verallgemei-
nerung der Hilbert-Sehmidt-Abbildungen sind. Auferdem erweisen sich
die absolut p-summierenden Abbildungen in der Theorie der nuklearen
lokalkonvexen Réume alg tiberaus niitzlich. Unter Verwendung ihrer
Multiplikationseigenschaften erhdlt man insbesondere einen sehr ein-
fachen Beweis des verallgemeinerten Dvoretzky-Rogers-Theorems.

Von fundamentaler Bedeutung ist die Tatsache, daB sich die absolut
p-summierenden Abbildungen durch das Bestehen einer Ungleichung der
Form (1)

|12 < of Uf <@, ayi"du}"”

charakterisieren lassen. Dabei ist 4 ein normiertes positives Radonsches
MaB auf der schwach kompakten Binheitskugel U° des dualen Banach-
raumes . Die wesentliche Idee zum Beweis dieses Kriteriums stammt
von Herrn S. Kwapies, der mich auf einen Satz von Mazur und Orlicz
aufmerksam machte (vgl. [12]).

1. Einfache Eigenschaften der absolut p-summierenden Abbildungen.
Bine lineare Abbildung T von einem mnormierten Raum F in einen
normierten Raum F heiBt absolut p-summierend (1 <p < + oco), wenn

(* Pir p =1 vgl. [7] wnd [8].
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