J. Detraz

82

__ Soit

$$\frac{1}{b_n} \frac{a_n^{p+1} - b_n^{p+1}}{a_n^p - b_n^p} \to \frac{a_0}{a_2}$$

done

$$\frac{1}{b_n} \frac{a_1}{a_0} \rightarrow \frac{a_0}{a_2}$$

ce qui est impossible puisque b_n tend vers zéro.

UNIVERSITÉ DE PARIS FACULTÉ DES SCIENCES, D'ORSAY

Reçu par la Rédaction le 17. 7. 1967

STUDIA MATHEMATICA, T. XXX. (1968)

A characterization of multiplicative linear functionals in complex Banach algebras

by

W. ŻELAZKO (Warszawa)

It was shown(1) that if A is a commutative complex Banach algebra with unit element, then a functional $f \in A^*$ is a multiplicative linear functional on A if (and only if)

$$(1) f(x) \epsilon \sigma(x)$$

for every $x \in A$, where $\sigma(x)$ denotes the spectrum of an element x. In this paper we extent this result onto non-commutative Banach algebras. Our result is based upon the following, purely algebraic fact:

THEOREM 1. Let A be a real or complex algebra with unit e. Let f be a linear functional on A such that its restriction to any subalgebra of A generated by single element and containing e is a multiplicative linear functional. Then f is a multiplicative and linear functional on the algebra A.

Proof. By our assumptions we have

$$(2) f(e) = 1$$

and

$$f(x^2) = f(x)^2$$

for every $x \in A$. Consequently,

$$f[(x+y)^2] = [f(x)+f(y)]^2,$$

or

$$f(xy + yx) = 2f(x)f(y)$$

for every $x, y \in A$. It follows that if we set

$$x \circ y = \frac{1}{2}(xy + yx)$$

we obtain a (non-associative) multiplication on A such that

$$f(x \circ y) = f(x)f(y).$$

⁽I) See J.-P. Kahane and W. Zelazko. A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), p. 339-340.

85

Consequently,

$$f[(x \circ y) \circ z] = f(x)f(y)f(z),$$

which is equivalent with

(5)
$$f(xyz + zxy + yxz + zyx) = 4f(x)f(y)f(z),$$

 $x, y, z \in A$. It is also

$$f[y \circ (z \circ x) - (y \circ z) \circ x] = 0,$$

which is equivalent with

$$f(xyz + zyx) = f(zxy + yxz)$$

for any $x, y, z \in A$. From (5) and (6) it follows

$$f(xyz + zyx) = 2f(x)f(y)f(z),$$

 $x, y, z \in A$. Substituting in (7) x = z, we obtain

(8)
$$f(xyx) = f(x)^2 f(y), \quad x, y \in A.$$

We are going to show that

$$(9) f(xy) = f(yx)$$

for every $x, y \in A$. Suppose, to the contrary, that for some $x_0, y_0 \in A$ we have

$$f(x_0y_0-y_0x_0)=C\neq 0.$$

Taking here y_0/C instead of y_0 , we may ssume

$$f(x_0y_0-y_0x_0)=1.$$

It is clear that relation (10) also holds true if we take instead of x_0 any element of the from $x_0 + ae$, where a is a scalar. We may, therefore, assume also that

$$(11) f(x_0) = 0.$$

By (4) and (11) we have

$$f(x_0y_0) + f(y_0x_0) = 0,$$

and so, by (10),

(12)
$$f(x_0 y_0) = \frac{1}{2}, \quad f(y_0 x_0) = -\frac{1}{2}.$$

On the other hand, by (3), (8), (10), (11) and (12) we have

$$\begin{split} 1 &= f[(x_0 y_0 - y_0 x_0)^2] \\ &= f[(x_0 y_0)^2 + (y_0 x_0)^2 - x_0 y_0^2 x_0 - y_0 x_0^2 y_0] \\ &= \frac{1}{4} + \frac{1}{4} - 2f(x_0)^2 f(y_0)^2 = \frac{1}{2}, \end{split}$$

which is a contradiction proving formula (9). By (4) and (9) we obtain now the desired result

$$f(xy) = f(x)f(y)$$

for every $x, y \in A$.

If A is an algebra without unit, then considering the algebra A_1 obtained from A by adjunction of an identity, we see that if a functional f satisfies on A the assumptions of theorem 1, then its extension onto A_1 , defined by f(e) = 1, also satisfies these assumptions. So we have

COROLLARY 1. The conclusion of theorem 1 is also true for an algebra without unit element.

We may formulate now our main result:

THEOREM 2. Let A be a complex Banach algebra. Then a functional $f \in A^*$ is a multiplicative and linear functional on A if (and only if) (1) holds.

Suppose that (1) holds true. We may assume that there is a unit element in A. Otherwise we would consider an algebra obtained from A by adjunction of a unit element e, and an extension of f onto this algebra, given by f(e) = 1, which clearly satisfies relation (1). Since for any subalgebra $A_0 \subset A$ we have $\sigma(x) \subset \sigma_0(x)$ for any $x \in A_0 \subset A$, where $\sigma_0(x)$ denotes the spectrum of x in A_0 , we infer, by theorem 2 of cited paper, that the restriction of f to any commutative subalgebra of A is a multiplicative functional on this subalgebra. The conclusion is now a consequence of theorem 1.

The same reasoning as in cited paper leads to the following

COROLLARY 2. Let A be a complex Banach algebra with unit element. A subspace $X \subset A$, codim X = 1, is a maximal two-sided ideal in A if it consists of non-invertible elements.

This condition characterizes all maximal two-sided ideals of codimension 1.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

Reçu par la Rédaction le 17. 7. 1967