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1. Introduction. A linear operator from one Hilbert space to another
is absolutely p-summing (1 < p < oo) if and only if it is & Hilbert-Schmidt
operator. This result was proved for p =1 by Grothendieck [1], for
1<p<2 by Pietsch [4], and for 1< p < co by Pelezyriski [3]. The
purpose of this paper is to give another proof of this resuls, using methods
distinet from those of Pietsch and Pelczytski, but related to those of
Grothendieck. These methods enable us to determine the best possible
constants that occur in the fundamental norm inequalities.

Let us state the main results of this paper in detail. It will be con-
venient to state the essentially finite-dimensional case first. Let I, denote
the identity map from & real or complex n-dimensional inner product
space into itself, and if k>0 let

I = [ sin*0as.
[

TEEOREM 1. Let B and F bé real or complew Hilbert spaces, of which
at least ome 4s finite-dimensional, and let n = min (dimE, dimF). EBvery
continuous linear operator from E into F is absolutely p-summing, for
1<p < oo, and is a Hilbert-Schmidi operator. For each p (1 <p < o)
the absolutely p-summing norm a,(T) is equivalent to the Hilbert-Schmidt
norm o(T). Let kg, and Kgpn be respectively the largest and the smallest
positive constants for which

kg pna(T) < 8,(T) < K pn o(T)
for all T. Then
(i) koo = Kogn =1 (-6., 0(T) = ay(T) for all T).
W) If 1<p <2, hgpn =1, and Eqp, = (L) V.
(i) If p >2, kopn = &(L)[Vn, and Eg,, = 1.
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(iv) If B and F are real,

n—1 1p
5
L) = | 55—
i1
in particular, a,(I,) = nL;t,.
(v) If E and F are comples,
2n~2 %4
JI%
) = | g | 5
Lp+i
i=1

in particular, a,(1,) = 2L;) .

If T is a continuous linear operator of finite rank from a Hilbert
space B into a Hilbert space F, and if T, is the operator which it induces
from E/T~'(0) onto T(H), then it is easily verified that a,(T) = 0, (Ty)
agd. that ¢(I) = o(T,). Thus the first two statements of Theorem 1 are
trivial, and the interest in Theorem 1 lies in the evaluation of the constants.

Let us now state the main, infinite-dimensional, result.

) TEBOREM 2. Let B and T be infinite-dimensional real or complex
Hilbert spaces. A continuous linear operator T from B into F' is absolutely
psumming, for any 1<p < co, if and only if it is a Hilbert-Sehmidt
operator. The Hilbert-Schmidt norm o(T) is equivalent to the absolutely

p-summing worm a,(T). Let kap and Kg, be respectively the largest and
the smallest positive constants for which

kepo(T) < a,(Ty < Kg,(T).
Then ke, = limkg, , and Kgp =lmKg, ,.
N->00 n—o00 =

In particular,

() kgp =EKg, =1 (ie., o(T) = ay(T) for all Hilbert-Schmidt oper-
ators T). :

() If 1<p <2, Ry =1; if p>2, Ky, =1.

(i) If B and F are real, Koy =Vn/2; if B and F are complex
Kq, =2/Vx.

(iv) If p is an integer greater tham 2, and B and I are real,

kg =_}:(ﬁL_ )1/27.
"D, 1/211: i i—1 bl
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if B and F are complex,

1 2 1p
g =ﬁ(n Li) )
=1

Note that kgp—0 88 p — co; thus the collection of all absolutely
p-summing norms is not uniformly equivalent. Grothendieck [1] showed
that if 7 and F are real, Ky, = V772 Note that the constants are different
in the real and complex cases; this appears to have been overlooked by
Grothendieck.

The proofs of Theorems 1 and 2 will be broken down into a collection
of Propositions. The proofs of these depend only upon the elementary
properties of Hilbert-Schmidt and absolutely p-summing operators,
together with the following fundamental Theorem ([4], Theorem 2, and
[2], Proposition 3.1):

THEOREM A. Let M be a weakly closed subset of the unit ball of the
dual of a mormed space E with the property that

] = supla’ ()|
weM
for all » in B. If a linear mapping T from H into a normed spact F is abso-
lutely p-swmming, there is a positive Radon measure u on M of total mass

1 such that

172l < (a, (TP [ 1o ()7 du (@)
M

“for all z in B.

Conversely, if T is a continuous linear mapping from B into F, and
if there emists a positive Radon measure u on M of total mass 1 such that

I1Tz)P < 07 [ 1o/ (@)IP dp(a’)
M
for some constant ¢ and oll x in B, then T is absolutely p-swmming, and
a,(T) < C.

9, Wallis's formula. We shall need an elementary result on integrals
which was originally obtained by Wallis [5]. For completeness and con-
venience, we shall establish it here. :

Let

L, = [ sin"0ae.
, g
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Integrating by parts, we obtain nL,

Thus
I (em-1)@m—3)..1 2=
T 2m(2m—2) ... 2 2m Ly

and

I om(dm—2)...2 2x

T (2m+1)(2m—1) ... 3 (@m+1) L,
Since Ly > Lom = Ly it follows that (2m+1) Li, > 2= > 2mLs,

and (@m+2) L3y > 2% 2= (2m4-1) Loy

From these inequalities it follows that VnL 1 V2m as m - oo,

3. The absolutely p-summing norm of operators of finite rank. We first
determine the absolutely p-summing norm a,(I,) of the identity map

I, from an n-dimensional inner-product space E™ onto itself.
ProposITION 1(1). If B" is real,

n—1 N\ Up

17

a (L) = | = for 1< p < oo.

[ Zoris
i=1

Proof. We follow the notation used by Lindenstrauss and Pelezyhiski
[2]; we denote the real (n—1)-dimensional sphere {zeE": |lz|| = 1} by 8%,
and denote the normalised rotation-invariant measure on. 8 by m. Suppose
that u is & measure of total mass 1 on S* satlsfylng the conditions of

Theorem Aj ie.

9P < (ap (L) [ Key o> du(a)
S‘n

for all z in E™. Let UeO(n), the group of n X n orthogonal matrices.

Then if weE",

ol = | UallP < (a, (7)) fl(Um,m)l”dy(m)
= (a, (L))" f <o, U ey P du(a)
= %(I,J [ Ka, @' duy (@),
! /n

(*) This result is due to Gordon [6]; his proof is the same as ours.

= (n—1)L, ,forn =2,3,...

icm
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where ug is the measure on 8" defined by

[ 1@ dpy (@) f U ) dp (o)
ot

for all fe0(8"). Let » = [ uydh(U), where h is the normalised Haar
O(n)

measure on O(n). Then

»(8" = [ uy(8"an(U) =1,

O(n)

go that » = m, since » is clearly rotation-invariant. Further, since

ol < (a, (TP [ K, @' dpy (o),
8N
we have

lel? = [ lelPdu(T) <

O(n)

It therefore follows that

(a,(L)? [ KKm, &> P dm) ().
Foig

a,(I,) = inf{d: ol < # [ Kw,a'>Pdm(a’) for all winE"}.
i

But since m is rotation-invariant, this means that
’ V)Y
a,(L) =( [ K, @'>Pam(a)) ™",
&

where 2 is any unit vector in ", and we can choose an orthonormal basis
in such a way that # = (1,0, ...,0). In order to evaluate the integral,
we use polar coordinates ¢ = (¢y, ..., ¢,_;) (¢f. [2], p. 278). For any integra-
ble function ¢ on 8™ we have the formula

18”1-1 f 9(@' () (¢) de,

m-1

[9(@)dm@) =
sn

where dp is Lebesgue measure on the (n—1)-dimensional interval

I ={p:0<p, <2m; 0< ;< for 1 =2,3,...,n—1},
and. where
- n-1 n—1
Ip) = [ i g), 18" =2[] Lis,
=2 i=1
and

@'(9) = (@i(p), .-, Tl9))-
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In particular,
n~1
(@, 2’y =ai(p) = [ [ sing;,
=1
so that

I ] p+itl

[ Hxs1nw=f(¢)d¢—— S

m=l g H

COROLLARY. If p is a positive inieger,

»
1 1 L,
i=1 .
» ’

I l Ln-l—'i—z
g=1

in particular, a,(I,) = wL;*, and az(I Vﬁ(z)
ProposiTION 2. If B™ s complex,

[ K, @"yPam(z’) =
8|n

1p

Ay (In) =

2n—2 1p
AIE
4(L) = | o

n Ly
i=1

Proof. E" is isometrically isomorphic to a real 2n-dimensional space

for 1< p < oo,

F"; we denote the real (2n—1)-dimensional sphere {x<E": ||o|| = 1} by

§*, and denote the normalised rotation-invariant measure by m. Then,
arguing. as in the real ease, ‘

a,(L) =( [ Ka, a>Pamia))™",

s

where' @ is any unit vector in B". If we choose complex orthonormal
coordinates in such a way that » = (1,0,...,0), and if 2'¢S8* has real
polar coordinates (py, ..., gs,_;), then

2n—1 2n—1

{w, 2" ~H 8111%—1—4,005%” sing,,

q=]1

(*) This vesult is due to Mayer [7]; his proof is father different.
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so that
2n—1
Ka, @3] =[] sing;.
i=2
Thus
. 2n—1 ]
[ e, a>Pam(e) = 187 [ [] " g)dp
sz =l i=a
am—1 on—2
o] T ] 2o
i=1

2n~ = Ton—2

[z %

i=1
COROLLARY. If p is o positive integer,

v
[]%
aL) = S— ]

l ] LG—2+'i.
=1

in particular, a;(I,) = 2Ly and ay(Il,) = V.

We now consider an invertible linear operator T mapping an n-dimen-
sional inner product space E" onto an n-dimensional inner product space F™.
We can find orthonormal bases (i, ..., 6,) for B* and (fi,...,f,) for
F" such that T is given by Te;, = 4,f;, where each }; is real and positive.

ProposITION 3. If E" and F" are real,

1jp

a(T) = a,(L) [ (Bot+...+BaPRam@]”  for 1<p < oo
sn

Proof. There exists a meagure z on S™ of total mass 1 such that

(@, (T f1<w &P du ()

T2l < for all » in E™

If UeO(n),
1T TP < (a, () f KT, @y dp(a’)

= (g (D) [ K, 2" >P dpg()
8|

Integrating over O(n), we obtain

[ 1T TalP an(

U) < (a, (D)) f |, @' D[P dm (') .
O(n) S
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Since
[ITTzpan(m) = [ ITyiPam(y)
O(n) i

= [(Bal+...+22ak)" dm (a)
sn .
and since

[ Ke,a>Pam(a’) = (a,(L,)7,
s
it follows that
a,(T) > a,(L,)( [ (Bal+ ...+ Had)? dm (o))",
s

Now let E" be the (n—1)-dimensional sphere {z<F™: (¢ =1} and
let‘ m ‘a.ga_in denote the rotation-invariant measure on R". T'(R") is an
elhpsz).ld in F, and T" maps B™ homeomorphically onto 7"(R"). The
mapping T’ defines a measure x on T'(R"), given by

fle)dp(w) = I'y')dm(y'
mgﬂ) anf( y')am(y')
ﬁzpfegf(rl;%rz); #(T"(B*) = m(R") = 1. The mapping K: o' — o’ [[lo’]|
8 omeomorphically onto 8™, and i
pog WLl y ‘ , and we define a measure » on
f(m')d')’ ml i K 7 1D ’
Jr@a@) ol TE I Pau(e)  for fe0(s").

In particular, for fixed # in BE",

[ Ka, a"yP s (')

s|n

It

[ Ke, Bo">P|o'|Pdu(o’)
(R

l

[ Ka, o5 du(e)

(&)

= [ Ko, T'y>Pam(y’)
R

= [ KTw,yPdm(y")

Rrn
= [Tl (@, (L,)) 7,
by Proposition 1. From this it follows that

4, (T) < 0, (L)« (v (™).
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Now*
p(8") = [ [eIPdu (e
/(&)
= [Ty am(y")
Rn

= [yt ..+ RydPRam(y).

Rn
This completes the proof of the proposition.
In the same way, it can be shown that
PROPOSITION 4. If B" and F™ are comples,

ay(T) = a (L) [ (B4 Ba . B am (@) for 1<p < oo
L g

The details will be omitted.
PROPOSITION 5. Let T be a continuous operator of finite rank from
o Hilbert space B into a Hilbert space F.
a, (L)
o(T).
Vn

M) If1<p <2, o)<l <
(it) o(T) = as(T)-

(iid) If p > 2, %) Ly < 0, (T) < o(T).
Vn

‘We may suppose that 7' is an invertible linear operator mapping

an n-dimensional inner-product space E" onto an n-dimensional inner-

product space F", as was remarked after the statement of Theorem. 1.

Thus (i) follows directly from Propositions 3 and 4. If 1<p <2,

a,(T) > a,(T) ([4], Satz 5), which establishes the first inequality of (i).
Also (in the real case)

([ (Bait...+ By an@)” <( [ Glott ..+ Bat)dm(a)

SN sn

=%(§jzﬁ)"’ ——= o),

i=1

1/2

since the inclusion mapping I*(8%, m)— L¥(8", m) is norm-decreasing.
This gives the second inequality of (i). The complex case, and (iii), are
proved similarly. -

CoROLLARY. (i) If 1< D <2, a,(L)[Vn < ay(lyyn)[Vn+1.

() If p>2, ap(L)/Vn> ay(Ly)[Vn+1.
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Proof. (i) Let Z = I be an (n-1)-dimensional inner-product space,
and let (¢, ..., 6,,,) be an orthonormal basis. If 0 < ¢ <1, let B, be the
linear operator from E into F defined by setting

T =¢ for1<<i<n,
T.e, (1— 62)1/2 bny

T.t,., = ¢e,.

i

Then ¢(T,) = Vn, so that

(In 1)!
a,(T,) < %;—_:—1-,' V.

Let P =lmT,. P is a partial isometry of rank = from F into F,
-0

&> N
so that ,(P) = a,(I,). Since a, is a continuous norm on L (¥, F), the
result follows. The proof of (ii) is exactly similar.

Remark. These inequalities can also be deduced, for integral values
of p, from the formulae in the corollaries to Propositions 1 and 2. Direct
verification, for non-integral p, seems to be more difficult.

Proofof Theorem 1. Theorem 1 now follows eagily from Propositions
1-5, and their corollaries. Suppose that 1 < p < 2, and that T is a con-
tinuous linear operator of rank ». Then

T,
o(T) < a,(T) < &15'—) o(T)  (Proposition 5)
T
I
g%_—") o(T) (Corollary to Proposition 5).
n

On the other hand, if T is an operator of rank L, o(T) = a,(T) =Ty,
while if T'is & partial isometry of rank y a,(T) = ay,(I,), whereas o (T) = Va.
Thus, the constants are best possible. The proofs in the cases p =2 and
P >2 are exactly similar.

4. The infinjte-dimensional case. First we need two easy results,
whose proofs we shall give, for the sake of completeness. Let R(H, F)
denote the space of continuous linear operators of finite rank from B
into 7, let S(H, F) dencte the space of Hilbert-Schmidt operators. from
E into P, and let 4,(B, F) denote the space of abgolutely p-summing
operators from ¥ into F. Let ||| denote the -operator norm of 7.

PROPOSITION 6. 4 continuous linear operator T from B into F is
« Hilbert-Schmids operator if and only if

o'(T) = sup{o(8T): 8 <R(F, F), [§] < 1} < oo.

icm
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Further o(T) = o’ (T).
Suppose first that TeS(H, F). Since o(ST) < |8]o(T), o (T) < o(T)
< oo, We can write

To = D' 1<, e)f;,
=1

where (¢;) and (f;) are orthonormal sequences in # and F respectively,
and

) Il = (o ()

=1

Let
Py = <Y, fidfi-
i=1

Then P, <R(F, F), |P,] =1, and
(o@T) = 3 15P%
i=1

80 that o(T) = o' (T). Conversely, suppose that ¢ (T) < oo. If (e;) and
(f;) are orthonormal sequences in E and F respectively, and if

Py = 3 <y, fofis
=1
then .
D) KTy f)l* = 3 KP,Tey, 1P < o (T,
q=1 i

=1

8o that TeS(B, F). o
PROPOSITION 7. A continuous linear operator T from E into F ds
absolutely p-summing if and only if

ay(T) = sup{a, (ST): SR (F, F), 18] <1} < co.
@
Further a,(T) = a,(T). '
Suppose first that Ted, (B, F). Since a,(8T)< |]§’1|a,,(1‘), a, (T)
< a,(T) < oo. Given & > 0, there exist vectors #y, ..., , in B such that

f 1T = (o (T)P— &) sup ( 3 K, adP);

= <1 {=
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let- P be the orthogonal projection of F onto the span of Tw, ..., Tw,.
Then PTw, = Ta; for each 4, so that (a,(PT)P > (a,(T)P—e. Since & is
arbitrary, a,(T) = a,(T). Conversely, suppose that a,(T) < co. Given any
finite seb #,, ..., ®, of vectors in H, let P be the orthogonal projection.

of F onto the span of Tz, ..., Tz,. Then

SiTalr = 3 1PTap

< (o, (PP sup ( 3 <y, o317

<1
n
< (a, (T))? sup [Km;, adl?).
(o(T) uausx({; ad )

Thus, T e 4, (B, F).

Proof of Theorem 2. It follows from Propositions 6 and 7 that
in order to prove the first two statements of Theorem 2 it iy sufficient
o show that the norms ¢ and 4, are equivalent on E(H, F). Suppose that
E and F are real (the proof in the complex case is exactly similar). ¢ and
a, are of course equal on R(H, F). Next, it follows from Proposition 5
and its corollary that, if 1 < p < 2,

o(T) < ,(T) < (nm %) o(T).

M—>00 n

But a,(L,) < ay(I,), and

: a’l(In) 1/—‘;
lim —— =7/ Z.
o Vi 2

Thus ¢ and a, are equivalent on R(H, F). Similarly, if p > 2,

(g%) o (T) < 6, (1) < o(T);

further, if % is an integer greater than p, a,(I,) < a,(I,), and

() k .
i 22 = ([ [ '

so that o and a, are again equivalent on R(E, F). Thus §(H, F) = A (H,-F)
for all p > 1, and the norms o and g, are equivalent on S(B, F). Igina‘]ly
the fact that the constants in Theorem 2 are best possible follows ea,silsi
by considering operators of rank one, and a sequence of partial isometrices
of finite, but increasing, rank, )

icm
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