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Abstract. The class of Banach spaces X such that every bounded linear operator
from every Zo.-space into X is 2-absolutely summing is investigated. It is shown that
this class is larger than the class of all subspaces of #;-spaces, and that it contains
all quotient spaces of subspaces of &,-spaces for 2 > p > 1. A complete characteriza-
tion (in terms of an unconditional basis) is obtained in order that a Banach space
with an unconditional basis belong to this class. In this case it is shown that under

a natural uniformity condition the I,-product of spaces belonging to this class also
belongs to the class.

Introduction. The present paper is devoted to a study of Banach
spaces X with the property
(*) every bounded linear operator from ¢, into X is 2-absolutely summing
equivalently (cf. Section 2)

every bounded linear operator from every L -space into X is 2-absolutely
summing, in symbols

Iy(Zs X) = B(Zoos X)-

Another equivalent condition says that every unconditionally con-
vergent series in X is Hilbertian, ie. it is the image by a linear operator
of an unconditionally convergent series in a Hilbert space {ef. Corollary 2.1).

One of the basic facts of the theory of absolutely summing operators
is a result essentially discovered by Grothendieck [6] which says that
the space L, has the property (*). Hence every subspace of an #,-space,
in particular every J,,—spajce for 1 < p < 2 has the property () (ef. [16])-
In the present paper we show however that the class of Banach spaces
satisfying (#) is larger than the class of all subspaces of #,-spaces {cf.
Examples 5.1 and 5.2).

In Section 3 we deal with Banach spaces satisfying (*) which have
unconditional bases or more generally what we have called local uncon-
ditional structures (cf. Definition 3.1). For such spaces the picture is rather
clear. We establish several necessary and sufficient conditions in terms of
unconditional bases of a space in order that the space satisfies (f")- Qne
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of our conditions asserts that a Banach space X with an unconditional
basis (e,) satisfies (x) iff every operator from ¢, into X which takes the
nth unit veetor of ¢, into a multiple of ¢, for n =1, 2, ... is 2-absolutely
summing. It is also shown that, roughly speaking, products in the sense
ofl,for1<p<2 9 of Banach spaces satisfying uniformly () also satisfy (x).

In Section 4 we study a property which is stronger than (). This
property however is preserved under passing to quotient spaces which
is not the case for the property (*). The new property is also related to
some properties of Gaussian random variables with values in Banach
spaces (cf. [14] and [4]). Our technique unables us to show that every quo-
tient of a subspace of an % -space for 1 < p < 2 has the property () and
to prove some further results on I,-products.

Finally in Section 5 we discuss some examples and some open problems.

1. Notations and preliminaries. We begin with some notation. Let
X and Y be (real or complex) Banach spaces. We denote by B(X, ¥)
the space of all the operators from X into ¥ with the usual operator norm

iT) = sup [|Txj. By “operator” we always mean a linear and bounded
izl
operator.

Let +oco>p=
absolutely summing (cf. [16]) if there is a 0 < 40

(Z | T; H“’) P<o sup (i"

g>=1. An operator T: X — Y is said to be (p, ¢)-
such that

ig) 1/a

(L.1)

*<1
for every finite sequence &y, ®;,...,%, InX (» =1,2, ... ), where the
supremum in (1.1) is taken over all linear functionals #* from f the unit
ball of the dual X* of X. The lowest upper bound of those C for which
(1.1) holds we denote by =, ,(T) and we call it the (p, ¢)-absolutely sum-
ming norm of 7. The set of all (p, ¢)-absolutely summing operators from
X into ¥ (for a fixed pair (p, ¢)J is a Banach space under the norm
7,,4(-) with the usual operations of addition of operators and multipli-
cation by scalars. This space is denoted by 7, (X, ¥). If p = g we say
“p-absolutely summing operator” instead of “(p, p)-absolutely summing”,
and we use the notation ,(T) instead of ,,(T) and IT,(X, ¥) instead
of I1,,(X, X).

An operator T: X — Y is said to be Hilbertian if thele exists a Hil-
bert space H and operators A: X — H and B: H — Y such that T = BA.
The pair (4, B) with this property is called a Hilbertian factorization of
T. The Hilbertian norm of a Hilbertian operator T': X — Y is defined by

(1.2) MT) = inf 4] IB] = inf (1A I+ 1BID) 2],

where the infimum is taken over all possible Hilbertian factorizations

of T. The set of all Hilbertian operators from X into ¥ is a Banach space .

©
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under the norm A (-) and with the usual operations of addition of operators
and multiplication by scalars. This space is denoted by H(X, ¥). The

(p, q)-absolutely summing operators and the Hilbertian operators form

. Banach ideals (ef. [25]). In particular they have the following properties.

1) If Tell, (X,Y) (resp. TeH(X, X)), then for all Banach
spaces X; and Y, and all operators S;e B{X,, X) and S,e¢B(Y, ¥,)
we have 8,T8,¢lITl, (X, ¥,) (vesp. 8,T8,¢ H(X,, ¥,)) and Tp (8 T'8,)
< n]),q(T) 1SSl (xesp. R(S,T8;) < I(T) {8, 11I8.l).

2) 7y (T) = |IT|| for Tell, (X, ¥); 2{T) > |IT|| for Te H{X, ¥).

3) If 1< py < Py < oo, then I, (X, Y) « II,,(X, ¥) and =, (T)
an(T
4) 1< p <2, then I1,(X, ¥) « H(X, ¥)and m,(T) > h(T) (cf. [23]).

The following Proposition is an easy consequence of the Closed Graph
Theorem:

ProrosrrioNn 1.1. Let I,(X,Y), and I,(X,Y) be Banach spaces
whose elements are operators from X into Y and the operalions of addition
and multiplication by scalars are defined to be the usual addition of operators
and the usual multiplication of operators by scalars. Let ||-|l; and ||- |5 denote
the norms in I,(X, Y) and I,(X, Y) respectively. Then the condition
1.3) 1T < 1T, for TeI,(X, ¥) and I,(X, ¥) = I,{X, ¥)
implies the emisience of a K with 1< K < 400 such that
(1.4) 1T, < (Tl < KT, for Tel (X, ).

DEFINITION 1.1. Under the assumption and the notation of Prop-
osition 1.1 we shall write

L(X,Y)z LEX,Y)
iff I,(X, Y) = I,(X, ¥) and there exists a K > 1, such that
17, < ENTy-

Given Banach spaces X and Y and € < +oo, Y is said to be
C-isomorphic to X if there is an invertible linear operator T:X 5 Y
with |22 < O ‘

Let X be a Banach space and let A be any non empty set. Tet 1< p .
< co. By l;,, (X) we denote the Banach space of all functions z(-): A= X
such that |w(-)l, < +oco, where

(Y le(@) for 1<p < oo

aed

EYT0, <

”-I'()H_p = sup |z (a)] for p =

aed
The operations of addition and multiplication by scalars are defined
pointwise,
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If X is the field of scalars we write l;’,1 instead of Z;t(X ). If A is a finite
set, say A has n-elements we write I;;(X) (resp. I; for X being the field
of scalars). If A is the seb of all positive integers we write ,(X) (vesp. 7,).
By ¢, we denote the subspace (= closed linear subspace) of I, consisting
of the convergent to zero sequences.

Let 1< p< oo. We recall (cf. [16], [17]) that a Banach space X
is said to be an &,-space, written X ¢.%,, if there exists a 4 > 1 such that
for any finite dimensional subspace E of X there exists a finite dimensional
subspace F of X such that F > B and F is A-isomorphic to 1327,

2. General equivalences. The equivalences given below are in fact
known and can be deduced from results already stated in various papers
(ef. [11], [12], [23]). .

PROPOSITION 2.1, Let X be a Banach space. Then the following conditions
are equivalent

(i) [Ty(¥, X)

(ia) IT5(Y, X)

= B(Y, X) for every Ye %,
= B(Y, X) for some infinite dimensional Y%,
(i) there ewisis K > 1 such that 11, (I, X) = B(ly, X) forn =1,2, ..,
(i) (X, X**) = B(Y, X**) for every YeZ,,
(i) H(Y, X) = B(Y, X) for every YeZ,,
(i) H(Y, X) = B(Y, X) for some infinite dimensional Y e %L,
(iiy,) there ewists K > 1 such that H(I%, X) = = B(I%, X) forn =1, 2
(uc) H(Y X*) = B(Y, X*™) for every Ye %L,
ili) H(X*,Z) = B(X*,Z) for every Ze %,
(111&) H (X*, Z) = B(X*, 7) forw some infinite dimensional Ze%,,
(iiiy) there ewists K > 1 such that
H(X*, B) g BX*, )
(i) H(X**,7) = B(X™, 2)
(v) (X, 1) = my (X, 1),
(iv,) there exists K > 1 such that
(X, 1) 5 IT,(X, 1)
(ivy) II,(X, Y)
space Y,
(v) there emists K > 1 such that

form =1,2,...,
for every Ze %,

for n=1,2,...,

=II,(X,Y) for some infinite dimensional Bamach

m

5:(2 I ()] ) < K(E ll Hz) sup

=1 = =1

[ é‘;zu)’m,-ll

for @z, 2y, ... ...,wmmX (n,m=1,2,...).

: * *
)y &y i X and af, @,

©
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Proof. The implication (i) = (i,) is trivial. To prove that (L) = (ip)
observe: 1) it II,(Y, X) = B(Y, X), then {by Proposition 1.1) 1I,(Y, X)
=B (Y, X) for some ¢>1, 2) if P is a projection in ¥ and ¥, = P(Y)
and i 17,(Y, X) < B(Y, X) then [1,(¥,, X) 5, B(Y, X), 3) if Ye2,
for some p with 1 <p < co, then there exists a constant K, < +o0
depending only on ¥ such that for every finite dimensional subspace
Ec Y there exists a finite dimensional subspace Y, < ¥ such that
Ec X,; Y, is K;-isomorphic to 1371 and there exists a prejection
P: Y e Yy with [P < K, (cf. [17 1. The implication (i,) = (i;) follows
from the fact that (i,) and the Local Reflexivity Principle [17] imply that
I, (e, X**) B, X*) for n =1,2,
Now the observatlon 3) mentioned a.bove implies (i,). The 1mp11cat10n
(i,) = (i) follows from the fact that (i,) implies that I7,(¥, Z) = B(Y, Z) for
any subspace Z of X** in particular for the cannonical image of X in X**
The proof of the implications (ii) = (ii,) = (iiy) = (ii,) = (i) and
= (iil,) = (ifi,) = (iii,) = (iii) is analogous.
(i) = (ii). Use the inclusion IT,(Y, X)< H(Y,X) < B(Y, X) for
all Banach spaces Y and X.

(ii,) = (iii). If Ze#,, then Z*¢ Z,, (cf. [17]). Thus, by (ii,), for every
TeB(X*, Z) the adjoint T* is Hilbertian. Thus, by [16], Proposition 5.1,
T is Hilbertian.

Similarly (i) = (ii).

(ii) = (i). The implication follows from a result of Grothendieck
(cf. [6], [16]) that every operator from an % .-space into a Hilbert space
is. 2-absolutely summing.

(ip) = (ivy,). Let Sell,(X,Y). Fix @y, Tsy.--

T2 ~XbyTi = z’:‘l(j)wj for 2 = (A(j)) e i3 Then |T|| = sup Sa* (@)
s B Izl j=1

It follows from (ib)J that IT,(T) < K|T| where K >1 does not depend
on T and on n. It follows from the result of Pietsch [24] on the com-
position of p-absolutely summing operators that s, (ST) < Kny(8) 7o (T)
< K ||IT|j7,(S). Let (6;) denote the unit veetor basis in I7,. Since

1€ = > 1£5(8)] ()
A

D) IS

j=1

(i)

,%, in X and define

for every &*e =1,

we get

H

2 IST o1 < (ST) sup ) S
71 (ST) < Ky(8) sup D |o* ()]

el § 23
which shows (iv,) because always 7,(8) <

i

Thus 7, (8) < Ky () 7 (8)-
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(ivy) = (iv,). It follows from (ivy) and Proposition 1.1 that there
exists K > 1 such that I7,(X, Y¥) = IT,(X,Y). Hence I1,(X, Z) = ILL,(X,Z)
for every subspace Z of Y. Since Y is infinite dimensional, the Drvoretzky
Theorem (cf. [2] and [19]) implies that for every &> 0 and every
n =1,2,... there exists a subspace Z,, of ¥ such that Z,, is (14-¢)-
isomorphic to Iy. Thus we get (iv,).

(iv,) = (iv) = (ivy,). These implications are trivial.

(v) = (i) Any Te B(l, X) is of the form

(2.1) Ti= DAz for 2= (i(5),
moreover
@2.2) iTh=_ suwp || 3ate|-

Pii=Li=12,...,n" F4

Fix 2; = (4,(j)) el for i =1,2,..., m and choose x;* in X* so that
Joe; ¥l = 1 and ;" (T4) = T4 for ¢'=1,2,..., m. Next' define u;> 0
(i =1,2,...,m) so that for zf = ux;* we have

m

(2.3) NP -1 and Sairn) - (3 Iak).
=1 i=1 t=1

By (v), (2.1), (2.2) and (2.3) we get

(\“nm, ) = 2 S < 2(2 miw)*( 2 2} (2)*)!
=1 i=1 j=1 i=1 =1
nfnmax(%m e < KT L(ﬁ’ls*(zf)rZ)*.

<n ‘{21 (TS T e
Thus =, (1) < KT}

(ivy) = (v). Pick @y, %, ..., 2, in X and af,2f,..., 2}, in X* Let
8: X — 13" be the operator defined by

Sz = (:z‘f(.r))lfiii,ém for weX.

Fix 2,2, ...,2, in X (p = 1,2,...). Then we have

D " . g n n Y4
2 * R * e
21 S| = 2, 2 a7 (2) 7 = s Zi”i (2x)1%
k= ’ k=1i=1 i=1 k=1
m i
- TN ; ;
< DI sup 3 () 2.
i=1 el =

Thus 75(8) < ( 3] Jf2)*

i=]1
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Now suppose that X satisties (ivy) with some K = 1. Then
m(8) < Kmy(8) < (Vux )
i=1

Hence, remembering that

mn n

N INT o o
sup \ (@) = su %}Z/.(])x,-}t‘,

et 7 j= lagi=1

we geb

n e

- 2\d . )

S Yt @) = Visel<as) s Do)
j=1 i=1 j=1 ¥l j=1

m "

<K (Ynx Py sup

Thus X satisfies (v) and this completes the proof.
DrriniTioN 2.1. If a Banach space X satisfies one of the equivalent
conditions of Proposition 2.1 we write

(%, X) = B(Z,, X).
More precisely we write
(£, X) 7 B(Z,, X)

itf I,(I, X) = B(ly, X) for n =1,2,...

DFI‘INITION 2.2. An unconditionally convergent series Y, in
a Banach space X is said to be Hilbertian if there exists an operator
8: 1, » X and an unconditionally convergent series >z, in I, such that
Szn = p-

COROLLARY 2.1. Let X be a Banach space. Then II,(% ., X) = B(%, X)
iff every unconditionally convergent series in X is Hilbertian.

Proof. It is well known (ef. [1], [21]) that a series Y, in a Banach
space X is unconditionally convergent iff there exists a compact operator
T: ¢y — X which maps the unit vector basis of ¢, onto the sequence
(2,). Hence if IT,(ZL., X) = B(L, X), then, by (ii) and the fact that
every operator from ¢, into I, is compact it follows that every uncondition-
ally convergent series in X is Hilbertian.

Conversely, assume that every unconditionally convergent series in
X is Hilbertian. This property is in view of the previous observation
equivalent to the fact that every compact operator from ¢, into X is
Hilbertian. Hence the natural embedding of the space K (¢, X) of all
compact operators from ¢, into X under the operator norm into the space
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H(e,, X) iz continuous (by the Closed Graph Theorem) which implies
the condition (ii,) of Proposition 2.1. .

Remark 1. The condition (v) of Proposition 2.1 is in fact a finite
dimensional version of Kwapied’s condition: “Every 2-nuclear operator
from X into 7, is l-absolutely summing”. Kwapied ([11], [12]) proved
the equivalence of this condition with the condition (i) of Proposition
2.1 using the Pietsch—Persson Duality Theorem (cf. [23]).

Remark 2. The equivalence (i) < (v) can be generalized. One can
get a similar necessary and sufficient condition in order that every ope-
rator from every %, space into a Banach space X be (p, q)-absolutely
summing for fixed pair (p, ¢) with p > ¢ (cf. [26]).

3. Banach spaces X with unconditional bases and with local uncon-
ditional structures for which I7,(%_, X) = B(Z., X). Let (6, €5)p,y be
a biorthogonal system in a Banach space X. Then (€)aesz 18 said to be
an uneonditional basis for X if for every ze X and every scalars &, With
lel =1 (ae &)

iz;i”%e:(m)ea-—w” =0,

sup|| 3 e.6k(2)6)| < + oo,
F ucw

where the infimum and the supremum is taken over all finite non-empty
subsets of .

It is well known that the last inequality implies (by a standard Baire
category argument) that there exists 0> 1 such that

sup sup ” 2850:(90) )| < Cllzll.
acH

legl=1 @

The greatest lower bound of those ( is called the unconditional characteristic
of the basis (¢,) and will be denoted by v((e).

DeFINITION 3.1. A family {E}., of finite dimensional spaces is said
to be a local unconditional structure for a Banach space X if each ¥, has
an unconditional basis with the unconditional characteristic 1 and there
existsa C'> 1 such that for any finite dimensional subspace ' < X there

exist an index teJ and an operator T, z: H, -~ X such that T, 7(EB)>F
and '

lel < IT. pel < Olle]l  for ¢c B,

and moreover for each teJ there exists an operator T,: B, - X with
lell < IT.ell < Clelf for e B,.

On Banach spaces X for which II, (Zoos X) = B(Zoo» X) 625

The greatest lower bound of those € iy called the unmconditional
characteristic of the pair (X, {E,},.,) and will be denoted by (X, {E}.s-

The concept of a local unconditional structure is a generalization of
the concept of an unconditional basis. We have

ProrosIrioN 3.1. If X is a Banach space with an unconditional basis
(€a)acses then X has a local unconditional structure {B.),, with y(X H{E}er)
= y((6,)-

Proof. Let J be a family of all non empty finite subsets of .«7. For
ted let B, be the linear space of {,},, equipped with the norm [l Ztaeal
= sup || ed.6,|. It follows from the standard stability argument

s |=1;aer aes
thaxlta‘{E,},sJ is the desired local unconditional structure.

Next we recall the following.

DeriniTION 3.2. Let (6,).., be an unconditional basis in a Banach
space X and let {X,},. be a family of Banach spaces indexed by the
same set of indices. The product of the spaces X, in the sense of the basis
(6a)aese Writben [X,]i, ) is the Banach space of all sequences (z()),, such
that #(a)e X, for ae o and there exists an z< X such that ¢i(z) = 2(a)
for ae o i.e. the series ) |lz(a)lle, converges in X. We define

aesd

|

The operations of addition and mulfiplication by scalars are defined
coordinatwise.

TIf (€,)acs 18 the unit vector basis of the space I, then we shall write
[Xa]lﬂ, instead of [X,]g,-

ll\zText we show that products in the sense of unconditional bases
preserve local unconditional structures and uncoenditional bases.

PROPOSITION 3.2. Lét (6,)..r be an umconditional basis in a Banach
space X. Let {X,}..., be a family of Banach spaces with unconditional bases
(66 pess,, Tespectively Be of, (ae ). Suppose that 213;:((@}“’)) =(C < +oo.
For Be o, and aec o/ defing fupe[X, ey By fupld) =0 for a =o' and
Topla) = €50 Then (f.p)se o2 gucse JOrms an unconditional basis in the product
[Xu](ea) with y((fuﬁ)) < 07((6a))

Proof. Observe first that for any non-empty finite subset # c </
and any scalar sequences (s,)ug; (fo)wg Such that [s,| < Cli,| for ae &

we have
Z taea,i
ac®

(3.0) H%’saea

To see this define g, so that s, = Cg,l, for ae #. Clearly [g| <1 for

sl = || X lis(alle.

aesd

< Oy((e.)



GUEST


626 E. Dubinsky, A. Pelezydski and H. P. Rosenthal

ae 4. Any point of the cube {{0.)uez: 0./ < 1} is a finite convex combi-
nations of the extreme points of the eube i.e. of points (&,) .5 With |¢,| = 1
for ae #. Thus there are non negative A, Ag, ..., Ay With Zli =1 and

N

V9 0
Z}'iﬁu
i=1

(&})oep With [&}] =1 for ae Band fori=1,2,...,

for ae #. Thus

N such that o, —

N
Hgsae,,il = (7”29“15“6,1 Oj ;Z ) &1, g"”

<€ max || Meit,e,
II<N agdg

|< oy (te)] X tae.
ach

Now piek any non empty finite sets # <« o and %, = 7, for ae &.
Let (top)pem,, acz A0 (£up)pes, 0cn PO ALY sequence of scalars such that [a,,ﬂ|
=1 for fe &, and ae . Let us setf, = h 5’ 1,65 and s, = HZ Saplup€l?)-

Sinee y{(ef)} < 0, we have ]sal < Ot f01 e #. Thus, by (3. O)

el
Oy, )izy,;ma
= Oy ()| Xt

This inequality together with an easy observation that linear combinations
of f,z(fe o7,, ae o) are dense in the product [X.]e, show that (f.s) is
the desired unconditional basis.

PROPOSTTION 3.3: Tet (8u)aces be an unconditional basis in a Banach
space X. Lot {X }oy be a family of Banach spaces and let (B}, be
a local unconditional structure for X, with y(X,, {E® },EI )< O for all ain /.
Then the product [X.)ee,) has a local unconditional structure with the UNEON-
ditional characteristic < Cy/{(e,)).

Proof. Let 7 be the set of all sequences © = (1,),.; Where % is a non
empty finite subset of 7 and ¢,eI, for ae Z. To any ve7 assign the finite
dimensional space B, defined as follows. The elements of F, are all se-
quences (z(a)),4 such that z(a)e E® for ae B, the operations of addition
and multiplication by scalars are defmed coordinatewise and the norm
is defined by [|{z(a))| = sude’a Iz (a ]le |- By the definition of & local

unconditional structure, each E () has an unconditional basis with the
unconditional characteristic one. Thus, by Proposition 3.2, H, has an
unconditional basis with the unconditional characteristic one because
B, = [B,Je;).q Where (e; % )ecz demotes the unit vector basis in the space
of sequences (t,)uy equipped with the norm [(¢,).ql = sup ”Zt £l

legl=1" ac#

©
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We omit the routine checking that the family {E.},, is a local
unconditional structure for the product [X,]e, Wwith the unconditional
characteristic < Cy ((e,)).
Next we pass to a characterization of those Banach spaces X with
local unconditional structures for which (¢, X) = B(#,,, X). The
following result is the main technical tool of this section.

PROPOSITION 3.4. Let (e, ¢ )KJQ, be a biorthogonal s ystem in an
n-dimensional Banach space B. Assume that the unconditional éharacteristic
V( b ) =1,le.

| el =113

Then for any K > 1 the followmg implications hold (I) = (IT)
= (IV) = (V) = (VI), where
(I (i, B) = B(l, B),
(1) 7o (D) < E|D| for any operaior D: I%, —~ B which is diagonal
with respect to the basis (¢;), i.6. there exisi scalars dy, ds, ..., d, such that

(3.1) ]t| ” for any scalars i,,1,, ..

eyl

= (IIT)

(3.2) D(1) = dem,- for & = (A(j)) T2,
(I1IT) (an [12)* K}]Z(Z]e @)1 el for any i, 2., ..., 2, in B
(m=1,2,...)
1v) H_}E‘ (g‘]wf(e])lz)*e;fn <K(_§’nmf|{2)’v’ for any of, ok, ...,k in E*
j=1 i=1 i=1
(m = 1,2,]...),

V) forany m = 1,2, ... xy, in the unit ball

of B* and scalars Ay, Ay, ...,

and for any ay, 4%, ...,
m

dn with DA% =1 there exist o™ < E* with
i=1

le*l < K and scalars 2,(j) (i =1,2,...,m;§ =1,2,...,%) such that
mn
(3.3) max 3 A(HE<1  and haile) = A(5)a" ()
Lsi<n i
(t=1,2,...,m; j =1,2,...,m),
(VI) II(ls, B) = Blloy B) for s =1,2,... where Hg is the Gro-

thendieck constant, i.e.
Ky = it {C T, (K, ) % B,
Proof. (I) = (II). Obvious.
(IT) = (III). Suppose that we are given &, ¥a, ...,

m
)9 for § =1,2,

L)}

for s =1,2,...

r,, in E. Let
n. Then the sequence (d;) defines by

= (216
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n
(3.2) a diagonal operator. It follows from (3.1) that [|D| = \2 ) j” Define

i=1
for i =1,2,...,m a sequence 2 = (L(f)ele by A(j) = d;tej (w;) for
d; #0 and () =0 for d; =0 (j =1,2,...,n). Then

m - m
su £(2)2 =max ) IL(HE<T.
us'n£1 ,;1' e 1sisn ;

Thus, by (II), we geb

m
(IIT) = (IV). Fix o}, 2},..., @, in B* and @ = }'4;e; in B. Next
j=1
choose scalars A;(f) (4 =1,2,...,m; ] =1,2,...,n) so that for
j=1, 2,

m

(3.4) Zu )2 =1 and 21 e e,)—(2|w:f(e,.)|2)*.
1

i=

Then, remembering that t; = ¢; *(z) we have

1(}2(5’190 (el e ) ! 2 2,1 AN =§w}‘(§l¢(j)tje,)
< gl : el < (X Muﬂ*(é]]ézi(j)tje,.}r)*.

It follows from (III) and (3.4) that
(B Sl < x| S Sniormurfel
i=1j=1 j=1 i

= x| § e = Kiel.

Hence for any ze¢F

( En (i’ Iw?(ej)lg)* o ) (w)\ <K (ﬁ nm:fHZ)* fll
1=1

Je=1 d=1

which is equivalent to (IV).
(IV) = (V). Given af, 4}, ..., s}, in the unit ball of E* and scalars
m
Juy Agy ooy Ay With 3 (22 = 1. Define
i=1

m

= Z (> 10t (epr?)' e

j=1 i=1

© | .
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and
2(§) = 2 (e))[n" ()  for w*(e;) # 0,
24(§) =0 for #”(¢;) = 0.
Then é LT for j=1,2,...,n and %(j)a}(e) = Aa®(s;) for
i=1,2,...,m and j =1,2,..., n. Moreover, by (IV), we get

0¥ = K (Zm,: ]}ji’zim:(e,)a; J<x (ﬁ‘ Ikl le) < K
o Ao =1

(V) = (VI). Let T:%,—>F De defined by Tu = Zs',u(k)zk for
k=1
p=(p(k)elyy. For & =1,2,...,m #x ;= (u(k)) in ¥ and pick
mn

@y @y oeny By 0 B with [j07]] =1 and sealars 4y, 4, ..., 4, with ' 412 < 1
go that i=1

oF (Tws) = | Tull; 3) 2605 (T = ( 3 1Twale)'
=1 i=1

By (V), there are scalars A,(j) for ¢ =1,2,...,m; j =1,2,...,n and

an e B* with |#*|] < K such that (3.3) is satistied. Let us put
ay =6 (2w (e) (1=1,2,...,m; bk =1,2,...,9).

By (3.1), for any & and #, with g = |me| =1 for j =1,2,...,n
k=1,2,...,s we have

n & n
13 Stann] = (S0
j=1 k=1 =1

Hence, by. the Grothendieck inequality (cf. [6], [16]) and (3.3), we get

( f 1T pale) = f,‘mf(fm = ZMAfm:-‘ ( Z’m(km)
i=1 =1 i=
= St 3t S 00

i=1 =

H

(o) X mu) < 1" LU < E 1T

3

()2 ()6 ) = D) X o D) Au(3) s (R)

It
NMe
Dy

A
I
w,
i
-
ax
Il
14
.
)
A

Ie=

< KoK |7 max ( 2 lms(yis)*

I<k<s 521

-

B

F==

= KoK 1) sup. (Z 1€ (ua) ).

=1

Hence w,(T) < KoK |T) and this completes the proof.

8 — Studia Mathematica XLIV.6
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Our next result is an immediate consequence of Proposition 3.4,
the definition of a local unconditional structure and the fact that the
property I1,(ZLe, X) = B(Zy,X) is a “local” property of a Banach space X.

TanorEM 3.1. Let {E}.; be a local unconditional structure for an
infinite dimensional Banach space X.

Then ITy(Z, X) = B(&,, X) if and only if there ewists K > 1 such
that for any unconditional basis (6l for T, with y(6) = 1 one of the con-
ditions (I), (1), (IXX), (IV), (V) 4s satisfied (equivalently all the conditions
(D)~V) are satisfied) with (¢;) replaced by (6") and with n = dim E,.

TeEEOREM 3.2. Let X be a Banach space with an unconditional basis

(8o)ucsy- Thew Iy (%, X) = B(Z,,, X) if and only if there exists a constant
K > 1 such that for any finite non-empty subset & of o one of the conditions
(), (IT), (III), (IV), (V) s satisfied (equivalently all the conditions (1)~(V)
are satisfied) for B = span(e,).g and with (¢;) replaced by (6,)eq.

Proof. Let J be the family of all non empty finite subsets of .z,
Observe that if for some equivalent norm on X there is a constant K > 1
such that with this constant for every #<J one of the conditions (I),
(IL), (IIT), (IV), (V) is satisfied for every space Ey = span(e,).s Wwith
(¢;) replaced by (6,)..q, then the same condition is satisfied by any equiva-
lent norm on X perhaps with a different constant K. Now renorm the space
X so0 that in the new norm, say || [y, the basis (€,)4 . has the unconditional
characteristic one. Then the family {Egzlg.; is a local unconditional
structure for X (cf. proof of Proposition 4.1). Thus, by Theorem 3.1,
I,(Ly X) = B(%,,X) it and only if there exists K such that one
of the conditions (I), (II), (III), (IV), (V) is satisfied for every space Eg
= §pan (¢,)ey With respect to the new norm |-|, (Bed).

Remark 1. It elearly follows that conditions (I)—(V) hold for a given
unconditional basis iff they hold for every unconditional basis in the space.

Remark 2. The conditions (I)—(V) are stated in the “finite dimensional
language”. One can easily obtain many other conditions in order thatb
a Banach space X with an unconditionial basis (¢;) have the property
that I7,(Z,,, X) = B(%,,, X). We list some of them. Here by a diag-
onal operator from X (resp. X*) into I, (L < p < o) or ¢, We mean a map
D such that Dz = (46" (@) for we X (resp. Da* = (4,a*(¢;)) for o*e X*
where (1;) is a fixed scalar sequence depending only on D and (6*) denote
the sequence of coefficient functionals of the basis (¢;). Similarly diagonal
operators from 1, or ¢, into X and X* are defined.

(VII). Any operator T< B(X, 1,) which can be factored T = DU through
lo, with D a diagonal operator can also be factored T = VD, through 1, with
D, a diagonal operator '

(VILI). Boery diagonal operaior Jrom ¢, into X i3 2-absolutely summing

(IX). Every diagonal operator from X* into 1, is Hilbertian.

On Banach spaces X for which I (%0, X) = B(&n, X} 631

Remark 3. Proposition 3.4 admits the following generalization
PROPOSITION 3.5. Let 2<p < +oo and let p* = —pT Then wnder
p —_—

the notation and assumption of Proposition 3.4 for any K>=1 the
following implications hold (L) = (IL,) = (TIL,) = (IV,) = (V) = (VL,),
where

(L) (I, B) % B(lg, B),

(IL,) 75,5(D) < K |ID|| for every operator D: 12, — E which is diagonal
with respect to the basis (),

(IIT,) | _ZIHwiuf’)”P <K}|2;(_2;1e;‘(w,.)12)*e,. | for any @, @y, ..., 2, in B
1= j=1 4=
(m=1,2,...),

n m m
@Vs) || 3 (2 10s @) | < K eI Jor any o, a5, ..., o, in
J=1 i= i=
T (m=1,2,...),
(Vy) foramy m =1,2,... and for any @y, 75, ..., @y, in the unit ball
m
of B and scalars Ay, dyy ..., by with 3 |47 =1 there ewist 2* < B* with
i=1
' | < K and scalars 2;(§) (6 =1,2,...,m; § =1,2,...,n) such that

m
max (NP1 and Xa(e) = L()a"(e) (8 = 1,2, ...y m; j =1,
1<ign 1=1
2,...,m),

(VL) I, (%,, B) KﬁaB(l‘;, E) for s =1,2, ..., where Ky is the Gro-
thendieck constant.

The proof of Proposition 3.5 is almost the same as the proof of Prop-
osition 3.4. In a few places the Schwartz inequality should be replaced
by the Holder inequality with exponents p and p*.

Clearly using Proposition 3.5 instead of Proposibion 3.4 one can
generalize Theorems 3.1 and 3.2 and the conditions (VII)~(IX) in Remark
2 above to obtain analogous characterizations of those Banach spaces X
with an unconditional basis for which IT, ,(¥, X) = B(Y, X) for every
YeZ (2<p < +00).

THEOREM 3.3. For every Banach space X with an unconditional basis
(62)acsr the followimg conditions are equivalemt

(8) I,(L ey X) = B(Z, X), .

() If {X}uwr 18 @ family of Bamach spaces with the property that
there ewist constants K and C such that II,(Z e, X.) = B(Lo; Xa) for ae o
and each X has a local unconditional structure {B} . with »(X,, BN
< O for ae o, then :

HZ('?OO’ [Xa](ea)) = B(Zw, [Xa](e,,))i
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(c) There exists a family {X }o..r such that
Hz(goo) [Xa](eﬂ))

Proof. (a) = (b). Let 7 be the set of all sequences v = (¢),.q where
t,ed, for ae # and B is any non-empty finite subset of 7. Given g
T = (t)oeg €7 Wo define T, to be the Banach space of all sequences (w(a)
such that @(a)e B for ae # with norm given by

(ot @] = | s

By Proposition 3.2, the family {E.},. is a local unconditional structure
for the product [X,],,. To complete the proof of this implication, by
Theorem 3.1, it is enough to show that the family {#.},., satisfies the
condition (III) of Proposition 3.4 with some constant independent on 7.
To this end £iX a v = (4,)ug €7 and a basis (o hi<icn@ (Where n(a)
= dim B®) in E (a) Wlth y((g("))) =L For1<j<n(a)and ae F we define
fjas E, byf, ,, =0 for «' # o and f; (a) = 6{”. Then (cf. Proposition

y (fie) 18 an uncond.monal basis in E, W1t]1 y(( f“ = 1. Next fix

z; = (wi(a))asﬂEEr for ¢ =1, 2, 2 t for ae 4.

Since for all ae o, I(Z,,, X,) 5 B(Z,,X,) and y X B}es,) <O it

follows from Proposition 3.4 and the definition of a local unconditional
structure that there exists a constant K, depending only on the consta,nts
K and C such that

= B(Zo; [Xalep)-

aed

sup
le(a)|=1;aeB

a)[#{a

“eﬂ

.y m. Let z,( e

(3.5) Klg}ln(u)(zm’lt‘”])e(“) (2]]50 ||2) for ae A,
Thus e
(guminz)* ,11s?:)1|p1H2 a)llay(a)le, [}
2” > lax(@e. [

()| 3 (3 oyt e,

aek =1

because the assumption I7, (L) X) =
the existence of K, such that

DYp

B(Z,, X) implies, by Theorem 3.2

<) (S e

aed. 4=1

icm
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for all scalars s;, 1 =1,2,...,m; ae & and every non empty finite
subset # of «/. Now using (3 0) and (3.5) we get

( 2 ) < B [y (e ( thﬁ”i) o
FHZZ 2ﬂ<*’12)*ml{.

Thus the basis (f;,) of the space E, satisties the condition (ITI) with the
constant K, K, [y((6,))]* independent on 7.

(b) = (e¢). This implication is trivial.

(e) = (a). Let R, denote any one dimensional subspace of X,. Clearly
the product [R.],, can be regarded as a subspace of [X, Jen+ Thus,
by (), I (&) [Raliy) = B(Leos [Ru](c ). To complete the proof let us
observe that the product [R,],, is isometrically isomorphic to X.

Next we pass to the case of p-products.

CorOLLARY 3.1. Let {X Yeea be am infinite family of Bamach spaces
satisfying the hypothesis (b) of Theorem 3.3. Then (&, [X, 11*")
=B (%, [X]z“’ if and onl_/ fl<p<g2.

<KK[y

Proof. For 1< p <2 the desired conclusion follows from the ine-

quality
(Z (Z mj]p)zm)up < ( 2 ‘ 2 ]t,-jfz)m)"”

for any scalars #; (i,j =1,2,...).

Now if p > 2 then for t; = 6{ (§,j =1,2,...)and for n =1, 2, ...
we have .
(33 =
=1 J=1
while

(j’ (j [tﬁlg):ﬂﬂ)llﬂ i,

j=1 i=1
Thus the condition (IIT) is not satisfied. ) )
A useful partial generalization of Corollary 3.1 is the following

THEOREM 3.4. Let 1<p<2. Let (Q,;’, u) be any measure space.
Let L,(X; 2, 2, u) denote the space of all u-strongly measurable and Bochner
integrable X-valued fumction f on Q such that

171, = [ 1f(@)IP p(@e)) < +oo.
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Suppose that X has a local unconditional structure and that IT,(Z,,, X)
= B(Z,, X).

Then H2($m7Lp(X§ Q, 2%, ;”)) = B(ff'w, Lp(X§ o,z M))

Proof. Let {E}.; be a local unconditional structure for X. Let
7 be the family of all finite sequences 7 = (i1, sy .. ) tyy)) SUCh that
yed for 1<j< n(r). For v = (lp lyy ooy ly)ed 1ot B, = (B, xElzx
XEm(f))lZ(’)' Using the standard technique of approximation by simple
funetions and an easy stability argument one can show that {F.}. ., is
a local unconditional structure for the space L,(X; 2, X, u). The desired
conclusion follows from Theorem 3.3 and Theorem 3.1.

COROLLARY 3.2. Let (£2;, &;, ;) be measure spaces and let 1< p, <2
for i=1,2,...,m; 0 =1,2,... Let Y be the space of all scalar valued
fumctions f on the product Q,X Q¢ X ... X &, which are pyX py X ... X pt,-
measurable and such that

Il = :
UIT T USG50, s s P80 )2 (s P72 [P0 )2

2y 9y Ry N
< o0,
Then I,(L, Y) = B(Ley Y).

4. Banach spaces whose duals have subquadratic Gaussian averages.
By a probability space we mean a measure space (2, X, u) where u is
a non negative measure of total mass 1. Instead of u-measurable function
we shall often use the term “random variable”.

THEOREM 4.1. Let X be o Banach space. Suppose that there exist a prob-

ability space (2, X, u), a sequence of funclions (f,) i L (R,Z, ) and
a constamt C > 0 such that

01 (ﬁ’ Iaiiz)*< f‘ﬁ‘a,-fi(w) l ‘u-(dw)

i=1 2 4=l

(4.1)
Jor any scalars ay, gy ..., @y (m =1,2,...)

(4.2) Jl émffiw) | nide) < a(j T )"

joranym’f,m;‘, ...,m,*ninX* (m =1,2, -'~)~Th6WUg($m,X) = B( Loy X).

Proof. Fix uy,a,,...,4, in X and o}, a},...,2% in X* (n,m =1,
2,...) and put

” N
b= 1A(i)l=§tjl£1,z,...,n“Zz(j)wj[l'

i=1

icm
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Then. for any we £ choosing A, (j) with A, (j)] = 1 so that

ﬁ’fi(w)w?(wj) 2o (f) = l(ff,.m)wzf) (o) forj—1,2,..,n

g=1 q==1
we geb
Zl ( ,}f filw)as) (@)] = gfim)w:)(ﬁzmu)mjk d ﬁfi(w)w:}{-

Now, by (4.1) and (4.2), we obtain

¢ J=1 92 =1
¢ IZI(Z-}l(w)wt)(mj)‘ ,u(da))

m m
<0 [| 3 i@l | nda) < 0% 3 1)

2 i=1 =1
Thus X satisfies the condition (v) of Proposition 2.1 and this completes
the proof.

Tt is obvious from Definition 2.1 that if a Banach space X has the
property that 1,(ZL,, X) = B(Z,,, X) then any subspace of X has the
same’ property. In general this property is not preserved for quotient
spaces of X. For example let X =1,. Then I1,(%,, ;) = B(Z, ) (Gro-
thendieck [6] of. also [16]). This is clearly not true for quotients of I,
because every separable Banach space is a quotient of 7, (in particular ¢,)
and obviously

(L, €0) # B(Zoss C)-

However we have:

CoROLLARY 4.1. If a Banach space X saiisfies the asswmptions of
Theorem 4.1, then every quotient space ¥ of X has the same property (with
the same sequence (f,,) and constani C). Conseguently (%, ¥Y) = B(ZLey X).

Proof. If ¥ is a quotient of X, then Y* is isometrically isomorphic
to a subspace of X*. Hence the inequality (3.2) is satistied for any
Y11 Yas s Y in ¥* (m=1,2,...)

o y?)zlr l;e?i:n% result g(ives some more information on the class of Banach
spaces for which the assertion of Corollary 3.1 is true. Recall that a Banach
space X is said to be uniformly I if for some ¢ > 1 (equivalently for any

0 > 1) there exists for » =1,2, ... an operator T, W —~X such that
(8] < [Ty o &l < OlET  for &l

(ef. [81, [7D).
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ProPOSITION 4.1. If X is an infinite diemensional Banach space such
that Iy (L ey Y) = B(&w,y X) for every quotient space ¥ of X, then X ig
not uniformly 1f.

Proof. If X, is a subspace of a uniformly I} space X and if dim X /X,
< oo, then X, is uniformly /7. Hence using the technique of [8] and
[10] one can construct a sequence (Z,) of subspaces of X such that
(4.3) there exists an operator §,: Z,— 1" such that

27 2] < ISzl < |z for me Z,,,

(4.4) if Z = closure (U Z,), then (Z,) is a Sehauder decomposition of Z.
n=1

Precisely there are projections P,: Z — Z, such that P, P,, = P, P,
=0 for » #m and |P,|<3 forn =1,2,...
Next observe that I, is a quotient space of ¥ because the unit ball
of T}, has exactly 2" extreme points. Let h,: 12" — I denote a quotient
map and let @, =2,8,: Z, ~1%. Then

(4.5) Q.1 <1 and @u{weZ,: |lwll <1} > {Ael: A< 27Y.

Let B, = ker, (n=1,2,...) and let B = closure ( [ B,). Let h denote
=1
the quotient map of Z onto Z/E. Define the map A,,: Iy = Z|E by

A,24 = bz for any #<Z such that Q,P,z = A (Aely).

One can easily check that 4 is a well defined operator and, by (4.5),

(4.6) STUAIS P A1 < A, A < 204 for Aelm.

Let 1;n denote the identity map on . Then w,(1m) = Va. It follows
from (4.6) that |4,|<2 While my(d,)> 3~ my(Ly) = 3-'Va. Hence
F’z(fm: Z|E) +# B(Z,,, ZE) because the condition (ip) of Proposition 2.1
s ot satisfied. Since the quotient Z/E of a subspace Z < X is isometrically
isomorphic to a subspace of the quotient ¥ = X /B we infer that
11,(%4,Y) + B(%,,, ¥) and this completes the proof of the proposition.

Next we shall discuss Banach spaces satisfying the condition (4.2)
for (f;) being a sequence of independent Gaussian random variables
(ef. [27 1)- In the sequel we shall denote by (v;) a sequence of independent
f}a.u§s1a.n random variables on a probability space (2, 2, u) each of which
is distributed by the rule

12

- f 6 s,
Vor _J

wlwe: y(w) <t} =

Let Z be a Banach Space and leb 1 < p < oo. By the pth Gaussian average

icm
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of the vectors 2;,%,,...,2, in Z (n =1,2,...) we mean the pth root
of the expectation

B (| Seelf) = S}f}ifw(w)z,—%%(am
1= =1
1 i__’l +oo +o0  n vs}+.‘.+ai
=0 " [ [ Yselfe T T asy...ds,
—oa —o0 i=1

Recall that, by a result of Landau and Shepp [14] and Fernique [4]
there is a universal constant g, such that for any Banach space Z

8| Sveel) < (B reaf )P <0, S

for any 2q,2s,...,%, iIn Z (n =1,2,...).
DErFINITION 4.1. A Banach space Z is said to have a subguadratic
Gaussian average if there exists a constant @, such that -

B ; ves) < s 2 leate)*

(4.7)

~for any 2y, %4, ...,%, In Z(n =1,2,...).

The following two facts are well known and follow directly from
the properties of the Gaussian variables (y;).

COROLLARY 4.2. Any real or compler Hilbert space H has a subquad-
ratic Gaussian average. Moreover Gz < 1.

COROLLARY 4.3.

for as, a5y ..., 0, veal (n =1,2,...);

n

E("Z L

i=1

V2

Vr

71:]/2 la; 2 < B (,Zﬂ aﬁ’iD < '72«75—]/2 la;l®

for any comples Gy Ggy ...y 8y (B =1,2,...2
Combining Theorem 4.1 with Corollary 4.2 we get immediately
OOROITARY 4.4. Let X be o Banach space such thati X* has a sub-
quadratic Gaussian average. Then I, (%, X) = B(Zw, X).
Our next result concerns products of Banach spaces with subquad-
ratic Gaussian averages. .
PROPOSTTION 4.2. Tet 2 < p < o0 and U6t {Zo}oees e 6 family of Banach
spaces. Suppose. that each 7, has a subguadratic Gaussian average and

assume that sup Gz = G < +oo.
acd
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Then the product X, = [Za]la, has o subquadratic Gaussion average
and Gz, < g,6- ?
Proof. Fix #,22,...,2" in X,. Let & = (2l)oer for ¢ =1,2,... n.

Using (4.7) we get
i))1/;) - (E (“AE; ”g%zﬁ 19))1/11

(|3l < (50} S
- (ZoUE )< (Sl el

<o e ; )" < 0,6 3 > b))

aesd i=1

Putting » = p/2>1 and o} = [¢i|® for ae o/, i =1,2,...,n, by the
triangle inequality in I¥, we geb

(> b i) =

n

> (X)) < 33
(

t=1 =1 aes/
=1 as,

(| Sl <031

Hence GXp < ¢p@ and this completes the proof.

COROLLARY 4.5. Let {X Jueer be a family of Banach spaces such that

X: has a subquadratic Gaussian average. If sup Gx* =@ < 4 o0, then
aesd @

I, (%, [X"]xf) =B(%,, [Xa]lw) for any q with 1 < ¢< 2.
q

Proof. Use the fact that ([X,] ,)* = [X¥] , where ¢* = ¢/(g—1) and
apply Proposition 4.2. s O

Recall that for any measure space (2, X, x) and any Banach space
X and p with 1<p < + o0 we denote by L,(X; 2,2, u) the space of
all p-measurable and Bochner integrable functions f: 2 - X such that
I = gllf ()P p(dw))"? < 4 co. Since every finite dimensional subspace

()"

aesf i=1

R

€,

1=

ST = D
o =1

o,

Hence

FeL,(X; Q, 2’3 {L) is for every &> 0 (1+ &)-isomorphic to a subspace
of 7,(X), Proposition 4.2 immediately implies »
COROLLARY 4.6. If Z has a subquadratic Gaussian average, then
Ly(Z; Q, %, p) has a subquadratic Gaussian average for 2 < p < +oo.
_ UOROLL.ARY 4.7. If X s o Banach space such that X* has a subquad-
ralic Gaussian average, then II,(%., Y) — B(Z., X) for every quotient

icm
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space Y of the space Ly(X, Q, X, u) where (2, X, i) is ony measure space
and 1< g<2.

Combining Corollary 4.2 (applied to the field of scalars) with Prop-
osition 4.2 and Corollary 4.6 we infer that for any measure space
(@, Z, 1) and for any p with 2 < p < oo the space L,(Q, X, u) has a sub-
quadratic Gaussian average. Thus applying Corollaries 4.6 and 4.7 by
an easy induction we get

COROLLARY 4.8. Let (2;, Z;, u;) be measure spaces and let 1L < p, <2
(t=1,2,...,m; n =1,2,...).

Then a) the dual space Z" of the space Z of all scalar valued Sfunctions
f on the product 2, X 2y X ... X Q,, which are (p; X fis X ... X p,)-measurable
and such that

i ={ ] f-..(gf(f]f(sl,sa,

n On-1 o1

Dy P3 Py

) $) P (dsl))Fl }u(dsz))a . ]pﬂ—‘l X

1
X y(dsn)}”_"< +oo
has a subquadratic Gaussian average, .
b) If Y is a subspace of a quotient of Z, then I1,(%,,, ¥) = B(Z,, ¥).
Next we show that, in a certain sense condition (4.2) has its weakest
form when (f;) is chosen to be a sequence of independent Gaussian variables.
We use an argument essentially due to Kwapie [13].

PROPOSITION 4.3. Let (f;) be a sequence of real valued independent ran-
dom variable on a probability space (2, Z, p). Assume that the Lindeberg con-
ditions for the Central Limit Theorem (cf. [27], Chapt. VILL), are satisfied, i.e.

(4.8)
FieLy(2,Z,p)  and  IfE = [Ifil@)Pplde) =1 (G =1,2,...)
Q

n

. — \ 1
(4.9) Eii " IZ f

=1 {weq:|f;()l>aVn}

ifil@)P p(do) = 0 for every &> 0.

Let Z be a Banach space such that
(4.10)

there exists ¢ > 0 such that f ”jfi(mzi [ p#{do) < 0]/ 2 lleif®
02 f=1 =1

for 2y 8y .8y M Z (0 =1,2,...).

Then Z has a subquadratic Gaussian average.
Proof. Fix a positive integer # and 25, @s; -+ 2 in. Z. ].3y the Central
Limit Theorem (of. [27], Chapt. VILI) the joint distribution of the va-
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m .
riables fim = M (3 frg-yss)y Where ¢ =1,2,...,m tends, as m - oo,
J=1 . .
to the joint distribution of the independent Gaussian variables yi,y,, ...
BN Le. )

(4 11) lim f';v(flm(w 7f" m ""fn,m(w)):u(dw)

Mm=00
o0 4w 5 5 .
1 —3(8] 8yt +82)
_—— f f (81 Sy -veySy)e e " ds,ds, ... ds,
Vo %

for any bounded continuous function ¢: R} — E.
Consider the Banach space B of all continuous functions ¢: R* - R

P(S1y 825 -0y 8n)
n

such that Iim = 0 with the norm

n
3 lsgloveo D) sl
i=1 =1

”(P“B=ID&X( sup |¢(817827"'73n)]: sup .(p(i.:z—’.in))

2 syl él logl=1 ;‘ [8:]%
Let us set F,,( f o (frml®), fo, m(w oy Fm(©)) pi(dw). One can easily

check that
o)l < lplls (14 D [ fim(@)p(@0)) < (0+1) )z
=1 Q
for g B and for m = 1,2, ... Hence

+o0 400
1

. TR TUE AR
lim 7, (¢) = f P51, 89, ..., 5,) 6 AT g g
[so]

M=00 " (]/2—7:)”’

for any pe B because, by (4.11), the limit exists on a dense subset of B.

In particular we have

i [ 375t

m=c0 g

?; )7

) =2(] 3

because the function ¢ defined by @8,
On the other hand, by (4.10), we have

f”zzf”” ni{0) == ”M(dw
(22 ”zt”z) ¢ (Z ”zilla)} for m =1,2,...

i=1 j=

n) = ”ﬁ‘ sz%“ belongs to B.
i=1

©
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5(| Sn) <

and this completes the proof.

OoroLrLARY 4.9. Let (r,) be the Rademacher orthogonal sysitem 1i.e.

1, (t) = signsin2"nt for 0<<i<L; w=1,2,... and let Z be a Banach
space such that for some C >0

/ I gnfw) o Z Tt}

Jor 21,25, ..y 2, i Z5 o =1,2,... Then Z has a subguadratic Gaussian
average.

Remark 1. Let us say that the Banach space Z has a snbquadratic
Rademacher average if it satisfies the hypotheses of Corollary 4.9. It
follows from Theorem 4, p. 12 of [29] that Z has this property if and only
if for any sequence (2;) of vectors of Z, if X|e;|2 < co then Xr,(f)z; con-
verges almost everywhere. In the language of probability theory, the
Rademacher functions are simply a concrete representation of a sequence
of {1, —1}-valued symmetric independent random variables defined on
some probability space. Thus to say that Zr;(f)2; converges almost every-
where is to say that X 1-2; converges for almost all choices of the signg +1.
‘We also note that it follows from the above reference that the analogy
of (4.7) holds for series Zr;(t)z; in place of those of the form Zy,z. Of
course, by Corollary 4.9, if a Banach space has a subquadratic Rademacher
average, it has a subquadratic Gaussian average. It follows from known
inequalities (cf. [20]) that for 2 < p < oo, that LP has a subquadratic
Rademacher average. .

Remark 2. Corollary 4.9 remains true if we replace the Rademacher
functions by any lacunary sequence (sinw,2=nt) or (cosm;2xt), where
Nip1fn; = q>1 for ¢ =1,2,... The proof is analogous to the proof of
Proposition 4.4. with the exeption that the Central Limit Theorem is
replaced by [28], Chap. XVI, Theorem 5.5.

5. Remarks examples and unsolved problems. We begin with examples
disproving the conjecture that every Banach space X for which
II,(%,,X) = B(Z.,, X) is isomorphic to a.subspace of some L, space.

Examprr 5.1. Let B = l,(l;). Then

(a) I1,(Zo, B) = B(ZLw, B);

(b) B is not isomorphic to any subspace of any £;-space.

Proof (a). It follows immediately from Theorem 4.4.

of 2 leal2)*
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(b). Since F is separable, it is enough to show that # is not isomorphig
to any subspace of L; = L,([0; 1], X, 1), where 1 is the Lebesgue meagure
and ¥ the field of all Lebesgue measurable subsets of [0; 1] (ef. [17]).
Following [9] for any 6> 0 let

Zy ={fe Lz A{te[051]: [f()] < 8Ifl} = 1—8}.

Recall (cf. [9]) that

(5.1) If @ is a subspace of I, isomorphic to 7;, then there is a sequence
(92) in G such that Jig,| =1 and g, ¢Z,for 6 =1/n (n =1,2,...).

If (h,) is & sequence in L, such that |[k,| =1 for n = 1,2, ... and
for every 4> 0 there exists an index #(6) such that Ty ¢ Z,
then there exists an increasing sequence of indices (n;) such that
the sequence (%,,) is equivalent to the unit vector basis of I,.

(5.2)

Asgume to the contrary that there exists an isomorphism 7': B > Ly
and let 7 = T(E). Let us set '

Fp = T(Bn), where B, ={6 = (e(j))eB: 6(j) =0 for j # m}
‘ (m=1,2,..).

Clearly each F,, is isomorphie to ;. Thus, by (5.1), there exist f, ne F,,
such that ||f,mll =1 and f, ¢ %, for 5>1/n (n =1,2,...). Leb us set
by = fonq for o =1, 2, ... Clearly the sequence (h,) satisfies the assump-
tion of (5.2). Thus there exists an increasing sequence (#,) of the indices
such that (h,,%) is equivalent to the unit vector basis of I,. Thus the se-
quence (T~'h,) has the same property. Clearly Tf‘hnke B,, and T
< ][T“lh,,kn <Y for & = 1,2, ... Hence it follows from the definition
of , and the definition of the product in the sense of 1, that the sequence
(T“h,,k) is equivalent to the unit vector basis of 15, a contradiction.

Bxumerm 5.2. Lat V = (BXEX... XU XYy Then (a’) (Lo, V)
=B(Z,, V), (d)Visa reflesive space which is not wsomorphic to a sub-
space of L,.

Proof. Since V is isometric to a subspace of H = (I; X1, X...),,
(a") ff)]lows from (a). Clearly V is reflexive. Finally for any &> 0 and
any finite dimensional subspace E, of F there exists an operator T': Hy, -V
f.snch tha‘f, llel < 176l < (L+-¢) [lel] for ee H,. Thus, by [16], if V were
lsomorphic to a subspace of I, then B would have the same property.

Remark. Part (b') of Example 5.2 (and from (b") part (b) of Example
5.1) ff)]lows immediately from a result of [26] that a reflexive space which
is uniformly I} is not isomorphic to any subspace of L,. The argument

given in the present paper was discovered earlier, It is simpler but less
general

©
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DEFINITION 5.1. A Banaeh space X is said to have the Orlice property
if the identity operator on X is (2,1)-absolutely summing.

The following faet is well known and easy to proof.

PROPOSITION 5.1. For every Banach space X the following conditions
are equivalent -

(o) X has the Orlicz property,

(B) For every Banach space Y every operator T: ¥ - X 4s (2,1)-abso-
lutely summing,

(v) There emists an infinite dimensional £, -space, say Y, such that
every operator T: ¥ — X is (2,1)-absolutely summing

() Y lenlf< + oo whenever Y x,, is an unconditionally convergent

m=1 m=1

series in X.

Remark. Orliez [22] discovered that for 1< p <2 the space L,
satisfies (8). This justifies the terminology “the Orlicz property”.

The Orlicz property is weaker than the property that I7,(Z., X)
= B(%, X). We have

PrOPOSITION 5.2. If X is a Banach space for which I, (%, ,X)
= B(%,,, X), then X has the Orlicz property.

Proof. If a series > u; is unconditionally convergent, then there

j=1
exists a bounded linear operator T': ¢, — X such that T'é; =a;(j = 1,2, ...)
where 8; denotes the jth unit vector in ¢,. Since IT,(Z, X) = B(Ly, X)
there is a constant K > 1 independent of T such that z.(T) << KT

‘We have

Nt = ' ITe < [m(T)Psup 1€ ()F
i=1 =1 lets £
< E T sup (Y1€°(8)I) = B2 TIP < + oo
I&X1

E=

Hence, by Proposition 5.1, X has the Orlicz property.

ProBLEM 5.1. Let X be a Banach space with the Orlicz property. Is it
true that IL(Ly, X) = B(Z,, X)?

We do not know the answer to Problem 5.1 even in the case where
X has an unconditional basis. This special case is closely related to the
concept of block Besselian basis. Recall that a normalized basis (e,) in
a Banach space X is said to be Besselian (Hilbertian) if the convergence

oo [=-] o . .
of a series > f,6, implies Y If,)2< +oo (if 3 lf,]* < + oo implies that
n=1 n=1 n=1

0
the series 3 i,6, converges).
n=1
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DEFINTRION 5.2. A basis (¢,) in a Banach space X is said to be
block Besselian (block Hilbertian) if there exists a constant K > 0
such that

o P41 o .
sup(V” D e[| <Elel for zeX
k=0 j=pp+1
(zesp. mf( H ; (@) 6; ][}t = K" |lw]| for we X). The supremum (resp.

the mﬁmum) 1s taken over all increasing sequences (p;) of the indices
with p, = 0. Here (¢;) denotes the sequence of the coordinate functio-
nals of the basis (g).

The name block Besselian (resp. block Hilbertian) is justyfying by
the fact that a basis (e,) is block Besslian (resp. block Hilbertian) if and
only if every normalized block basic sequence with respect to the basis
(6,) is Besselian (rvesp. Hilbertian). The concept of block Besselian and
block Hilbertian bases are in full duality. We have

PROPOSITION 5.3. Let (e,) be a basis for a Banach space X. Let (6})
denote the sequence of coordinate functionals of the basis. Then (e,) is block
Besselian (resp. block Hilbertian) basis for X if and only if (&) is a block
Hilbertian (resp. block Besselian) basis for a subspace of X*.

‘We omit a routine proof of this result.

There is a simple relation between the Orlicz property and the con-
cept of block Besselian basis

PrOPOSITION 5.4, Let X be a Banach space with the Orlicz property.
Then every unconditional basis for X 4is block Besselian

Proof. Obvious.

PrOBLEM 5.2. Let X be a Banach space with a block Besselian uncon-
ditional basis. Does X have the Orlicz property? In particular is it true
that if there exists one unconditional block Besselian basis for X, then every
unconditional basis for X is block Besselian?

Our next examples show that the concept of block Besselian (Hilbertian)
basis is essentially stronger than the concept of Besselian (Hilbertian) basis

Exavpir 5.3. Lét co>p>2>¢>1 and let o =g '—p~ Let
X,q be the space of all scalar-valued sequences & — (m (01,)) such that

Il = mase [ 2 o], (3 lotn =] < +oo.

Then (ot) the unit vectors form a mormalized unconditional Hilbertian
basis for X,

8) X, contams a subspace isomorphic to 1,

(¥) Xy, has no block Hilbertian basis.

On Banach spaces X for which ) (%ewy X) = B(Pe, X) 645

Proof («) Clearly the unit vectors form a normalized unconditional
basis for X, ;. Let « = (#(n))el,. Then (E;‘.r(n)l”)m’ < r\u @) < +oo
n=1 *n:‘ll ‘ )

2
because p > 2. Let » = 2/(2 =~q~. By the Hilder inequality

(E[m(n)ﬂ"“lq)”q<(5;[ ()] ) (vn“““")mq +oo

n=1 n=1 l
because agr = (¢~ —p~)(¢7' =277 > 1. Thus re X, . and this means
that the unit vector basis is Hilbertian.

(B) For £ =1,2, .. we define Ype Xpq DY

L))
2 7 for 251 < 2F
Y(n) = STEE
0 otherwise.
Then for every finite sequence of scalars (¢,); <z, We have
< m m ak_q __ggll)q
EI 3 C Yy () 7 “}a = chkiq 2 P g,
n=1 I:— ' k=1 n=2k—1
. q
Since — +aq =1, we get
p
o1 (k—1)a
92 v —aq —ag
= w2
n=ok—1
Thus
" , o0 §21% m
la —n A\l/a 1
(S (3] Soutun 05 207( e
k=1 n=1 k=1 k=1
Moreover
0 m ; n ok (k—
D\Ur 2\1p
(Y] Sanml” = (Ser X @ 7 7)
n=1 k=1 k=1 p=2k—1
m y n P
1/z
=S < (S,
=1 k=1
Hence

This shows that the closed linear subspace of X spanned by the sequence
(4) is isomorphic to 7.

(7). It follows from (B) and a result of [1] that every basis for X
contains a block basic sequence equivalent to the unit vector basis of 7,

9 — Studia Mathematica XLIV.6
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Sinece ¢ < 2, the unit vector basis of 7, is not Hilbertian. Thus X has no
block Hilbertian basis. : :

By Proposition 5.3 and the fact that the coordinate functionals of
2 Hilbertian basis form a Besselian basic sequence, we get

EXAMPLE 5.4, If co>p > 2> ¢ > 1, then the space X, , is reflenive,
has & normalized unconditional (shrinking and boundedly-complete) Besselian
basis, but no basis of Xy, is block Besselian.

Remark. If we let ¢ = 2 in the definition of X, , we get an £,
space X, , first introduced in [30].

Finally we list some open problems.

ProBrEM 5.3. Let X be a Banach space such that II,(%,,X)
= B(Lo, X) and II(Zy X) = B(Lo, X7). Is X isomorphic to a
Hilbert space?

Let us observe that if X has an unconditional basis or X has suf-
ficiently many Boolean algebras of projections then the answer on Prob-
lem 5.3 is positive. In fact it is then true that if X has sufficiently many
Boolean algebras of projections and both X and X* have the Orlicz
property then X is isomorphie to a Hilbert space (cf. [18]).

PrOBLEM 5.4. Let X be a Banach space for which II,(% o, X) = B(%.,, X)
Let (€o)aesr b6 an unconditional basis for X. Let {X, }.., be a family of
Banach space such that there exists K > 1 with the property that IT,(Z,,, X )
= B(Zy, X,) for ae . Is it true that IT,(L,,, [Xa](ga)) = B(%,, [Xa)(ea))“!
In particular is it true that I1,(Z,,, [X“]z;") = B(%, [X,], 2.«1)?

Partial answers on this problem give Theorem 3.3 and Corollary 4.5.

ProsrEM 5.5. If o Banach space has a éubquadmtq)c Gaussian average,
does it has a subquadratic Rademacher average?

FProprEM 5.6. Consider the following four properties of a Banach
space X

(A) II)(Z, Y) = B(Z,,, X) for every quotient space Y of X,

(B) X* has a subquadratic Gaussian average,

(C) X* has o subquadratic Rademacher average,

(D) for every sequence (x7) in X*, if Z|af|* < oo then Sz} con-
verges for some choice of sings 4.

It follows from the results of this paper that for an arbitrary Banach
space X, (C)= (B)= (A); it is trivial that (C) = (D). Which, if any,
of the remajning implications between (A), (B), (0), (D) are valid?

It would be interesting to investigate any relationships between
properties (A), (B), (C), (D) and geometric properties of Banach spaces

like modulus of smoothness, modulus of convexity and superreflexivity
(cf. Lindenstrauss [15] and Enflo {30. .

icm

©

(6]
73
[8]
[9]
f10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]
(18]

[19]

[21]
[22]
[23]
[24]
[25]

[26]
[27]

On Banach spaces X for which Iy (%, X) = B(Z., xX) 647

References

C. Bessaga and A. Peloezyhiski, On bases and unconditional convergence of
series in Banach spaces, Studia Math. 17 (1958), pp. 151-164.

A. Dvoretzky, Some results on conven bodies and Banach spaces, Proc.
on Linear Spaces, Jerusalem 1961, pp. 123-160.

P. Enflo, Banach spaces which can be given an equivalent uniformly convez norm,
to appear.

X. Fernique, Intégrabilité des vecteurs Gaussienes, C. R. Acad. Sci. Paris 270
(1970) Ser. A, pp. 1968-1969.

D. P. G—igsy, On @ convexity condition in normed linear spaces, Trans. Amer.
Math. Soc. 125 (1966), pp. 114-146; Additions and corrections io “On a con-
vewity condition in normed linear spaces”, ibidem vol. 140 (1969), pp. 511-512.
A. Grothendicek, Résumé de la théorie metrigue des produits tensoriels topol-
ogiques, Bol. Soc. Matem. Sao Paulo 8 (1956), pp. 1-79.

R. C. James, Uniformly non-square Banach spaces, Annals of Math. 80 (1964),
pp. 542-550.

W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their ap-
plications to the study of Banach spaces, Studia Math. 43 (1972), pp. 77-92.
M. I. Kadec and A. Pelezyiiski, Bases lacunary sequences and complemented
subspaces in the spaces Ly, Studia Math. 21 (1962), pp. 161-176.

—, — Basic sequences, biorthogonal systems and norming sefs in Banach and
Fréchet spaces, Studia Math. 25 (1965), pp. 297-323 (in Russian).

8. Kwapien, 4 remark on p-absoluiely summing operators, Studia Math. 34
(1969), pp. 109-111.

— On a theorem of L. Schwartz and its applications to absolutely summing opera-
tors, Studia Math. 37 (1970), pp. 193-201.

— Isomorphic charasterizations of inner product spaces by orthogonal series with
vector valued coefficients Studia Math. 44 (1972) pp. 583-595.

J. Landau and L. Shepp, On the supremum of Gaussian process, to appear.
J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach
spaces, Mich. Math. J. 10 (1963), pp. 241-252.

— and A. Pelezyndski, Absolutely summing operators in Zy-spaces and their
applications, Studia Math. 29 (1969), pp. 275-326.

— and H. P. Rosenthal, The % ,-spaces, Israel J. Math. 7 (1969), pp. 325-349.
— and M. Zippin, Banach spaces with sufficienily many Boolean algebras of
projections, J. Math. Anal. Appl. 25 (1969), pp. 309-320.

V. D. Milman, 4 new proof of Dvoreteky’s Theorem on sections of convex bodies,
TFunkeional. Anal. i PriloZen 5 (1971), pp. 28-37 (in Russian).

G. Nordlander, On sign independent and almost sign-independent convergence
in normed linear spaces, Ark. Mat. 4 (1962), pp. 287-296.

W. Orlicz, Beitrdge zur Theorie der Orthogonalentwicklungen 1I, Studia Math.
1 (1929), pp. 241-255.

—  Uber unbedingte Konvergenz in Funkiionrdumen (I), (II), Studia Math.
4 (1933), pp. 33-37; pp. 41-47.

A. Persson and A. Pietsch, p-nukleare und p-integrale Abbildungen in Ba-
nachrdumen, Studia Math. 33 (1969), pp. 19-62.
A. Pietsch, Absolut p terende Abhild:

Symp.

in normérien RBduwmen, Studia

Math. 28 (1967), pp. 333-353.

— Ideale von 8p-Operatoren in Banachrdumen, Studia Math. 38 (1970), pp. 59-69.
H. P. Rosenthal, On subspaces of Ly, to appear.
A. Renyi, Probability theory, Akadémiai Kiado, Budapest 1970.


GUEST


648 E. Dubinsky, A. Pelezyiski and H, P. Rosenthal

[281 A. Zygmund, Trygonomelric Series I, II, Cambridge 1959.

[20] J. P. Kahane, Some random series of functions, Heath
Lexington, Mass. 1968.

[3u] H.P. Rosenthal, On the subspaces of LY (p >2) spanned by independent
random variables, Isracl J. Math., 8 (].97(}), pp. 273-303. .

Math. Mono.,

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
and
UNIVERSITY OF CALIFORNIA BERKELBY

Received January 20, 1972 (484)

icm°

STUDIA MATHEMATICA, T. XLIV. (1972)

Addendum and corrigendum to the paper

“Some applications of Zygmund’s lemma to non-linear differential equations
in Banach and Hilbert spaces”

(Studia Math., 44 (1972), pp. 335-344)
by

T.M. FLETT (Shetficld)

1. By using an idea of Diaz and Weinacht [1], Theorem 2 of the
above paper can be strengthened by the replacement of the condition
(1.4), viz

(1) Cre fl g -l s p—a < dg U Ty — 2,

by the condition

(2) ve flty ) —fy 2)y =2 <y —ziglt, -2,

where ¢ satisfies the (usual Kamke) condition (A) of §1. In particular,
when g(t, #) = aj(t—1,) (which gives Nagumo's condition), the replace-
ment of {1) by (2) removes the factor 4 on the right of (1).

The proof of the new version of Theorem 2 follows similar lines to
that of the original version, but we now take oy n(t) = [l (B) — (D)),
where, for each u, y, is an e,-approximate solution of the equation y'
= f(t, y) such that p, () = y,. I p,{t) = (1), then

’

d 2
('3) [ ([) = A(Z(’ ll Hl/',“(f) - z/,”({);i—jlf
YC 4l () = 90, (D) = D)
‘W'm (1) — ¥ (t)‘

re \f(iﬁ wm(”) Mf({’ wu(l))7 1/)111(?) o 1/"11(/) o
T () =, (1)
L rep (0 =l 9, () =y, (0 + FlE vl pa D —pdl)

H@nz(” —¥a (t“

< ‘(](L’, a'm,n(t)) + Emn + Epe
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