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Weighted norm inequalities
for maximal functions and singular integrals

by

R. R. COIPMAN (St. Louis, Mo.) and C. FEFFERMAN (Princeton, N. J.)

Abstract. We present simplified proofs of the weighted-norm inequalities of
R. Hunt, B. Muckenhoupt and R. Wheeden, concerning singular integrals and maximal
functions. The inequalities in question are

[ 1Tf@Po@ds =0 [1f@)Po@)ds,
g R

where T' denotes either a singular integral operator, or the maximal function of
Hardy and Littlewood, and o satisifes appropriate (necessary and sufficient) conditions.

§ 1. This note is concerned with the problem of identifying those
weight funetions w(w) on R for which the Hilbert transform Tf(x)

= £ fi@_)_gi_y_ is bounded on L (w(#)da), that is
T e @Y,
(1) [1Tf@)Po@i< ¢ [ |f@Po@ds for all f.
r! Rl

Until recently, the only significant partial result known was that of
Helson and Szegd [6]: Inequality (1) holds for p = 2 if and only if w = ¢’1+7%2
for functions by, bye L™ with |[jbyll, < ©/2. Unfortunately, there is mno
obvious way to tell whether a given w can be so represented, so that
even for I*, the problem of inequality (1) remained open. Attempts to
generalize the Helson—Szegd theorem to L¥ (p % 2) were only partly
successful.

Burprisingly, there is a simple necessary and sufficient condition
for inequality (1) to hold. It was B. Muckenhoupt who made the key

discovery, by studying the analogue of (1) for the maximal function

. 1 o
7*(a) = sup o Qf f@lay in R

(Here, ¢ denotes a cube with sides parallel to the axes.)
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TemorEM I (Muckenhoupt [8]). Let p >1 and we Li,(R"). The
inequality

2) [(Ff@Po@i<c [|f@)Po@)de
Rn

RN

is valid for all fe L (o () dw), if and only if o satisfies the condition

(%) wuo a7 f )(TéTq.f “’-ﬁdm)p—l< °°’

where the supremum s taken over all cubes .
Shortly after the proof of Theorem X, R. Hunt, B. Muckenhoupt,
and R. Wheeden [7] overcame congiderable technical problems to prove
TaEoREM IT. For any p (1< p < o) and any positive w e L}, (RY),
inequality (1) is equivalent to (A,).
In particular, (A,) and the Helson~Szegd condition are equivalent, i.e.
COROLLARY. A real-valued function f on R* may be written in the form
I =Fi+Tf, with fie I%y || flloo < (2 f and only if

sup(lQ‘ f (f(m))dw) (—I%TJGXP(—N@)@)< .

The corollary sharpens the one-dimensional case of results in [4]
on the duality of H* and BMO.

In this note, we present greatly simplified proofs of Theorems I
and IL. The ideas and methods discussed here are the fruit of discussion
and collaboration among R. Gundy, R. Hunt, B. Muckenhoupt, R.Wheeden
and the authors. This paper could be considered a summary of our joint
efforts.

We note in retrospect that the (A,) condition has already appeared
many times in the literature in connection with several different questions.
(See, e.g. Rosenblim [12], and the work of Serrin [13], Murthy and
Stampacchia [11], and others on partial differential equations.) Much of
this earlier work can probably be. sharpened by means of Theorems I
and IT and the related results discussed below.

In sequel, we assume that the reader knows the first two chapters
of Stein’s book [14].

§ 2. We now proceed to prove Thecﬁems I and. IL.

Proof of Theorem I. That (2) implies (4,) is easy. We sinuply
fix a cube @ and a function f > 0, and observe that

Fos (7 [ 6)0) lo).

Weighted norm inequalilies 243

If condition (2) is valid, we obtain ( Qf o (@) d) {mo () < Oé]'f” (@) () deo

where mg(f) = = J‘f(y)dy. Thus,
@l o

® molf) < 0( o5 ff”wdw) ",

1
Substituting f = o ?7', we obtain (3) at once.
To prove that (A,) implies (2), we first note that (A,) implies (3).
1 1

This follows from replacing f by (fo?)w ? in the definition of my(f) and
applying Holder’s inequality. Now taking the supremum in (3) over all
cubes ¢ containing a given point #, we find that

(4) f (@) < OLM, () (@)1,

where M,f(a) = f @)l oy

!cu
We are in position to invoke a simple variant of the maximal theorem.
LemMa L. Let u be a positive measure on R, so that u(I*) < Cu(l)

for amy ocube I. (I"‘ denotes the double of I.) Form the maximal function

Mu(f) (@) = sup —— f [f ()l du(y). Then

weQ M '
f (M/u(f)(W))”du(wK 0, [f@)du(@) for any r>1.
) 2 Fiid
The proof in Stein [14] for the case u == Lebesgue measure works

in general with trivial changes. (See also [2].)

Now take du(w) = w(w)dw. That w(I*) < Op(I) is just the special
case @ =I% f =y, of (3). Lemma 1 ylelds [(M,f () codm<0f|f|’codw

for 7 > 1, which together with (4) implies B"

(6) j (F* (@)1 o0 () A < O, f[f z) P o (w)de  for every p, > p,

nn nw

whenever o () satisfies (A,).

In Section 3 below, we will prove the following result.

Lmvva 2. Suppose that o satisfies (A,). Then o also satisfies (A,_,)
for some &> 0.

From. this and from (B), we see at once that (A,) implies (2). Thus,
modulo Lemma 2, the proof of Theorem I is complete. m

Proof of Theorem II It is easy to show that (1) implies (A,). Let
@, and @, be the two halves of a single interval ¢,, and take a function
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1
(IQ_AQ{ ! (?’)dy)%@(”), §0 that

<0 ffpw(m)dm

f>0 supported in Q,. Then |Tf(x)|>C
if (1) holds, it follows that

(Q [ (@) da) (mq, ()P

2
Ofw
G j () de. Takxng now f=

- Taking f =1 we obtain f w@)de < z)dw and 1nterchang1ng Q4

‘and @, we get [w(z w p‘ ‘we obtain
¢

condition (A,).

Tt remains to show that (A,) implies (1). Rather than restriet ourselves
to the Hilbert transform, we shall work with a general singular integral
operator T: f—~K=+f in R", with a convolution kernel K satisfying the
gtandard conditions:

" (a) : 1Kl < 0.
(o}
®) E@)<
g
(© o)~ Ko—g) < % tor i<

Our result on singular integrals is the following.

TuEoREM III. Suppose that the weight function w satisfies (A,). There
are positive constanis C,. 6 > 0 so that given any cube @ and any measurable

8
subset EEQ,%\ (%) . (Here w(4d fcu Vdw for A < R")
Then

[1Tf@)Po (@ de < G, [ (f* (@) o (2)de

R RO

(0<p< ).

From Theorems I and III we see that
[1Zf (@) o (@) do < O f\f )P (
v
whenever o (2) satisfies (A,) and (A,)
Lmyma 8. (A,) implies (Ay).
Thus, (A,) implies (1), not only for the Hilbert transform, but for

arbitrary singular integrals in R,. Modulo Theorem III and Lemma 3,
the proof of Theorem II is complete.

Proof of Theorem III. We shall work with the “maximal operator”’
T*f (%) = supl f K(z—y)f(y)dy|, where @, ranges over all cubes

centered at . The basic real-variable fact concernmo T* iy the weak-type

. In Section 3 we shall prove

icm

Taking y so small that Cy°
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inequality

6)  l{weR T —‘1

)>adl <

|f(@)de. (See Stein [14], p. 42.)

»

By combining (6) with the (A,) condition, we ghall prove
(7) o({T"f > 20 and f* < yo}) < O 0 ({T*f > a}).

Once we know this, Theorem ITI is easy, for

f (T*F)? wdw = Of o ({T"f > 2a})da
i 1

<0

(by (8))

o g

a® o ({f* > ya})da - Cy° fm o ({T*f > a})da
b

0w) [P wdatoy [(I'Pods.
»nv

< %, we obtain the conclusion of Theorem III.
Thus, Theorem IIT reduces to estimate (7). What follows is a proof of (7).

By Whitney’s lemma (see [14], p. 16), the open set U, = {T"f > a}
breaks up as a digjoint union of cubes {@,} in such a way that the distance
from @, to R"— U, is comparable to d; = diameter (¢;). Thus, there
are points ;e R*— U, such that distance (w;, Q) < 2d;. Let §; be the
cube centered at w;, with diameter 20d,. Note that @f < @;.

The main step in our proof of (7) is to show that

(8) [{#e Q| T*f(2) > 2a and f*(2) < ya}| < Op1Qil.

In proving (8) we may assume that f*(&) < ya for ab least one point
&e Q; (for otherwise there is nothing to prove), and also that y is small
(since (8) is trivial for C = ¢7).

Now write f = f;+f, where f; = fyg,
£eQ; < @, it follows that

0 lf lfw)ldy = w'

and fs = fygn.g,- Since

f F)ldy < 1" () < pe,
g0 that the weak-type inequality (6) ylelds

[1@ay < oy1@a.

0

[per o 2] 29
(9) iITj1>2}<

Next we shall prove that

(10) T*f,@) < a+Opa for ze@,.
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We fix a cube @, centered at @, and let @, be the same size cube centered

at ;. Then
| | E@-pfoa)
RI=Qy
<| [ Ee-phma|+ [ E@—yllfo)ldy
RPQ,, Qup, A0y, _
} (wherezl denotes the symmetric difference)
<| [ E@-ufi dy|+ B (@4 —y) — B (@ =) | faly) dy +
Rn“‘):c “‘Qa:
+ [ K@=yl dy
Q40
= A+ Ay + A,

Now A, =| [ K(o;—y)f(y)dy| (where § = §;u @, is a cube centered
Rr-J

-8
at o) < T f(2,) < @, since o, ¢ U,. Standard arguments using inequalities
(¢) and (b) show that A,, A, < Of*(&) for any point £eQ,. In particular,
since f*(&;) < ye, we known that 4,4+ 4,;< Oya, 80 that altogether,
| . [ E(@—y)f(y)dy| < a+ Cya. Since @, was an arbitrary cube centered
RN-Q
ab w,zwe have proved estimate (10).

From (9) and (10) we have | {ze Q| T*f(z) > a/2 3o+ Oypa}]
which proves(8) for all y < $C. Thus, (8) holds.

< Oy|Qul,

Now estimate (7) is trivial. From (8) and (A,) we  gsee that
o({#eQ| T* f(#) > 2 and f*(s) < ya}) < OY 0(@;). Adding in { yields
o({ze U, T f(z) > 2a and f* (@) < ya}) < 0¥’ 0 (U,). Sinee U, = {T*f > a},

estimate (7) is proved, and with it, Theorem III.

§ 3. To complete the proofs of Theorems I-III, it remains only to
show that Lemmas 2 and 3 are valid. Both lemmas are in fact simple
corollaries of the following result.

TrmorEM IV. Leét « satisfy (A,), where 1 << p << oo, Then the “reverse

Hdlder imequality”
1
O(TQT Qf o () dm)

holds for all cubes @, with constants €, § > 0 independent of Q.
1

(11)

Proot of Lemma 2. Observe that o(z) = (w () 7~ satisties (A,),
where 1/p+1/¢ =1. Applying Theorem IV ‘00 v, we see that « satbisfies

(A _,) with ¢ = (p—1) —— T35

icm
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Proof of Lemma 8. Just estimate [ yz(w)w(2)dy using Holder’s

inequality and (11). nr
Proof of Theorem IV, We first claim that the condltlon
’ 1 "
(AL)  l{@weQl o(@)>pmg(w)}>alQl, where mQ(w)=J—Ql-jwdm,
Q

holds for some positive constants a, f. To see this, set B = {w¢ Q| w(x)
< Pmg(w)} and observe that

L iy oo

g

(the last inequality is the (A,) condltlon). Taking f small enough, we
obtain (AL).

Next, we shall prove that for any cube ¢ and any number 4 > mg(w),
we have

(12) w(®)de <

{weQ| wla)>2}

Orl{w (@) > i}

Thig is the main point in our proof of Theorem IV. To prove it, we
use the Calderén—Zygmund lemma (see Stein [14], p. 17) to produce
a family {@,} of pairwise disjoint subcubes of @, with the properties

(13) o)< i . for almost every we@—JQ;.
7

< f <2

Y (14), ‘aund (AL) wo obmm
o) dw < w)de < 22 19!
<3 fommar i

22 N oo @4l 0(0)> pmg, (o)

i

(14)

From (13

{weQa(w)> A)

Q

< %n*z > lwe @4l o (@) > B1H < 0ll{oe @l o (@) > B1}I,

-2

which proves (12).

§—Studla Mathematica LI3
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Now the proof of Theorem IV is easy. Multiplying both sides of (12)
by A%~ and integrating, we find that

[ o f (o )dm) of Rlfwe Q| w(@) > B} dA

cmg(w) {zeQ|w(x)> A}
f o dz.
Y

By Fubini’s theorem, the left hand side equals

(@) ( f w(m)l"‘ldl) b

{zeQla(@)>mg(e} mg(w)
3 a4
o’ (@) mQ(W)]
= )| ———— - ———\|dz
o )[ ) 8
{weQ| w(z)>mg(w)}
))1+a

1 148 7., ("no(w
> Qf W o — ZEL— Q).
’ ‘ 1448
Therefore, (% - 1?_ 6) ]Ql?l o'l dn < L@Q—(%)—)Lw, and (11) follows
¢

if we take 6 small enough. m
We conclude this section with a few remarks concerning (A,). Let
1y iy be positive measures on R”", satisfying w(Q*) < Op;(Q) for every
cube Q. We say that u, is comparable to u, if there exist constants
a,fe(0,1) such that whenever ¥ iy a measurable subset of a cube @,

/"z() . li /‘1(E)
(@ TS

LemvA B. The following are equivalent:

< p.

3
sy LI g ("I(E)) for all B < Q< R*, with 0, 8>0
#2(@) (@)
independent of B and Q.
(16) uq is comparable to u,.
(17)  py is comparadble to u,.

(18)  dpy(®) = wi(®)du, (@), where

1
1 140 )1+5 1 .
wit’d, < O——— | wyduy for every cube Q.
(M(Q) Qf 1 Gy 4@ Qf 1 dpiy f

Moreover comparability is an equivalence relation.
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To prove Lemma 5, one shows that (15)=>(16)=-(17)=>(18)=-(15).

The proof of Theorem IV shows that (17) = (18), and the other impli-
cations are easy.

Setting p, = Lebesgue measure, we see from Lemma 5 that (A,),
(A%), and (16) are equivalent, Moreover, we can now deduce the following
regult of Muckenhoupt [9]. ]

Theorem V. Any weight function o satisfying (A,) already satisfies (A,)
Jfor some p < oo.

Proof. Set du,(») = w(®)de and u, = Lebesgue measure. Condition
(A,) implies (17) at once, so we know from Lemma 5 that (18) holds

1
also. However, smce in this case w, = — (18) simply asserts that (A,)
holds for p = —~+1 =

To conclude we would like to pomt out that recently other weighted
norm inequalities have been proved; for the Lusin area funetion [5], for
fractional integral operators [10] and for the commutator integral of
Calderén [1]. R. Hunt and Wo-Sang Young have also shown that the
arguments described here yield the weighted norm inequalities for the
maximal partial sum operator for Fourier series.
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Centered operators

by

BERNARD B. MORREL (Athens, Ga.)
and
PAUL 8. MUHLY* (Iowa City, Iowa)

Abstract. An operator T on a Hilbert space is called a centered operator in case
the sequence ... T%(T™)%, TT*, T*T, (T*)21?, ... consists of mutually commuting opera-
tors. In this paper, all centered operators.are completely described up to unitary
equivalence and criteria are given for deciding when one is irreducible. Roughly
speaking, it is shown that the most general centered operator is a direct sum of unila-
teral weighted shifts (backward, forward, or truncated) with commuting operator
weights and a weighted translation operator acting on a space of vector-valued
functions.

§ 1. Introduction. A computation reveals that if T is a weighted
shift (unilateral or bilateral, forward or backward), then the operators in
the sequence ..., T*(T*)*, TT*, T"T, (T**T*, ... are mutually commuting '
operators. Following [10], we shall take this property as the defining
property of a class of operators called centered operators and, answering
the question raised in [10], we shall establish the extent to which this
property determines the class of weighted shifts.

In the next section we show that the partial isometry in the polar de-
composition of a centered operator is a power partial isometry (i.e., all of ity
positive powers are partial isometries). This fact coupled with the work
of Halmos and Wallen [5] enables us to show that a centered operator
can be written as a direct sum whose summands are either weighted
shifts (with operator weights) or quasi-invertible centered operators.
(Recall that a quasi-invertible operator is one with zero kernel and dense
range.) We then show, in Section 3, that every quasi-invertible centered.
operator may be written as the direct sum of operators which are egsen-
tially weighted translation operators on spaces of vector-valued functions.
In Section 4, we exhibit a complete set of unitary invariants for centered
operators, while in Section 5, we derive conditions for a centered operator
to be irreducible. Our concluding Section 6 iy devoted to questions for
future investigation.

* Supported in part by a grant from the National Science Foundation.
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