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On Fourier M multiplier eriteria
of Marcinkiewicz type”

by
WALTER TREBELS (Darmstadt)

Abstract. Fourier M§ multiplier criteria are given for radial functions on R™
in cage 1 < p < ¢ < o and for arbitrary functions if additionally p < ¢; here some
results of P. I. Lizorkin [11] and A. Bonami and J. L. Clere [1] are covered. The
method of proof consists of a direct reduction to fractional Riesz integrals (p < g)
or to singular integrals (p == ¢ with the aid of Bochner—Riesz kernels; Fourier trans-_
forms of the latter ones are generated by appropriate partial integrations of the multi
pliers in question. Thus both theories of singular and weakly singular integrals in-
cluding recent results in weighted L? spaces can be applied immediately.

1. Introduction. ITn this paper we want to give further evidence
of the central role which is played by (spherical and product) Bochner—
Riesz kernels in Fourier multiplier theory, in particular by their dila-
tions (see [18]). The Fourier transforms of these kernels result from
appropriate partial integration of the multipliers in question; thus the
frequently used method of partial integration (summation) is the basis for
the following. Here we discuss multipliers of type (p, ¢), 1 <p < g < co. If
P < ¢, we can quite simply reduce the multiplier problem to a discussion
of weakly singular integrals, i.e., to fractional Riesz integrals. If p = ¢
(radial functions), the reduction to singular integrals has to be slightly
modified. A further advantage of the present approach is to be seen in
the fact that one can also immediately apply recent results of Mucken-
houpt—-Wheeden [12] and Coifman-Fefferman [4] concerning weakly
singular and singular integrals on weighted Lebesgue spaces thus yielding
multiplier ecriteria for weighted L® spaces. We mention that we do not
need Littlewood—Paley functions which are used in some deductions
of Marcinkiewicz type multiplier eriteria.

The following notations will be used: o,x,yeR" s,%, ueR; j
= (Jy; -5 jn). denotes a multiindex with non-negative integral j,, abso-
lute value |j| =jy+ «.. +dn, D! = 893071 .. Buin; 8 is the set of all
infinitely differentiable functions, rapidly decreasing at infinity, 8’ its
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8 W. Trebels
dual. On I*(R™ define the Fourier transformation by

FIflw) =f (v) = (2m)™"" [f(a)e ™ do.
R"

me8’ is called a multiplier of type (p, g): me MZ, if
1 [nE ] o < Of s

F-! denoting the inverse transformation on 8’ and ¢ being independent
of fef.

2. Radial multipliers (p < ). As already mentioned above we will
essentially use Bochner—Riesz kernels in the proofs to follow. In case of
radial multipliers the spherical version is convenient. For a>> 0 it is
defined by (J, being the Bessel function; see e.g. [16], p. 154, p. 171)

(2.1) 7a(@) = Cala| ™™y (10]),  Tu(t) = O(7)
t->oc0, u > —1/2 fixed. Tts Fourier transform is given by
2.2) re (v) = (max {1 —7v2 0})%.

For sufficiently smooth functions e(#) on (0, o) seb

Ni(e) = sup [£+0M2 60 (1)
>0
THEOREM 1. Let 0 <b <1, e(f) be a function on (0, co) such that
Ni(e) < M as well as N1 (e) < M, where k is the least integer > 0|2 —nb —1/2
if 0 <b<1/2—1/2n and & = O otherwise. Then ¢(v?)e My, where 1L < p < ¢
< oo and 1/g =1[p—b.

Proof. The hypothesis clearly implies

o
lime(t) =0, [ #*]6%+(5)|dt < oo
c

00

for each ¢ > 0. But this is sufficient (see [17], p. 28) for the represen-
tation
4+1

(2.3) o) = D) f (s—t)¥de®(s) (t>0).
¢

With the aid of (2.3) the inverse Fourier transform of ¢(v?) in §’
may be evaluated (here the first interchange of integration order is justi-
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fied on account of the absolute convergence of the double integral):

KEHe(@)], > = <e(@?),f (0)>  (fe8)

=0 f f (s —v2)Ee® D) () dsf™ (v)dv

R" o2
= Ofske("“)(s) f(l _ kf‘ (v)dvods
[] Z< §

= fﬂf st D) () s"2y, (Vsa) dsf (@) dee.
gn 0

To obtain the last equality we used Parseval’s formula and an inter-
change of integration order (again justified by absolute eonvergence—
the inner integral can be estimated by C|2™*~Y). Hence

(2.4) F'[e(v®)](z) = C f §* e+ (5) 572y, (V3w) ds

SOOI Ns(0) [ (V510015 01) 5 Ty (V5 o) ]
§ Vs
Here the last integral is independent of |¢| and the parameter % in the
hypothesis is chosen in such a way that the integral converges absolutely.
Thus [F~[e(v¥)](y)] < O |y/*®~D and the assertion follows by the Hardy—
Littlewood—Sobolev theorem (see [14], p. 119)

| [lre=2if(-—y)lay|,
Rn

<SONLL (Il (Fed).

Our intention is to improve Theorem 1 by replacing N3(e) by a weaker
integral condition and by diminishing the differentiation order. The
latter can be achieved by introducing fractional derivatives: With J. Cossar
1941 define (ef. [17], p. 31) a fractional derivative of order a, 0 < a < 1,by

IF [e(v)I#fll, < CNppa (6)

d u
D () = _Hmﬁff (s—1)""e(s)ds,
U000 H

whenever the right-hand side exists, and fractional derivatives of higher
order a, @ =k-+a, by
d k

€Nt) = (E) e (t).
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Now introduce the classes (b > 0)

WBV? = {eeBVmO o0); lime(t) = e(c0) =0,
{—o0 .
lelp = sup [ #1de(t) < oo, mez)
om

and for a >0
WBVE,; = [6c03(0, 00); ¢, ..., 6" e Also(0, ), ¢ eBV10(0, 00),
m+1
lelatr,p = SuP2f+ 140 |de (3] < oo meZ}
om
(Noi;e, BVS,, in [2] and [18] is defined as above with |elsq1,, Teplaced
by f 1440 |de® (8)|; e WBVS,, says that e is weakly of bounded varia-

tmn of order a with respect to the weight #*; see also the following lerama.)
Leyva 1. WBVS,, « WBVS,, for 0<a’' <a, b>0.
Proof. ee WBVS,, implies for each ¢> 0 (m, denoting the largest

integer such that 2™ < ¢)
oo oM+l

f elad () < Y [ 1*1ad )

my gm

(2.5)

< lolassp 2(2’")—” < oo,

™y
Hence, by [17], Lemma 3.15, one has for each ¢t >0, —1<
representation

a' < a, the

(2.6) 0(a+1) Ga,af a a'— 1d0(a)( 3)
i
and therefore,
am+1 om-+1 a
[ a0 <0, [ 1d69(s)] [t (s> a4
om om am
9m+1 o 2+l
4G, f 1+ Z f 1= =1 A (5)] dt
d=m1 of
am+1 o
< Oslelagna L+ f > o7t} < Olelagay
i1

uniformly in m, i.e. the assertion.

We are now able to deduce

TamoREM 1. Let 0 < b <1, let e WBVYS for some a> n/2 —nb—
—1/2 4f b<1/2—1[2n and a = 0 otherwise. Then ¢(v?)e M2, where 1 < p
<g<oo and 1/g =1/p—Db.
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Proof. The above lemma gives us the representation (2.6) for e = ¢©
and hence

(2.7) F'le(v?)](a) = 0f $3s™2y (Vsm) de@(s),
[

because
1T~ e(v?)](«)]

b
< O™V 6lgyrpme D,  SUD
) S0 aMgagomtl

(Vs [2))"0 |, (Vs o))

with uniformly convergent sum (when the parameter a is chosen as in
the hypothesis), since on account of (2.1) the single terms of the sum are
dominated by O(V2™w|)"Pmin {1, (V2™ &)~ "+12}, The assertion
now follows as in Theorem 1.

‘What is annoying about Theorem 1’ is the fact that given a radial
function e([v|) one has to examine e(lﬁ). In the case & = k integer, it easily
follows with the aid of Lemma 1 that e(V8)lspy pmje < OM if [6(8)|y1,pm < M.
Hence

COROLLARY. Let 0 < b <1, ¢(f) be a function on (0, co) with

om+1

sup f 136 (1)) < oo

m

¢(o0) =0,
om
for & as in Theorem 1. Then e(lv))e M3,0 <1jqg =1/p—b,p>1.

Remark. a) Let us mention that the assumption b > 0 allows this
straightforward reduction of the multiplier problem to the Hardy—Little-
wood-Sobolev theorem. The latter theorem is an easy consequence (see
Hedberg [5]) of the fact that the spherical maximal function is a bounded
operator on L?, p > 1 (see e.g. [14], p. b). » ‘

b) Hormander [6] proved: If 1 <p <2< g < oo, then [v"e(v) L™
implies e(v)e M (e(v) not necessarily radial). It is clear that this criterion
in the prescmbed (p, ¢)-range is much better than Theorem 1'. Interpola-
tion between these two results should give an improvement of Theorem 1’
with respect to differentiation order.

¢) The straightforward estimate |F~'[e(4%)](y)| < Oly[*®~Y has the
further advantage that one can directly apply weighted versions of the
Hardy-Littlewood—Sobolev theorem due to Stein—Weiss [15] and Mucken-
houpt-Wheeden [12].

THEOREM 1. Let 0 < b < 1 and €()

(1) [18] If 1<p<g<oo, a<nlp, f<nlg, at+f>
= 1/p—b+(a+p)/n, then

I~ [6(v?)]xf ()

sa,tisfy the conditions of Theorem 1'.
0, and 1ljg

%=1l < Ollf () 1%l
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(ii) [12] Adssume L <p < gq< oo, 1/Jg =1/p—b, and V(x) is a non-
negative function on B™ such that for every cube, Q(1Q| denotes the Lebesgue
measure of Q),

1 e )llq(—l— V()] d )W<K (i i=1)
(IQIJW(M o ]quf[ (@) do =1,

K independent of Q. Then there is a C, independent of f, such that
1B [e(0?)]f(2) V (@)l < Clif (@) V (@)l

d) It is interesting to note what happens in the limit cases p =1
and b =0.
I p =1, then b = 1/¢, and Theorem 1 in [2] tells us:
Let ¢<BVEE, 6. essentially
T
e(c0) =0, [ 1%+ 146@ (1) < oo,
"o
with & as in Theorem 1’. Then e(v*)e MY, 0 <1/g =1 —b.
This theorem nicely shows how much stronger we have to choose
our hypotheses in order to cover also the case p = 1. The case b =0
is treated in the following section.

3. Radial multipliers (p = g). Here it is convenient to introduce

the classes
am+1

WBY, = {¢<I™(0, oo); lely = sup [ |de(t)| < oo}
meZ om

and for a >0
WBV,y = {6eL2(0, o0); 6, ..., 6%V Al (0, 00), @) BVy,(0, 00),
. am1
lelas = sup [ 1%1de9(8)] < oo}
meZ om

(Note, BV, in [17]is defined as above with |e|,,, replaced by [ (e (8)].)
0
We want to show a result analogous to Lemma 1. But this is now more
difficalt since in general (2.5) does not hold under our new hypothesis.
LEeyyA 2. WBV,,, € WBV,, for 0<a’ <a.

Proof. If o' and a are both integers, then ¢c WBV,,, clearly
implies for each ¢>0,1> 0,k =1,...,a (see (2.6))

[ 1ae(t) < 0o, M (1) =0 fm (8—1)"*de 1)
P " i
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and the assertion follows as in the proof of Lemma 1. In the case of frac-
tional &', @, the same idea is used. Since the proof is quite paralle! to the
corresponding one in [17], Section 3.3.1, we only sketch it. Define for a > 0

u

Lft) = 0 [ (s—1)*"f(s)ds

t
and I°f(t) = lim I%f(¢) if the limit exists.

Ur00
First consider 6 WBYV,; for 0 < @ < 1; then one can show I%(¢®)(z)
= 0(1) uniformly in %, which is used to deduce

(0 <t <u)

{oo
(8.1) ¢ () = — [ ae(s).

; .
As in [17], pp. 34-33, it follows for each a’, 0 < a’ < @, that &@)(z),
¢ (1) exist almost everywhere and

€)= C [ (s—1)*"de(s) (0 <r<a'+1)
! t

for almost all £ Since (¢!*?)@~9)(f) = ¢l () a.e., the assertion now follows
in case 0 < @’ < o<1 analogously to Lemma 1. Tf a > 1, one first shows
(3.1) (see [17], p. 36), hence WBV,,, = WBV, and iteratively WBY,_,,;
< WBYV,_; with 0 < a — % < 1. Applying the known results in the latter
case leads to (2.6) for —1 < a’ < a (see [17], p. 37), and hence the asser-
tion for arbitrary 0< e’ < a.

THROREM 2. Let e« WBV, ., for some a > (n—1)/2. Then e(v?)e M,
1<p<oo. .

The proof differs from that of Theorem 1’ for we do not have (2.6)
for o’ = —1 at our disposal. But all we need is (2.7). To this end, let
G(t)e0™ with G(¢) =1 for 0 <#<<1, G(3) =0 for 2 <<t < oo, and 0 < G(¥)
< 1 otherwise, and consider

[
e, (1) = e(t)G‘(;) (w>0).
Then ¢,¢ VV?BTVTH1 uniformly in % > 0. For integral a this follows imme-

diately by Leibniz’ rule using

(3.2) (—t—) @ (%)’s 0 f |G ()| @t < oo
0

u

for arbitrary a’ > 0 (see e.g. [18]) and Lemma 2. For fractional a’ proceed
analogously to [18], Lemma 1.1(iv), where one has again to use (3.2)
and Lemma 2.
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Now ¢,(f) = 0 for ¢ > 2u; therefore, (2.6) holds for each ¢, (¢’ = —1)
and hence (2.7) for @ = 0 with ¢ replaced by e, (take in the proof of The-
orem 1 only fe8 with support disjoint from the origin), because

)

17 [0, (0%)1(2)] < Olol™|elass Y, SUD

oo aMgagamtl

(Vslal)™|r,(Vs |al) |

with the sum uniformly convergent in @ # 0 by (2.1) if 4 > (n—1)/2.

Now ¢,(v?)—e€(v¥) bounded and pointwise, i.e. in 8, and therefore
F~[e,(v?)] tends in S’ towards F~[e(v?)]. On the other hand, for feS
with support disjoint from the origin,

F ey ()], > [0 [ s75m2r,(Vs|al) 36 (s)f (@) dar,
. RP [} ' .
ie. for # % 0 the distribution F~'[¢(v?)] has the répresenta‘uion (2.7).
It is not hard to check that Hérmander’s condition

| - @

[ |7 teom (”—t—y—) — T o(0%)] (—;)‘ <0

lzi=>2

is satistied for |y| <1, all.t> 0 and &> (n—1)/2. Since ¢(v?)eL™(R"),

Le. ¢(v?)e M;, the assertion follows by Hérmander [6], Theorem 2.1.
By the above, it is clear that for a > (n—1)/2

t—'ﬂ

T [o(0%)](@)] < -lfl— ol

Furthermore, by assumption,
le(w?)| < M.

In order to é.pply a recent result of Coifman—Fefferman [4] on singular
integrals in weighted Lf-spaces it remains to prove that for |y| < |#|/2

1yl

lm'n—(-f *

1B~ e(v")](2) —F~*[e(v¥) ) (2 —y)| < O

By Taylor’s formula and the representation (2.7) this can be shown
to be true for ‘> (n+1)/2, ie., the differentiation order is increased
by one.

THROREM 2. [4] Let 6e WBYV, 4, a > (n+1)/2, and lot V (a)e Lk, (B")
be non-negative such that for every cube, Q,

(Wil f V(w)dm) (Wll f -V(w)“”@-”dm)p_lglfy
§ Q
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K being independent of Q. Then, for 1 <p < oo,
J1F e (03] % (@) V (2)dw < O, [ 1f@)P V (a)da.
© me ‘ B

Again the question arises whether Theorem 2 and 2' remain true
for ¢(|v]). We only treat the case a being an integer.

LeMMA 2. Let &(t) be a non-negative, strictly monotone imcreasing
Junction with Lm &(¢) =0 and lim &(t) = oo, and let possess (a+1)

-0 t—c0

continuous derivatives (a integer) on (0, oo) with

FOHD (1) < DB'()) (i =0, ..., a).
Then e(t)e WBV,,, implies ¢(®(2))e WBV,,,.
Proof. Analogous to [17], p. 28, it easily follows that

am+l o(em+1) .

d a
f t“ d(-ﬁ) (@) < 0 f 1146 (2)].
om ?(2™)

Now & satisfies the so-called A,-condition: &(2t) < KD(t) for all
t> 0 (see [7], . 24), because the hypothesis implies '

10/ (5) < (D+1)D(1)
(see [17], p. 29), and hence

2t ' 2t
&(21) &' (s) D+1 »
= | — = log2P+1,
log 10 f B(s) dsgtf p ds og

This 4,-condition allows the final estimate
o@em+ly Ei+20(1)
[ raefm< [
@™y ' Eio(1)
COROLLARY. Let @ be as in Lemma 2' and
om--1

e < M, sup [
m om

1de@ ()] < O le|gyr- ¥

*|de™ ()| < oo

for integral &k > (n—1)/2. Then e(di('v”))e ML, 1L <p < oo. In particular,
o(lol) e M3 :

The result e(|v])e ME is essentially due to Bonami-Clerc [1]; for
compact Lie groups see Clerc [3]. Let us observe that a sufficient condi-
tion for radial Mi-multipliers is

eHI< M, [ FaO@< o (0> @m-1)p2)
0

(see [17], Theorem 5.10).
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4. Arbitrary multiphiers (1 < p < ¢ < o0). If 6(v) is not necessarily
radial, there are M2 multiplier criteria (p < ¢) due to Lizorkin [10], [11]
and Littman [9] (the latter one is based upon Hoérmander’s M5 multi-
plier criterion). Here we want to prove a special case of Lizorkin’s results
by a direct reduction to the coordinatewise fractional integral (0 < b < 1)

Bf@) = [l .. P flo—y)dy,
Rn

which satisfies for some constant ¢ independent of feS
(4.1) IB®Sll, < Clifllp

(see [13], Theorem 5.2.12)

TeEmoREM 3. Let 0 < b <1, e(v) be one time differentiable on v; # 0;
1< i< n, such that the differentiation order may be interchanged and

A<p<qg<oo,lig =1[p—Db).

n
[ w1 D7e(0)| < M
i=1
i uniformly bounded for v; = 0, where the coordinates j; of the multiindes j
are 0 or 1. Then e(v)e ME with 1 <p <q< oo, 1/g =1[p—b.

Proof. (i) One may restrict oneself to functions e(v) even in each
coordinate: For, as may be seen by induction, one can decompose ¢(v)
into 2® terms e;(v) with ¢;(v) even in n’ coordinates, 0 <’ < n, and odd
in the remaining »'’ ones, »’ +n'" = n. Further,

(4.2) e(0) =277 D ke(£ 0y, ey ),

where the sum is extended over all -+ combinations of the n variables
¥yy..., U,, pence consisting of 2" terms. Now, choosing sgnv; appropria-
tely: e;(v) =sgnv,~1...sgnwin,,e}“(v), one obtaing functions ¢ even in
each coordinate.

Defining for feS, C a suitable constant,

. (o] o
U Ry = 0PV [ [ fle—teti— . —tudn T ity L dy

(€1¢R™ being the unit vector on the 4,-axis), one knows that f;(@) exists
in I7, 1 < p < oo, and has Fourier transform

sguo; ... sgno,, f (v).
Hence, for feS,

'] = D F e ] =0 Y P ef]+f,,

i=1 i1

(4.3)

and we have to discuss ;.
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(ii) Set ¢; (v) = h(v). By (4.2) it follows that

(44) o L o DIR(0)] < [0y .. [, et D e(0)] < M,

ie., h(v) (=€ (v) for arbitrary i, 1< i< 2" satisfies the hypetheses
of the theorem. In particular, since h(v) is even in each coordinate, it
follows by partial integration that
o0 (=]

45) k) =0 [ .. [ Dhwds (=,...,1), v; #0).

: vyl opl )
Evaluating the inverse Fourier transform (analogous to Theorem 1)
leads to (j =(1,...,1)) ’

PR (@) =0f...fﬁ§%ﬁ“—fmh(u)du

[ i=1
0 0 n . [ ]
. ; SIn [&;| U;
— -
= Qo™ ... |z lf f et i) [ [ oSk i au,.
) ‘ b § oty (1))

Hence, by (4.4),
1 Loy ()1 ()] < O M oy 7 . |l

wniformly in 4, 1 <4< 2% and therefore, by (4.1) and (4.3),
on
W Wy < O'M D fill, < O Nf I
. i=1
C being indépendei:m of fe8, b, p, ¢ being as in the hypotheses.

Analogous to Theorem 1' one may weaken the hypotheses: intro-
duce a dyadic decomposition of B as is done on p. 103 in [14], i.e., decom-
pose R into disjoint rectangles 4 which are Oartesian products of intervals
[2¢, 21 and [ — 2%, —2¢]. Now regard for every n’ <'n, R™ be embedded
in R" in the obvious way: R" is the subspace of all points of the form
(Tyy -vey By 0y 0ey 0.

TumorEM 8. Let 0 <b <1, e(v) be continuous for v, #0, one time
differentiable in ecach coordinate - such. that the differentiation order may
be interchanged.. Further, . . ‘

() foul” o al’le(0)l < M, -
. » o 0"e(y)
(W sup f il foul?| G0
(0 <’ <m, if n' = nthe “sup” sign is omitted) as A ranges over dyadic
rectangles of R™. '
(iii) The condition analogous to (ii) 4s valid for every one of the n! permu-
tations of the variables vy, ..., Vn « ‘

dv, Ao, < M

2 — Studia Mathematica LVIL 1
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Then e(v)e M3, where 1 <p < ¢ < oo and 1/g =1/p—b.

The proof is only a combination of the methods applied in the proofs
of Theorems 1’ and 3; therefore we omit it.

Remark. a) As already mentioned, Theorem 3 is due to Lizorkin
[10], [11] who obtains it as a special case of sharper results. Since his
methods cover also the case b = 0, his argumentation is naturally more
complicated. Lizorkin’s basic idea consists in the supersition of some
‘elementary’ transformations, essentially coordinatewise Riesz poten-
tials and Hilbert transforms. Our method is a modification of Lizorkin’s
one for we emphasize the important role played by partial integra-
tions (by which the Fourier transforms of Bochmer-Riesz kernels are
generated) and give a direct reduction of the multiplier problem to prob-
lems concerning weakly singular and singular integrals.

b) Aremark analogous to the first Remark a) holds (one has to replace
the .spherical maximal function by the maximal function with respect
to rectangles whose sides are parallel to the axis; see [14], p. 24).

c) There exist variants of the Hardy-Littlewood—Sobolev theorem
with coordinatewise weights (see e.g. Okikiolu [13], Theorem 4.5.14).
These allow us to formulate an analogue to Theorem 1'/(i), but we omib it.

d) There remains the question what happens in the limit cases p=1
and b = 0.

If p =1, then b = 1/g’ and a result in [18] tells us: Under the hypo-
theses of Theorem 3’, where

o (=]
J 1. ldv,... dv, s to be replaced by f f [...|dvy ... dv,,
a4 —00 —00

it follows that e(v)e M¥, where 1 < ¢ < oo and 1/¢ =1 —b.

Theorem 3’ remains valid when setting formally b = 0 (see [14],
Theorem 6°, IV). This is the standard Marcinkiewicz Fourier multiplier
criterion on LP(R"), 1 < p < oo, due to Krée [8].
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