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Tnterpolation of 2" Banach spaces
by
DICESAR LASS FERNANDEZ (Campinas, 8. Paulo)
Abstract. In this paper we introduce a theory of interpelation for several Banach
spaces via & generalization of the J and K-methods of J. Peetre. The special feature
is o consider 27 spaces. This enable us to prove the equivalence between the general-

jzed J and K-methods and then to obtain a reiteration theorem. An application to
Lorentz spaces, with mixed norms, is made.

I

0. Introduction. Let X and ¥ Dbe two measure spaces with o-finite
measures x and », respectively. We say that a complex valued pXv-
measurable function f on X x ¥ belongs to % (I”) i

u ILf(m, y)“[,ﬂ(x) “LQ(Y) = {f { f ‘f(m’ y)l”dy}qu d'ﬂ}”a < o,
Y X

that is, if the iterated L” morm of f is finite.
Tf g is a complex valued funetion on Lt--I%®, the Hardy transform
of g is defined by

g (@) =17 glp pazee =1 K (G5 G5 , ),

(see Oklander [10] and Peetre [8]).
Now, if fisa uX p-measurable function on X X ¥, it is natural to put

(s, 0) =17 s~ Wf lzr sz llgt sz
= 1187 F il pezeoy it esze) -
After a formal multiplication, it is natural to, also, consider
(s, 1) = T T I F Il Lt g s (Lo0) HE (L) 6L

The function norms f** and F*** are equivalent (see [7]).
These ideas enable us to introduce the following.
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Let By, B,, By, and H; be four Banach spaces continuously embedded
in the same topological vector space. If feF,+H, +H,+F, and s > 0,
> 0, we put )
K(s; & f) =If Ny +om,+im, 402,

= it {lIfollz, + 8 Ifallz, +21fallm, + st 1 fallz, »
f=Xfy
TyeEy,

. and we say that

f e (B, By, By, Es)o,0ixzs
where 6 = (8, 0;) and @ = (¢4, ¢.) > 1, if and only if
§7%s7 2K (1, 825 f) € L2(LY).
o =(6,0),0=I(q,q, B =E, and B, = B,, we will have
(En Ea)a,q;x = (Eu Ey Ea; Ez)e,q;x

with equivalence of norms; that i, our spaces are a generalization of
Peetre’s interpolation spaces (see [8]).

We will study first the theory for 2* spaces and then extend the the-
ory to 2" spaces.

The interpolation of several Banach spaces was suggested by C. Foiag.

and J. L. Lions [4]. The means method of Lions—Peetre for several Banach
spaces was developed by Yoshikawa [11], and the complex method of
Calderén by Favini {3]. The extension of Peetre’s K-method was intro-
duced by Sparr [9] and the author in two notes, [5] and [6]. We give
& recursive definition for the XK function norm and this enables us to
obtain the equivalence theorem (with the J-method) and then the re-
iteration theorem. We give also an application to Lorentz spaces
with mixed norm (see [7]).

1. Preliminaries. We consider 4-tuples E = (E,, B,, B,, B,) of Banach
spaces By, H,, H,, and H, algebraic and continuously embedded in 2 some
Hausdorff topologieal vector space V.

If E = (&, By, By, B;) is a 4-tuple of Banach spaces, we say that
. an element f e V belongs to

Z2E = B+ B, +H,+ B,
if there exists f, e By, ¥ = 0,1, 2, 3, such that
f=fo+f1+fz+fs~

If the linear subspace ByNE,NE,nE, of V is different from {0}, it will
be denoted by . .

NE.

e © :
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The spaces XE and {(")E are Banach spaces, continuously embedded
in V, under the norms

Iflzg = inf {{Ifolz, + fallw, + Iallz, + fslle,}
fall
and

fllne = max {Ifllgys 1f s 1f lzyy 1f 1z}
respectively. .
We will call an infermediate space (with respect to E) a Banach space B
such that
NE cE < ZE.

(in the sequel < will denote continuous embeddings).
Let E = (B, E,, E,, E;) be a 4-tuple of Banach spaces and 2
= (f3,%) > 0 (that is, ¢, >0 and £, > 0). If feXE, we set
K (b, 1;f) = K& F) = K(45 f; E)
= inf {|follg, + . 1fullg, + tallfalle, + 0t lfsllz,} 5
f=Zfp
TreEy
where f,eF®,, &t =0,1,2,3.
I ge NE, we seb
Tl tsf) =T (&) = Tt f)
= max{|lfllg,, t 1f g, 1ol Iy s tatallfllm,} -

It is easy to see that K (f;f) and J(Z;f) are function norms (they

depend on the parameter 1) on ZFE and (N E, respeqtively.

The following inequalities will be useful later.

Let feZE,ge (E,s = (81, 8;) >0 and t=(1,,1,) > 0; then
K (b, b5 f) <max{l, 8877, 82157, 818,87 85 *LE (81, 825 )
min(1, 8,57, 8,57, 313251_11";1)K(t1: 13 f) < K (81, 855 ),
min (1, t1, 2ay £y, 1) If llze < K (3, 15 f)s
K (i, b5 f) <max{l, 4y, ¢y, 31} |f l2m,
min{l, &, 7 47 E (4, s ) < Iifllzes
Iflls < max{l, &, &7, 37 T E (5 f),
min{l, tlsl_i! a8, ST My ta} I (81, 825 9) < I (B1y a3 9)s
K(ty, 155 g) < minfl, 8,577, 2875, 57787 $ata} I (81,95 9),
max{l, 8877, 8ot 818287 b5 FH (1, 123 ) < I (815 825 9)

The proof is straightforward.
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Let E be a Banach space and 1 <@ = (g1, ¢a) < oo. The space LE(H)
= I (R, B)is the space of H-valued strongly measurable functions on R,
with respect to the Haar measure

dt dty clt2
T 1,
and such that
1 .
191 g, =11 191 1.5, 0 < 05

when B = R or C we will write L instead of L¢(E).
1.1. ProOPOSITION. Suppose that one of the following conditions holds:

(111 0<o <1, 0<O,<l, 1<q, (@< oo
(11.2) 0<6;<1, 0<0,<1, g =00, 1<Kgx 003
(113) 0<<1, 0<6;<1, SUS®,, =0
(114) 0<<0;<L, 00,1, g =4¢qy= oo,

Then

“t;axtz—ﬂzmm(l, 1y, Tay tlt’)“z,g < 00,

Proof. The proof follows from direct calculation.

2. The K-method and J-method. Let 0<< O = (0,,0,) <1 and

1<Q = (1) ga} < 00,
We define the space

EB,Q;K = (Hoy B1, B, Es)e,q;zc
to be the space of all elements f e 2E for which
O K (b, t; f) € I = LE(LD).
The spaces Ego.x are Banach spaces under the norms

ooz = K (& 1)l = || G E (b, 15 1)l |

when one of conditions (1.1.1), (1.1.2), (1.1.3) or (1.1.4) holds. In all other
cages the space reduces to {0}.
‘We define the space

Es,q;.f = (Em En Ezy Es)a,q;.r .
to be the space of all elements f € ZF for which there exists a strongly
measurable function % = %($,, §,) with values in () E such that
fzf f u(snsz)'id‘s“‘isl
. g 0 S1 %
and . :
51—6132_03‘7(31: 835 U(8y, 8,)} EL?(L?) .

icm°®
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The spaces Eg o, ; are meaningful when one of eonditions (1.1.1), (1.1.2),
(1.1.8) or (1.1.4) holds. In all other cases the space reduces to {0}.
They are Banach spaces under the norms

fif”e,o;.r = mi{ ”31_9155_65“7(317 855 %(8y, 32)) HL?(LEL)};

where the infimum is taken on all % such that

o0 o0

¥ =f f %(8y, sz)gst'dﬁ

8
A 3

2.1, ProPOoSITION. The spaces Egox and Ego; are intermediate
spaces with respect to E = (By, By, E,, H), that is, we have

(2.1.1) NE c Bg g = ZE
and
(2.1.2) NE < Bopy = ZE.

Proof. Letfe (E; then

Iflze < Wfline

and
K (ty 15 f) <min(l, &, s, 2y8a) U llz
Smin(l, by, iy tds) [ llne-
This implies
Iflls,0:x <

that is, the first embedding in (2.1.1). The second embeddmg in (2.1.1)
follows from the inequality

If iz < {lif; 2ty 2min (1, &, ta, tlts)"LQ}_l”f”QQ;K‘

lf 3 "ain (L, By, By tata) [0 1f lnms

Now, let feEgqgy, S = (81,8,) >0 and & = (tl,tg)>0 Then by
the Holder inequality (see [2]) we have

Wfllze < || (s15 s)lzml 1
< [{min(L, sz Yysty sy sy 1)}J(5'17 3a§f)l[Li
< JsfrsPmin (L, s77, 57, STISEI)HLQ'HS?]SZU(SU 825 u(sy, 52))”1'27

where @+Q" = QQ’.

llsf1slmin (1, 77, 8371, s;]s.;l)ﬂLg

But

= lls7 "1s7 2 min (1, 8y, 84, 8182)11L2,< o0,
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then :
111z < O'l1f g, g,y
where C is a constant that depends only on 6 and Q.

To prove the continuity of the second embedding consider a non-
negative function y = (i, ?,) such that

s 1ty " (B, 1)@ = 1.
4
Putting
(b, t)min (1, 877, &7 37 Y)

[l (83, 59) m0iin (1,87 %, 877 8787 )"Ll

% (8, £g) = I

we have

lw(sy; 82)min (1, s7*, 877, SIIS;I)I]LLM‘IQ,Q;J

< (s, symin(L, s, 557, 31—1sz_l)ndntl_alta_oztf(ﬁ: ty5 u(ty, tz))"Lg

< It (fy, tmin (L, 7, 57, 67 ) (s 63 g
IR s OB AT Lgﬂ.ﬂ]nﬂ
‘ < g
Now, taking the supremum with respect to v, we get
flle,gur < {I {hefemin (L, 877, 537, s7s; l)ﬂLg'}_lﬂf“nm

and this inequality completes the proof of (2.1.2).
‘We have algo the following

2.2. PROPOSITION. Let f € Bg gz Then

K (84, 823 F) < sjtsp{ler 1ty smin (1, ¢, 4, tﬂz)“Lo}_l If lle,q:z -
Proof. We have
min (L, &80, fa877, bty sy VK (81, 83 f) < K (81, a5 F)-
Then

Jipugamin (1, 8,877, 885", GatasT

ls;I)v[]LgK(s,\_, 823 1) < fll,g:x -

How, a change of variables gives the result.
. On the equivalence of the” X and J-methods. We start with the
iollomng theorem,
3.1. PROPOSITION. For 0 <6
(€15 ) < 00 ‘
(3.11)

= (04, 6 )<1 1P =

(P1, 1) <@ =

Egp; < Eggx-

icm°®
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Proof. If feEgp,;, we have

ds, tz'ts2
S3

K(tyte;f) < f fK Ty5Ba; % (81, z))

0

Cr ds;y s
<f f min (1, 6,877, fa87"y 4187 a8 ) J(sn 835 (81, Sz)) — ==
- 81 8
and
dsy ds
G, s ) < r%%fme)ﬂ g2
8 83
Now, putting
min (1, £, 8) = min(L, 81, Safs, S18:82%2),
by Young’s inequality (see [1]) we obtain
K (5 )l ” “s—ﬂt- min (1, , s7)s°J (s; u(s) | n e
<1 m(1, 1, €] T (8 ()| 2
where 1/R = 1—(1/P—1/Q), for all representations.

SR &, @
N
() 2

Thus

Iflle,qi < I~ min(1,1 f)l[ W lloz:r
which proves the proposition.

Tn the next proposition we show that inclusion (3.1.1) may be re-
versed. TFor this purpose we need the following non-trivial extension
of Peetre’s lemma ([8]).

3.2. LmvMuA. Let f e ZE, for which there ewist constants

0< O =(0,,0)<1 and € =0(f)

such that

(3.2.1) E(s;f) < 0(f)s®

Then there exists a strongly measurable funciion w =u(sy, 82) i ME
satisfying

(3.2.2) m

= ff%(su o) B dsy dsg
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and
(3.2.3) J (81, 825 u(sy, 32)) < (46)2 K (31, 855 f).

Prooi. Let E = (B, 7, B, ,) and By, = By+ H, and By =H,+E
with the norms

“‘”01 = H'"E'D—i-El and ””23 = ”'”E2+E37
respectively. We will have
Koy (815 for) + 83K o3 (815 fa) < K sy, 825 1),

where f = fo,-+fos With Jone By and fpy € By;. Now, taking $3 =1 and
using (3.2.1), we have

Koz(sﬁfo;) <0Osit  and Kog(81, faa) < Oslt.

Now, by Peetre’s lemma there exist strongly measurable functions
% = u(s;) e BynE; and v = v(s,) € B,NnH; such that

Foo L ds
fo=[a60 52 @ B4y
0

and .
oo dg )
fu=[ o) =2 (n Bt
b 51
Furthermore,
In (815 '"’(31)) < 46Ky (845 for)
and

Jag (‘5‘15 ”'(31)) S 46K 55(81; fag) -

Putting'w = u +v, we see that there exists a strongly measurable function
w.=w(s,) in BynE,+F,NE, such that

f:!w(sl)% (in ZE).

Now, putting B? = BynE, and E?* = B,nH, under norms

- = lzynem, and .| = I lzymems
we have .

-K(gza w(ﬁ)} < Jm(sﬁ\""(sﬂ) + 8254 (315 ”(31))

< 49{]:01(31? Jou) +82K (515 fas)}
< QK(%; $3; F).

[ ' ‘
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Fixing s,, we have
K (355 w(sy)) < O°(f)s-
Again, by Peetre’s lemma, there exists a strongly measurable funection
y
u = u(sy, 85} in B NE? such that

©0

dsy
w(s,;) = f u(snsz)_g;’

and x
o (825 w81, 89)) < 46K (853 w(s)) -

Now we have
J(Su 835 4(81, '5’2)} = J(Sz; (81, 32?)
< 46K (545 w(s1))
<

(46)2 K (81, 823 f)
and .
bl dsy ds,
fm ) e

3.3. PROPOSITION. Let 0 < O = (81, 65) <1 and 1< Q = (g1, €) < °
Then

Eoqrx < Eog-
Proof. Taking fe Bggx and £ = (f1, %) <8 = (sl,kg), we have
K (g, 13 F) < K81y 825 F)-
I B(f) = Bty ts) = (t1, 00) X (f3, 0), then
E(E;N)ls™ XE(E)(S)“LQ < Is7°K (55 f) xmm (S)“L?,
and this implies
EE) < Plflsr-

Xow, by -Lemma 3.2, there exists 2 strongly measurable funetion
u =u(t) = u(l, t) in (E such thab

F &, dy
f—_-offu(tl,tg)

T
0

J [ty to3 w{ts, 1) < (46 K (t, B3 f)-
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Hence
a0 (85 u ()] o < ( 4e>2 K (5 )l o
and we see also that

Il 3,0y < IE (L, B)] g [[E°T (8 w(B))] jg < o0,

ZiEE) S
where 1/@+1/Q" =1 and m(1, ) = min(1, ¢, t,, t,,). This completes
the proof.

Combining the results of the latter two propositions, we obtain the
following theorem.

3.4. TEEOREM. For the intermediate spaces Egou and Eggy ;. we
have

(3.4.1) Eoox = Eg .5

with equivalence of norms.
3.5. COROLLARY., For 0< O <1 and 1< P<Q we have
: Eopx = Eoqixs
in particular,
Eorx = Eogix = Boox
(here 1 = (1,1) and oo = (oo, oo)).
4. Reiteration theorems.

4.1. DEFINITION. We say that an intermediate space E of E
= (By, Hy, Ty, By) belongs to
(i) the class K (O, E), 0 = (6, <1 if

<6
(4.1.1) Kby, 65 F) < 0y 11t22“an (fe B, ‘
(ii) the class J(@,E), 0O = (0, 0,) <1 if
e < Cﬁtl—glrtz—on(tu ) (f e NE)

(iii) the class H(O, E), 0 <60 = (6,,0,) <1, if it belongs to the class
K (0, E) as well as to J(0, E).

The next proposition gives necessary and sufficient conditions for
an intermediate space B of E tobelong to one of the class defined above.

4.2. PROPOSITION. An intermediate space B of E belongs to

(a) K(O; E),0<0<1, if and only if

(4.2.1) B < Eg oz,
(b) J(O; B),0< O <1, if and only if
(4.2.2) Eo,, < E,
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(e) HO; E), 0<O<1, if and only if
(4.2.3) Eoyy = B < Bo e

Proof. Part (a) follows by the definition of Eg . and K(0;E).

To prove part (b), we first show that if & e J(9; E), then Egy,; < B.
Indeed, if f e Eg,,;, then there is a strongly measurable function w =
u(ly, &) iIn ME such that

~ 7 i dt
(4.2.4) f= f f ult, )2
5 8

g,nd
1718572 by, taj % (b, 1)) € Tk
Hence

Wis < F fo It Bl -

O (ftl 9115;02J tl: tz: (tly tz})——“"—'
[ ]

1ty
and this holds for all u = u(i,, i) that satisfy (4.2.4), and thus
(4.2.5) o flz < Cliflo,x:5-
Now, assume (4.2.5). For n = 1,2,..., and T = (3, 1) > 0 set

nt i et <<t i=1,2;
0 otherwise.

(81, 82) = {
For each fe NE, let u,(8;, $5) = 9,(81, 82)f. Thus

F ds, ds
f=ffun(s1,sg>—l——‘i
¢ 31

S
and
o0 oo
r ds, ds
—8; 0. 1 08y
I1flle,1r < ’ f’gl 18, ZJ(817827 (31;32))”"‘—‘
§1 8
[
dsy ds
—0 08y a8y
f f 185 b (Slasayf
§1 $s
elln tle“"

< t:‘.’lt;%J (t1y ta5. 1)

7 — Studia Mathematica LXV, 2
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Hence
1Flle < W llopss < € 37°145 2T (4, ta; f)

proving part (b).
Parts (a) and (b) give part (e). .
4.3. PrOPOSTTION. Let @, = (61, 62), @, = (0%, 63), @, = (62, 62) and
Oy = (B, 02) such that 0 < 6} < 6} <1 and 0 < 6 < 0] < 1. Put 6 = (6%, 6?)
where 61 = (L—AY6L4+216] and 62 = (1—R) 2+ 26, for 0< A = (A, #)
< 1. Let F, be an intermediate space that belongs to K(0,; E), x = 0,1, 2,3,
wd F = (F,, 7., By, Fy). Then
4 Froxy < Bogxy-
Proof. Let [=fi+fitfitfacFox and &= (i;,1)> 0. Then
Kt fo) < Goteoufn”Fo = Gotgﬂt% “j;JHF(]’
(8 £,) < O fally, = Oui15 1 flr,
K (t;fo) < Ot |f allr, = Cst tagﬁfzﬂzrzy
E (83 f2) < Ost*Wfullp, = Osti85Ufall,-
Sinee £91=% = %35, £9—% — fei—s* and £95-% — 1901570
K(i,f)\K(t Fo) +E (5 )+ E(; fa) +E (%5 fa)
<0 Lf»lpo+01tf’lﬂf1npl+asteznfsnp,+08t°3 W fallery
< Ut“ot%{[lfoﬂp,,'f‘t“ﬂ"’o ufluF,+t°z—e“’ 0 lfallz, +
G [ fallp 3

, wWe have

where

. 0= ma’x{om 01; 025 Gs}
Hence

K (b, a3 ) < OIRE (1%, 17%; f)
and
616 6 a o”—mz
PG R (b, 1 ) < O80T TR, {0 ),
Putti )
21 2
8 = t:’a" and 8, = ﬁaﬁ

yields

1 gl 82
g—al g2

1ol o2
1 o iz < O(63— 63163 — 8322 2™ 870 K (81, 845 1) g

icm°®
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For 0< A = (A, 2*) <1, define
6' = (1—Ai)6;+2'6; and = (1—2) 6+ 2263,
Then
Iif e, < <0 1181 Sez K (1, 835 I O < [if 0% -

4.4. PROPOSTTION. Let @, = (01, 63), O, = (0}, 62), Oy = (6;, 6}) and
@, = (0%, 62) such that 0 < 6; < 92<1ami0< i< B2<1. Put @ = (8, 6%)
where O = (1—2)6i+216 and € = (1—2)03+2+62. For 0<i
=L )< 1. Let F, be an intermediate space thai belongs fo J(6,; E),
%=10,1,2,8, and F = (Fy, Fs, Fs, Fy). Then

Eo g5 = Figy-

Proof. Let fe B g . Then there exists w = u{sy, 85) € NE such
that

o 8§ 8,
e 1 2

L ooy @ 8
I= (G{ususz)

and
87187 "% (51, a5 %(s1, 85)) € LY.

Sinee F, e J(0,, E), we have

1 o2

(8 llm, < CoB 2T (£, w(S)) = Oobit?dT (b, ta; w(ss, 83)),
5 62

s (8)llr, < C137T (E, u(s)) = Ot 8, (g, tas u(s1, 53)),
R i 62

T (8)llpy < CoB™2T (8, 6(5)) = Ot T (1, a3 u(51, 82)),

6} 62
e ($)1lz, << O, % (t u(s)) = Gatxzt;J(tu 1g5 %(8ys 83)),

and sineeé

ol-o} R 6,8,

6,—6 — 8,6, o6l 2
2070 g 5% g g% 2

o

we have also
J'(s, w(s)) = max{|fu(s)llz,, 8. 1% (S)lz;s $216(8)lryy 8182 H06(8)lr;}

<max{Cet™, 5,0, 5,0,%, 8,5,0,4°}J (t; u(s))

< Ctmax{1, slta“_el ‘sgt"”*"ﬂ, s,szte"'a"}J(t u(s))

Py

» .
< CPmax{l, sltl sztz "% s8ah0 P 2}J(t u(s)),

where ¢ = max(C,, 0y, 05, Cy)-
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Let
1,1 2 2
8l 626
2%
=1 7, s.=1" 7
then
1 2
% % 1 1

k -6y 03—03 (50—31) (63—62y
J(s;u(s)<Cs” °s8,° °d s 180 U u(sy, 8,)

and pubting
O = (6,09 = (1—2)6;+4"6;, (1—2) 63+ 77 63)) = (1—2)0,+ 10,
. yields

ol 62 1 1
. 1_gl g2 g2 14l 2 g2
Lsz']' (S; '”‘(s)) < C"5‘1‘92 ’ 8:2 ’ J(sfz ﬂo: 3202 % 3 u(8y, '5'2)):
and
1ol 2 g2
USZJ' (s, u(s))”L? < G’Hsl—mg;a?J(s], S} ’LL(S‘:Z "o, 8,7 % “L?'
But

f f“’f-"u(s S)dsldsg
(Bi— 6 (6i—03) 92—93)(32—52 J 9 Ve ss

_ 63—0% 2 e ds, ds,
= u )__._ -
A 51 83

o, < Cliflls,0.0-

‘As a corollary of equivalence theorem and Propositions 4.3 and 4.4
we have the main result of this section: the 50~ called reiteration theorem.
4.5. THEOREM. Let 6, = (6§, 6), 0, = (6;, 63), O, = (6}, 63) and
8y = (03, 05) such that 0 << 0;<< 0} <1 and 0 < 83< 0} < 1. Put, for 0 < A
=L)<, =120+ 10 and 62 = (1—1) 03-[—22?@. Let F,
be an intermediate space that,belongs to H(6,, E), » = 0,1,2, and 3.
If F = (¥, F,, F,, F), then

and this gives finally

Egpx = Fiox-

5. Interpolation theorems. Iet B, = (H,, B., B,, E,) to F
= (o, Fy, Fs, Fy) be two 4-tuples of Banach spaces in X and Y, respec-
tively.

5.1. PROPOSITION. Let T be a linear transformation from SE to ZF
such that the restriction of T {0 each B, is a bounded linear transformation
from B, to F,. Then, the restriction of T to Ep .k 18 a bounded linear trans-
Jformation from EQQK t0 Fo -
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Proof. Let 0, >0, 2 =0,1,2,3, be given such that for g e H, we
have
ITglp, < C,lgls, -
It f = fotfitfatfs € Bogx, Where f.eB,, we have
”Tfn”Fx < Onfx”Eu (¢ =0,1,2,3).
Now, putting ¢ = max(Cy, 0, 05, 0y) and taking f e B .z, W obtain

Kp(t; If) < \Lfollr, +4 “Tflupl +12 "sz I, + 2222 ”Tfs”Fs
< Cylifollm, + Ortalfiliz, + Ostallfollz, + Catata [ follm,
< C{Ifollzy +tu Mfallz, ol fallm, + uts 1 follmy} -
Hence
w(t; Tf) < OEg(t; f)
and
[P PRES Ol e gz -

5.2. COROLLARY. Let X = (Eo_gx)imoi0s @88 ¥ ={(Fo gx)i=0,1,2s
where 6, = (05, 6;), O; = (63, 63), @y = (63, 07), and Oy = (63, 63). Let T
be a linear transformation from IX to XY, such that the vestriction of T' 1o
each Eq_ Q < 15 a bounded Umear tramsformation from Eo or 10 Fo,0ix»
% =0, 1, 2,3, and

VTS g, guze < OllF s gz
where f € B g and x =0,1,2,3. Then there exists a constant € >0
such that
VZf 1, o < OF g o

where 0 < A = (A, )< 1 and @ = (0", 6°) is defined by
O = (1—i)O 4210 and 6 = (L—) G+ A6

Proof. The proof follows from 5.1 and 4.4.

5.3. ProPOSITION. Let T be a linear transformation from XE to XF
such that the restriction of T to each B, is-a bounded Uinear transformation
from B, to F,, » = 0,1, 2, 3. Then, the restriction of T to He gy 95 & bounded
linear. transformation from BEg .y 10" Fo 5.

Proof. For each % = u(s) in (B, there exists a constant >0
sneh that for s in B} we have

J(s, Tu) < CJ(s; u).

Let f e Eo gy and 4 = %(84, 8;) be such that

f= fJ (81 $2)—

(Zsl dsa
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Putting v = Tu, we have

-3

4 ds, ds, ds, ds,
If =0f5( Tu(sy, Sa)—S:Z —ofaf'ﬁ’(susz)“q 5
Hence
WZflieg g, < [ls~°7 (s, 2(8))| o
< Ol|s™%7 (s5u(s))] o
and

1 g g,r < Ol gy

5.4. COROLLARY. Let X = (Bo,_0.7 )umo,1,03 8 ¥ = (Fo 0:5)xm0,1,2.3
where 6, = (65, 63), 0, = (6}, 63), O, = (6}, 63) and O, = (0}, 63). Let T
be a linear iramsformation from XX to Z¥ such that the restriction of T to
each By o.; 18 a bounded linear transformation from Eo .5 t0 Foyq,7, that
8, there exwist constamis O, such that

‘ []TfHFQ»Q;J < Gz”f”Eg",Q;J

where f e Be q.5, x =0,1,2,3. Then there exists a constant C > 0 such
that .

If HY@”Q,. << Clf o, .7
where © = (0% 6%) s defined by
O = (L= 05+24"6] amd  6° = (L—22) 62+ 7202
with 0<i= (I, ) <1

Proof. The proof follows from 5.3 and 4.5.
Now, the main interpolation theorem can be stated.

5.5. THEOREM. Let X = (EE,WQ;K),M,J,u,3 and ¥ = (Fe,,,o;zc)5¢=o,1,z,a and
Tet T be a linear transformation from ZX {0 ZY for which there ewist con-
stamts G, > 0 such that

VT g g < Ol gz

where f e Eo_gx. Supposs that 6, = (6%, 63), 6, = (6L, 62), O, = (635 62),
65 = (63, 63). Then, if @ = (6%, 6%) is defined by

0 =10+ and 6 =(1—2) 62262
where 0 < A = (1, )< 1, there exists a constant 0 > 0 such that
Tl g < Ol e g
Furthermore, if 1 <P <Q, we have
1Tf lpg g0 < Uilfﬂﬂe’ax-
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Proof. The proof follows from the interpolation theorems 5.2 and 5.4
and the reiteration theorems 4.4 and 4.5.

6. Embedding in high dimensions. Let (¥,, B,) be a Banach couple.
mhe following result holds.
6.1 THEOREM. If 0<0 = (0,0)<1 and 1<Q = (g, 9) < oo, then
(Boy Byo,g,x = By By B,y Eh)oox
i ivalence of morms.
mthl:il::of. Let ff € (By, Byy By, Bloge a0d f =f'+f"; where frel,
and f' eB,. Then
K(s, t; f) = inf{Ey(s;f) +1Es(s, )}
> inf{min (1, 8) If"llgy+z, + 1000 (1, 8) I lz4m}
> min (1, 8)inf{|f'llg, + ¢1f"le,}»
where the infimum are taken on all decompositions f = f'+f*. Now
s~ 0K (s, ;) > {s~°min (1, )}t K (4}
and so

I K (5, 45 ) g g > I8 min (L, )l g I K 8 ) g

zizh
that is,
(Hoy Bh)ogx = (Boy By, Byy Er)o,gix -

Reciprocally, let f e (B, Bi)ogz. Then, there exists an EyNH-
valued function on (0, co) such that}

N oﬁ, let @ be a non-negative function in C,(0, o) with suppe = (1, o)
and such that
F ds
— =1.
[ o=

0

Defining (s, t) = @(s)u($), we will have

-] fruat

/
and
s, 8 0(s, 1)) < max {max{Jo(s, g, 810(85 1)z}
tmax{|v(s, ¥z, sl (s, t)nEl}}, = p(s)max (1, 8)J (t;%).
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Now . .
§700T (5,15 0(s, 1)) <s°p(s)max (L, 8) +77 (t; u (1),
and so

=T (s, 5 v(s, 1)) < s~ °p(s)max (1, s)nig”t"”J(t; u(t))HLg .

4zl
Ta]'iing infimum, we obtain
) 1 ls,0i7 < Clif llaygsr-
¥ That is
(Bo, E1)a,q;J < (Hyy Bo,y By, El)@,Q;K-

II. GENERALIZATION

We Bave studied the theory of interpolation for 4-tuples of Banach
spaces. Now we deal with the 2™-tuples case. Except for notation problems
the only difficulty is the well setting of the “hiper-parallelepiped” condition.

7. General definitions. A Banach m-tuple is a family E = (B,, . vy B,)
of Banach spaces embedded in a Hausdortf vector topological space V.
The space ZE is the linear hull of this family and the space (\E
is defined I an obvious way. They are Banach spaces under the norms

* @eZE =l = int{ Y ln,lp; @ = 2X,, 0,eB,},
#=1

and
ve NE = |al.p = max foy,,
1<xm

respectively. Furthermore, the spaces (N E and ZE are continuously embed-
ded in V.

A Banach space H is an infermediale space with respect to the m-tuple
E = (8, ..., By,) if the following (algebraic and topological) inclusions
hold:

NEcE < ZE. .

8. The generalized K_and J-function norms. We will define the K
and: J-funetion norms by recurrence. )

Let E =(#, ..., H,) be a Banach m-tuple and & = (i,,...,1,)
a n-tuple of positive numbers. )

Case m = 2. IffeB,+F,and ge EnE,, we put

K f) = mt{|fullg, +tlfalle, | f =Fit-fo, fie By, 4 =1,2}

'
i

and
J(t; 9) = max{lglz,, tgls,}-

[
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Case m =4. If feB,+H,+E;+E, and geBnE;nE;nB,, let
B = (B, B;) and E' = (H,,L,).

Now put

K(ty,y ta3 ) = 8K (@5 1)+ K" (5 /)| fo=F"+5" e B, f' «B"}
= inf{[|f1lls, +t 1 felz, + o lfallz, +tata lfellz, |
f=2f,fieB;, 1 =1,2,3,4}

and

J (tyy ta; 9) = max{J'(t1; 9), tad' (415 9)}
= max{|lglg, , 11 9lg,, t: 191z, tatslgllz,}-
Case m =2" If fe ZE and g € (M E, let
E = (Hy..., Ezn—l) and E' = (E2n_1+1, vy Ez")'
Now put
K(tif) = K(tn cees t-n;f)
=f{K" (fy, .oy By 5 F) 1K (b ey T3 1)
f =1+ f € SE, f" < SE"}
and
It 9) =J (s, ...y tns g)
= nla’x{']’(tl’ EYR MY g)y th”(tli ooy byl !])}

To generalize Proposition 1.1 we will need to define the following.
Let I =(1,...,1) and ¢ = ({;,...,%,) > 0. If #» =1, putb

my(1,1) =min(1, 1),
M,(1,t) =max(1,1).
If n =2, put
my(Z, ) = min (my(1,1,), t,m (1, 1)),
My(T, ) = max (M, (1, 1), 6y (1, 1) -
For the general case put & = (t;, ..., t,~,). Then
mo(L, £) = minfm, (1, ), t,m, (1, B},
1M,(1, ) = max{max (I, %), t,max (1, £)}.

If no confusion arises we will write m,(I, t) = m(I, 1) and M, (1, E)
= M(,t). i
Now it is not hard to see that the following proposition holds.
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8.1. PROPOSITION. If s, E€ R, 88 = (St .oy Sutn) 87 = (577, .0y 87Y),

feZE and g e (\E, then

(8.1.1) m(1, s E(s; f) < K(t; f) < M(L, s17) K (55 ),
(8.1.2) m(L, ) |If Hm <K< M (1, B iflizx,
(8.1.3) m(Z, £ E () < Iflloe < M1, ) E(E; 1),

. (8.14) m(I, stJ(s; 9) < T (4 9) < M(T, ts7) T (85 9),
(8.1.5) m(Z, 1) g lne < J (&5 9) < M (I, 1) [9llnps
(8-1.6) m(l, 1) J(E; 9) < gl < M (1, 37)J (t,g
(8-1.7) E(t;9) <m(1,17)J (85 9),
(8.1.8) M, st K (E g) < T(s; 9)-

8.2. PROPOSITION. Let 0 <O = (O, ..., 0,) <1 and 1< Q = (g4, ..
4,) < oo. Suppose g; = co if and only if §; =0 or 6; = 1. Then

- Sm (1, t)"Lg = (L, ...,tn)uLgl ”Lgn< .

>y

Proof. Cases » =1 and n = 2 follow by direct calculation and the
general case by induction.

Observe that Proposition 8.2 generaﬁses Proposition 1.1.

9. The K- and J-methods. Let E = (H, .. E,,) a Banach 2"-tuple,
0<<O =(0;,...,0,)<1, and 1< Q = (g, - ,q,,)< oo, Suppose further
6; =00r §; = 1 if and only if ¢; = oo. We define the space

EBoqx = (Ey -y Ezn)B,Q;K
to be the space of elements f € ZE for which
TOR@E; ) =70 K, ..., 4,) e I8 = Lir( ... (I2) ...).

The spaces Eg . are Banach space under the norms

Wlloax = IE K& Nl,g = - 17 r"nK(«a, c+r i Dl gy ol

< o0,
We define the space

ES,Q;J = (Eu ERAE] Ezn)e,q;J

to be the space of all elements f e XE for which there exists a strongly
measurable funetion % = u(s) = (s, ..., $,) with values in (ME and

sueh that
o oo ds
fo o f ey B B
9 o 81 S,

and
870 s (s, ...y 8,) € LS.

e ©
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The spaces Hg g,y are meaningful. They are Banach space under
the norms

[fllo,@sr = inf {”3—61 Sn ”‘J(sli ey Sp3 U(Syy eny S“))”Lg}’
where the infimum is taken on all representation

Furthermore, we have
9.1. ProPOSITION. The spaces EM .z ore intermediate spaces with
respect to the Banach 2"-tuple B = (By, ..., H,). That is,

9.11) OE ¢ Bogx = Z'E,
(9.1.2) NE ¢ Boq, < ZE.
9.2. PRoPOYITION. Let feEoox and geEggy. Then we have

E(s; ) <s"{It" m(, t)lng}"1 Iflo.q:x-

10. On the equivalence.

10.1. PROPOSITION. For 0< @ = (64, ..., 0,) <1 and 1< P
=Py ey D) S Q = (Gu) -y L) < 00 the following algebmio and topolo-
gical inclusion holds:

Eopys < Eogx-

To reverse. this inclusion the following lemma, that generalizes
Lemma 3.2, will be useful.

10.2. Levma. Let feZE for which there ewist constanis 0< @
= (..., 0,) <1 and C =C(f) such that

(10.2.1) K (515 .- 83 1) < O(f)s:

Then there ewists a strongly measurable function % = 4(81y...,83) N
NE satisfying
o0

(10.2.2) f=f...fu<sl,...,sn)ﬂ*_lﬂia

e 31 sn
and
(10.2.3) T (815 vy Sn; {1y oery ) < (4€)" K (835 -y Sn3 )

Proof. The case n = 2 is Proposition 3.2. The general case follows
by induction. ’
Lemma 9.2 implies the following
10.3. PROPOSITION. Let 0 < @ = (01, ..., 0,y <1 and 1 <@ = (g1, --.
vey @) < 0. Then .
Egox < Eog-
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Combining the results of Propositions 10.1 and 10.3, the followmg
theorem arises.

10.4. THEOREM. The intermediate spaces Eq g.x and Eg o,y coincide;

(10.41) Eoox = Eogr
with equivalence of norms.

10.5. COROLLARY. For 0 << O <1 and 1 <P < ¢ we have

EBopx = Eogx-
In particular,

Eo1,x © Eogr < Eowx-

(Herel =(1,...,1) and oo =(00, ..., 0).)
11. On the reiteration.

11.1. DEFINITION. We say that an intermediate space E of E

= (B, ..., E’zn)
(1) belongs to the class K(O; E), 0 <O = (6% ..., M <1, if
(11.1.1) E#f)<Cifls  (feE);
i (ii) belongs to the class J(O; E), 0 < O = (6}, LK1

(11.1.2) e<t°J(:f)  (FeNBE);

{iii) belongs to the class H(O; E), 0 < 0 = (0%, ..., 0" <
to the class K(O; E) as well as to the class J(0; E).

The next proposition gives necessary and sufficient conditions for

an intermediate space F of E to belong to one of the above defined classes.
The proof is analogous to the case n = 2.

1, if it belongs

11.2. PROPOSITION. An infermediate space B of E = (B, ..., B,,)
(i) belongs to K(O;E), 0<0 = (6%, ..., 600 <1, if and only if
(11.2.1) E = Fox;
(i) belongs to J(O; E), 0 <@ = (0'..., 0" < 1, if and only if
(11.2.2) Eo s < B;
(iil) belongs to H(@; E), 0< 6 = (0, ..., ") < 1, if and only if
(11.2.3) Egy7c B c Egpr.

11.3. To state reiterations theorems in the ease 2" we will need to
define a sequence (O, ..., 0,,) with the “hyper-parallelepiped” condi-
tion. .

Let

6, = (9}7 cees 6{’-‘-5 %)

e ®

icm
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and
8., = (6}

py ong et

’ ﬂgm BERR] Ufn)

be two fized n-tuples such that 0 <6< 6/, <1, for j =1,..., %
Ttn =2and j =1,2,3,4, let O; be defined by
0, = (0}7 6%)7 0, = (aia 9?)7 O3 = (9}: 93)7

Suppose, now, the sequence is already defined for j > 2.

To define it for » =j+1, let (@AJ)1<L<21 Dbe the sequence yet
defined for n =j (here O,; = (01,...,0]) and O, = (0, .., 07:))
Then, for 1<k< 2, pub

91:,j+1 = (Qk,]‘: 9?“)

@4 = (ﬂia 6;:)

and )
Oriotjpr = (O GS{I) .
The sequence (61, ..., 0,,) 18 defined for n =7 +1.

For the sequenee (@k) just defined by the above process, it will be said
that it satisfies the hyper-parallelepiped condition associated with the n-tuples
0, and Oyn.

11.4. ProrosirioN. Let 0, = (0, ..., 07) and O, = (6! oy - O50) De
two n-tuple such that 0 < <0< 0”7,\ <1, for j=1,...,n, and a,ssume that
(Byy ..., B,y) s the assocwted sequence which samefws the “hiper pmalle
Zepzped” condition. Also, Tet 0< 2 = (A, ..., 4,) <1 and @ = (6, ..., 6")
be such that 6% = (L— )0+ 410%,, for j = l oy T

Now, let F = (Fyy ..., F,,) be a family of 2" mtermedmte spaces with
respect to B = EZ,,) such that, for k =1,. ", the space B, be-
longs to

(i) the class K(O; E);
(11.4.1)

(i) the class J(Oy;
(11.4.2)

This proposition and the Bquivalence Theorem gives the following
Reiteration Theorem.

11.4. TEEOREM. Let @y = (0}, ...,
n-luples such that 0 < 6{< 07, <1, for j=1,
and A as in Proposition 11.4. ' . -

Now, let F = (Fy,...,F,) be a family of 2° intermediate spaces with

respect to B = (Hy, "'7E2n) such that, for &k =1,...,2% the space F
belongs to the class H(O; B). Then

(11.5.1)

(B oees
then
Fiox = Eoqrs
E); then

Eo,q.r < Fiqu-

01) and @,, = (02,” ) 07n) be two

cery y and (@1, -3 Oy

Eo gz = Frux-
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12. Interpolation theorems. Let B = (&, .. v Bp) and F = (F,

- F,;) be two Banach 2"tuples in ¥ and W, respecmvely The genera]
form of Propositions 5.1 and 5.3 reads:

12.1. PropPOSITION. Let T' be a linear tmnsfowmancm from ZE into ZF
such that the resiriction of T on each B, is o bounded linear transformation
from B into F,. Then,

(i) the restriction of T on Egox is a bounded linear transformation
Jrom Egqx into Fggx,

(ii) the restriction of T on Egg,; is a bounded lincar tramsformation
from Bg oy tnto Fop;.

This proposition, the equivalence theorem 10.4 and the reiteration
theorem, gives as a corollary

12.2. THEOREM. Suppose that ©,, » = 1,2, ..., 2" satisfy the “hiper-
porallelepiped” condition. Let X = (Ee,q; K),,,=1 woan 0nd ¥ = (Fg_ox)
and T a Unear trangformation from ZX to Z¥ such. that the restriction to
each Eg oz 13 o bounded linear tramsformadion from Eo ox on Fo_gx,
% =1,...,2" Then the restriction of T to Egqy ,K is a bounded linear trans-
formatwn from Eoor into Fogor, where O = (6,...,0% is defined
by 6 = (1—A0+246, 0< <, i=1, 2,...,%

0. APPLICATIONS

13. Lorentz si;aces with mixed norms. Let (Z, ¢) be an o-finite measure
space and consider g-measurable real or complex function, for Z. The
distribution function of f is defined by

my(4) = ¢({z € Z| 1f(z)] > 2> 0}).

This is 2 non-negative, non-increasing and continuous from the right

function of 1> 0. The non-increasing rearrangement of f-onto (0, o)
is defined by

) = My (1) = {4 > 0] my(d) > 1> 0}
= sup{A> 0] my(2)>¢> 0} = inf{1> 0] m,(2) < 1}.

It is clear that f* is a non-negative, non-inereasing and continuous from
the right funetion onto (0, co). Finally, if s> 0, we define the integral
mean function or the H ardy transformation by

% 1 ¢ %
() =—8~“ff (t)d.
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J. Peetre [8] and BE. T. Oklander [10] gave the following abstract
characterization of the integral mean function. Let I'+ZI™ be the space
of g-measurable functions on Z such that there exist functions f; e NZ)
and f, e L®(Z) for which f =f;+f,.

" Now, putting for s> 0

Mlzipere = int{|lfillzr+ s Ifelzeel f = fi+f2 and fi e LY, f, e L™,

we have
¥ (s) = ¢ 1 liztpszon

We will introduce a generalization of this faet.

Let X and Y be two measure spaces with o-finite measures x and »,
respectively. The space of the complex valued u X »-measurable funetions
on X x Y will be denoted by M = M(X x ¥). Let fe M(X x ¥). Then,
for each y fizxed in ¥, f,(») = f(#, ) is an u-measurable function on X
and it makes sense to pub

F(?/) = “f( ‘3 y)”L3+sL°°
and we will have the following transformation suggested by B. T. Oklander

I8, 1) = WPl = [|[If@, Plpsers|pipze (>0, 1> 0).
We say that f e (L' +1L°) (L +sL™) it f™(s, t) < oo. The function norm
(s, 1) is 2 norm on (I' +1L°) (L' +sL®). If ‘we change the parameters s
and ¢ we obtain equivalent morms. ) )

Algo, we say that fe L'+ sL}(L™)+iL®(L')+stL® if there exist
filw,y) eI}y folw,y) e LNI™), fs(w,y) e L°(L') and fu(#,y) e L such
that

F=Ff+tftfotla
This is & Banach space under the norm
1 I3 ps2zeo) 4izoo(hy +sezeo
defined by
inf  {|lfullzr+ s [fallizeoy + & 1 fellpooqzny + 8¢ Ifallzeo} -
4

‘We have the following result (see [7]):

13.1. PROPOSITION. The spaces (Lt +1tL%®) (L' + sL®) and L'+ L (L%) +
+ I+ I are equal and for all s > 0 and &> 0 we have

If gt semoopztaszey < W lntsnt@ooyrizo@hramse < 2 lpt oozt vz
. Letnow P = (p;, Ps), @ = (01, ) With1 < P, @ < coand f eM(X X X).
We say that fe IF? = IF9(Xx X) if

Il pe = [lsHPaitirf* (s, D paa g, < 0
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We can show that (see [7] for a complete treatment)
Pe — Lszg(Lmql),

with equivalence of norms, tha‘b 1s, the space IF? is the Lorentz space
with mixed norm.

Our next result says that the Lorentz spaces with mixed norm are
intermediate space with respect to L', TNL®), I®(L'), and L™.

13.2. PROPOSITION. Let 1< P < o0 and 1 <Q< 0 or 1<KP < o0
and @ = co. If @ = (8, 6°), where 6" =1—1/p, and 6* = 1—1/p,, we
have

(L, LHL®), LT, LP)e,qp = LF®
with equivalence of norms.

Proof, Putting B, = I}, B, = INL®), B, = LZ*(L"), and B, = L,
we have for fe JE

Ks,1;f) = Stf****(sat)'

The following interpolation theorem of the Marcinkiewicz—Stein—
Weiss—Calderén theorem type is an immediate consequence of Theorem 11.2
(see [1] and [7]).

Let Xx ¥ and V xW be two o-finite meagure spaces.

13.8. TBZEOREM Let 1< P, < oo and 1<Q< oo, x =0,1,2,3 such
that

Py = (15, 75), P =(1'LP§)7 Py =(p5, 0}, Py = (91, P%),

and
Q=% %), 9. =g, @), Q= (% 4); Qs = (41, 6

and also p} < p,, P; <P:pl, B < g and g} < 7. Let T be o sublinear operator
that maps L = (XX T) into Lo = 1% (VVW) and  suppose
that there exist constants C, > 0, such that for all fe I ik

VEf i g0 < CISH pa

for = = 0,1, 2, 3. Then there exisls a constant C > 0 such that for all f e IFB
we have

1S ll0s < C Iif! ‘LPRa
where
1.1-60.6 1 _1-0 6
PR P Q% @
for
0<0=(6,6)<1 amd 1<P<R.

icm
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