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Abstract. An analytically defined class of operators on L1{0, 1] called F-oper-
ators iz introdueed. It is proven that a bounded linear operator 7': L' — L! is an
F-operator if and only if there is a closed linear subspace ¥ isomorphic (i.e., linearly
homeomorphie) to I! such that 7’|y is a homeomorphism (into). If T is an E-operator,

. then there exists a subspace Z isometrically isomorphic to L! with T|z a homeomorphism
(into) and T(Z) complemented in L.

Ag a corollary it is shown that every subspace ¥ of Ll isomorphic to I' containg
2 subspace which is isomorphic to I! and complemented in the whole space. From
this it follows that if a complemented closed linear subspace X of I! contains a subspace
izomorphic to I, then X is isomorphic to L.

Another corollary of the main theorems is that if Z! is isomorphic to an uneon-
ditional sum of a sequence of Banach spaces, then one of the spaces is isomorphie to L.
In particular, I' is primary.

It is shown that an operator 7' on I! is an F-operator if and only if {7 is an
E-operator.

1. Introduetion. This paper contains a study of certain bounded

linear operators T: L'— L' called E-operators. This class of operators
" is defined analytically.

Theorem 4.1 states that an operator on L' is an B-operator if and
only if the operator carries some subspace isomorphic to I isomorphically.
It is shown in Theorem 4.2 that an H-operator actually possesses an appar-
ently stronger property: if 7: I' - L' is an H-operatior, then there. exists
a subspace Y of L' with ¥ isometric to L', with T'|y an isomorphism, and
with TY complemented. (Y is also automatically complemented; see [5].)

* The research of the first author was partially supported by a grant from the
National Science Foundation while he was at Stanford University.

#* The research of the second author forms his thesis submitted to the Uni-
versity of California at Berkeley. Much of the research was done while he was visiting
the University of Illinois at Urbana — Champaign.
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As & corollary of Theorem 4.2 we prove, using & result of Lindenstrauss
_and Pelezyniski [8], that if L' is isomorphic to an unconditional sum of
" a sequence of Banach spaces, then one of the spaces is isomorphic to I*

(Corollary 5.5). In particular L' is primary. B. Maurey [11]adapted
unpublished techniques of one of the present authors (Enflo) to give one
proof that L? is primary for all p, 1 < p < co. The result asserts that it I?
is written as the direct sum of two Banach spaces, then at least one of
them is isomorphic to LP. The question whether this was true was raised
by Lindenstrauss and Pelezyfiski in [9], where they proved that ([0, 1]
is primary. For p > 1, an alternative proof that I? ig primary, based on
o result of Casazza and Lin [2], is presented by Alspach, Enflo, and Odell
in [17.

Another corollary (Corollary 5.2) of Theorem 4.2 is that any isomorph
of I' in I' contains a subspaee isomorphic to L' which is complemented
in the whole space. This yields some information about complemented
subspaces of Z', for it implies, by the Pelezyhiski decomposition method [12],
that if a complemented subspace X of L' contains a subspace isomorphic
to I}, then X itself is isomorphic to Z' (Corollary B.3). It is an open question
whefher every -complemented infinite dimensional subspace Z of L' is
igomorphie either to L' or to I;. Lewis and Stegall’s results [6] (see also [15])
show that a complemented infinite dimensional subspace Z has the Radon—
Nikodym property if and only if any projection onto Z factors through 7,
hence Z is isomorphic to I;. Corollary 5.2 implies that if the projection
onto Z is an F-operator, then Z is isomorphic to L. Tt is known that there
are operators which do not factor through 7, and yet are not H-operators ([3]
and [13]). If such a projection exists, then the above open question would
be answered in the negative.

It may be possible to reduce some questions about bounded linear
operators on L' to questions about positive operators by using Prop-
osition 7.1. Proposition 7.1 states that T is an F-operator if and only
if |T]is an JH-operator. (With every bounded linear operator 7': I' — I}
can be associated a positive bounded linear operator [T|, the absolute
value of T. See the remarks preceding Proposition 7.1.) One tends to
regard H-operators as “big” in that they earry a big subspace (i.e., one
isomorphic to L') isomorphically. Proposition 7.1 then implies that if |7
is big in this sense, then T is already big.

Ag an application of the theorems, we answer affirmatively the following
question of A. Pelezyiiski: Suppose

8 = [1,87_,dg

is an isomorphism on a subspace isomorphic to I'. Must § have the same
property ¢ Here g ranges over points in the circle group @, T, is translation
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by g, and § is an operator on I'(G). Proposition 7.2 gives the &ﬁim_native
answer. Of course, in view of Theorem 4.1, the result is that if 8 is an
E-operator, then so is S. The fact that the “average” operator § being
an F-operator implies thab 8 iz an E-operator agrees with the intuition
of thinking of an E-operator as “big”.

The structure of E-operators as illuminated in Theorem 4.2 and in the
more technical Theorem 4.8 forms the basis for most of the other results,
including Theorem 4.1. We give now & brief intuitive summary of the
methods mused to prove Theorems 4.2 and 4.3. One fundamental idea
is that a simple way to construct a subspace of L' isometric to I s to
divide a subset B of [0,1] of positive measure into two subsets, then
divide each of those subsets into two subsets, and so on, in such a way
that all the subsets eventually become smaller and smaller in measure.
The collection of the characteristic functions of these subsets of [0, 1]
has closed linear span isometric to I'. (The cloged linear span consists
of all #/-measurable functions in I', where « is the o-subalgebra of
subsets of B generated by all the subsebs into which F has been divided.
Sinee & will be non-atomie, I* () is isometric to L' [10]. The operator
of conditional expectation with respect to =7 is & projection of norm 1
onto L*(.7).) :

The proof of Theorem 4.3 shows that if T is an H-operator, then
there exist such a seb B and such a splitting process for X, generating
a o-subalgebra o7 of subsets of B, and there exists a subset F of [Q, 1]
such that by making a single change of signs (by multiplying by @ fixed
{1, —1}-valued function s), the operator sRpT|L' (&) is almost exactly
a non-zero sealar multiple of a positive isometry. Here Ry denotes the
operator which restricts functions to the seb 7.

The proof accomplishes this result by finding a splitting process on b
such that when T is applied to the characteristic functions of two disjoint
subsets of F in 7, the two image functions are almost disjointly supported
when restricted to F.

There are actually two senses in which the image functions are “glmost”
disjointly supported on F. The one needed for the proof of Theorem 4:2
is the well-known concept of relative disjointness. Rosenthal proved in
[14] that relatively disjoint collections of funetions in I' span ‘eo‘mple-
mented isomorphs of I, (of the appropriate dimension, cither finite or
infinite). His calculations of the bounds for the distance from I, of such
isomorphs, and for the norm of a projection onto such isomorphs, are
used in the proof of Theorem 4.2.

Another concept of “almost disjoint”, stated in Theorem 4.3 (¢),
iy useful for proving Theorem 4.1 and Proposition 7.2. .

The method by which almost disjointly supported functions are
recognized is to eompare the integral of the maximum of the absolute
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values of the functions with the integral of the sum of the absolute values
of the funetions. When these two quantities are (almost) equal, the functions
are (almost) disjointly supported. The integral of the maximum of functions
in I' was investigated by L. Dor [5] in connection with the still open
problem of whether every subspace of L' isomorphic to L' is eomplemented.
(He showed that this is frue if the subspace is sufficiently close to I
in the Banach-Mazur sense.) We use one of this results in the proofs
of Theorem 4.1 and Corollary 5.2. In our terminology his result implies
that if T is an (into) isomorphism, then T is an H-operator.

Acknowledgements. The authors éxtend their thanks to Professors
H. P. Rosenthal, R. Huff, and T. Tto. All three helped to simplify the
vroof of Theorem 4.1. Huff showed how to use Liapunov’s convexity
theorem in the proof of Theorem 4.3; in an earlier version of this paper
Steinitz’s theorem, an atomic analogue of Liapunov’s theorem, was used
(see [171). The results in this paper encompass the second author’s
thesis [17]. He wishes to thank Professor. Rosenthal, his thesis adviser,
for numerous stimulating conversations and suggestions concerning this
regearch.

Corollary 5.5 was called to our attention in private correspondence
by N. J. Kalton, who has proven independently the same result by a differ-
ent method.

Format. The format of the paper is as follows: Section 2 gives the
definitions of bush, tree, and F-operator. Section 3 presents some preli-
minary faets about operators and bushes. Section 4 states the main the-
orems and gives most of their proofs. Section 5 draws corollaries of The-
orem 4.2. In Section 6 the proof of Theorem 4.1 is completed. Section 7
contains the propositions abous 7' and the average operator §, and contains
two open problems.

2. Definitions. We deal with I' = L'([0, 1], 4), the Banach space
of equivalence classes of Lebesgue integrable real-valued functions defined
on [0,1]. 1 is Lebesgue measure. The notation B will also be used to
denote the Lebesgue measure of a measurable subset B — [0,1]. xzdenotes
the characteristic function of K, where

1 i {eE,

ZE(t)={0 # iem

Ry denotes the restriction operator on Lf defined by

By (f)(0) = f(8) zx(t).

¥ T: I'>TI' is a bounded linear operator, we sometimes write TH in
place of T'(xz).

. s
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An “isomorphism?” is a linear homeomorphism into. X there exists
an isomorphism from a Banach space X onto a Banach space ¥, then ;X’E
. - s
and Y are “isomorphic”, and we write X ~ ¥. An “isomorph of I

) s 1
is a Banach space isomorphie to L'. )
* It ¢ is & collection of sebs, «7() denotes the ring generated by {, and
oo (f) denotes the o-ring generated by ¢.

DEFINITIONS. :

(A) A bush is a sequence of finite partitions of a measurable subseb
B < [0,1] of positive measure in which each partiti?n refines the pre-
celding partition, and in which the mesh of the partitions tel?ds o zero.
In symbols, (BF), ¢ =1,..., Mp3n =0,1,2,... 15 & bush if

(1) M, =1 and JLEﬂ >0,

(2) for each =, J B} =B,
i=1

(8) for each m, E}nE} =0 ifi #7, . ' N

(4) for each n, and each §, 1< j< M,yq, there is an 4, 1<i< M,
with B}* < By,

(8) max [E}| 0 as n—> oo

1<i< M, _ . ‘
(B) A trge is a bush (BP), 1<i< M,, » =0,1,2,... in which
1) M, =2"
and ) )
(@) B} = B4 UEL for each n and 4, 1 <4< 2%

(0) Let T: I'—> L' be o bounded linear operator. T is called an
E-operator if there exist 6> 0 and & bush (B}) with

1
— | max |T(g.n)|> 06
IE'iIflsisM,, B

for each n. If T is an E-operator and 8 > 0, T is called an H-operalor of
constant 6 if

i< sup_li_n—x-—l—f max lT(xEn)l,
U e 1B Y sy, d

where the supremum is taken over all bushes (H7).
Remark. Tt is shown in Section 3 (see the remark affer Lemma 3.2)

that for any bush (B}) the limit

1
1i1n~—-—f max |T(x»)
oo B3] 1<ixcan, I

exists; hence, in the above definition, the limit superior could be replaced
by limit.
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Remark. The letter B in the term E-operator is an abbreviation
for “Enflo”, The phrase “Enflo operator” was coined by H. P. Rosenthal
atter Enflo began the study of these operators several years ago.

3. Properties of operators on L' with respect to bushes. For the whole
of this section, let T: L'+ L' be & bounded linear operator and let (Y,
t=1,2,..., M,; n =1,2,... be a bush.
For #=0,1,2,... define
g, = max [TE}.

i<,
(Here we have used the notation TH? in place of T'( xE?).) Then g, eI’

Define the L'-valued measure v, on the finite algebra o (BT .y B )
by
w(B) = D \THY, Bed(BY..., By,).

EiCE

Lemma 8.1. Given E e (B}, ),

(1) v,(B) is defined for sufficiently large n. For such n

(2) 0,4, (F) 2 0, (B);

(3) I (B < 7| |BI.

(4) Asn~> oo, v, (H) converges both a.e. and in the I norm to a function
v(B) eI

(5) v is a o-additive positive T'-valued measure om A((BY)) which
exlends to a o-additive positive T'-valued measure on aaa/((E?)). (We denote
this extension by v still.) '

(6) For eack O in os((BY)), |TC|<v(C) a.e.

Proof. (1) is clear. (2) and (3) are applications of the triangle in-
equality. (4) follows from the monotone convergence theorem,

For (5), note that v is clearly finitely additive. Hence using (3), it is
c-additive on «((E7)) with v (E) < | T B|. Therefore » extends o o A((BY).

Tor (6), suppose first that B e d((E;‘)). Then |TB| < v(B) a.e. by the
triangle inequality. Now suppose ( e o#/((B})). Then choose B, e L((BD)
with |B,AC|— 0, that is 45, ~> %c in I} as m—+ co. Then TB,,— TC
in L' By passing to a subsequence if necessary, we may assume that
TB,, ~ TG a.c. and, similarly, that 2(B,)—>v(0) a.e. m

Levws 3.2, The sequence g, converges a.e. and in the I norm fo a
Sfunction g in I

Proof. We-shall show below that for all n,

ng-I —’Dn-{-l (Eg) < gn—vn(Eg) .

Hence }Lim {9, —v,(B)) exists, being the limit of a decreasing sequence.
500

e ©
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By Lemma 3.1 (4), limw, (B9) exists and is finite a.e. Hence g = lim In
A—>00 n—>00

exists a.e. Furthermore
0< g, <0,(B) <v(B) el
go by the dominated convergence theorem, g, — ¢ in the I' norm, and

g eIl
‘We now show that for fixed ¢ € [0, 1],

1 (8) = Vs (D) (B) << 9, (8) — 0 (BD) (2).

By the definition of g,,,,, there is a j with g,.,,(8) = |[(TE*")(t)|. By the
properties of bushes, there is an ¢ with Ej*' < E}. Then
Gn1 (D) — g (0) < |TEFH(8)| — | TBF (B)]
= V1 (B ) (1) — 0, (B}) (£)
< Vi (B (1) — 0, (BF) (1)
< Vg (B (8) — 0, () (1)
§INCe 0,41 —0,> 0 (80 0,y (BINEY) — 0, (BINE}) = 0). &

Remark. Lemma 3.2 implies that in the definition of an “H-operator
of constant 67 the limit superior could be replaced by limit, or by limit
inferior. : .

4. The main theorems. Our first major result is

TeEOREM 4.1. Let T: L' —I' be o bounded linear operator. T is am
E-operator if and only if there emists a subspace Y of I' with ¥ isomorphic
to I and with T'|y an isomorphism (into).

The proof of Theorem 4.1 depends on the next two theorems which
are our other main results.

THEOREM 4.2. Suppose T is an E-operator of constant 8, and 0 < e << §.
Then there exists a purely non-atomic o-ring o, of Lebesgue measurable sels
such that

1. TMA| ;) is isometric to L*;

2. T\L*(Alo,) is an isomorphism; for f e L*(A|o,),

(1—e) )
TTs 81Fl;

3. The image T(L'(A|#2,)) is complemented; it is the range of a pro-
jection of morm atf most

IZf 1=

TN (A-+e)
5 (1—e)?’

Theorem 4.2 follows immediately from the more technical
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THEOREM 4.3. Suppose T is an H-operator of constant 6, and 0 << e << §.
Then there exists a tree (AY),i=1,...,2% n =0,1,... of measurable
subsets of [0,1] with
l

(a) 47 =

and, there exists a tree (FT) of measurable subsets of [0, 11 such that for each n,
and 4, 112,

(b) (1—e)dlA71< [ITAN< (L +0) [|T47],
7 ko
and
2%
(o) N ITA30)1 < oA
j=

for almost all t e Fy; and such that
(d) 4f By, ..., B, are disjoint members of o ((AD),,), then

[ max |TBj| > (1—¢) 4| C")Bj].
Fo 1<i<m i1

Remark. Notice that conclusions 1 and 2 of Theorem 4.2 assert
a strong form of the direct implication claimed in Theorem 4.1. The proof
of the other direetion of Theorem 4.1 will be given in Section 6.

In this section we first show that Theorem 4.3 implies Theorem 4.2,
Then we prove Theorem 4.3.

Proof of Theorem 4.2 assuming the truth of Theorem 4.3. We
actually need only coneclusions (a) and (b) stated in Theorem 4.3 in order
to derive Theorem 4.2. (Conelusions (¢) and (d) will be used in Sections 6
and 7.)

Suppose there exist trees (47) and (F7) with properties (a) and (b).

Let o, =osf {(4%),). Then by (a) &, is purely non-atomie, so
by Maharam’s Theorem [10], I*(A}.e,) is isometrie o Z'. This gives conelu-
gsion 1 of Theorem 4.2.

The right-hand inequality of (b) implies that the collectmn {T4%,
TA%} is a relative disjoint collection (see [14]). Tt follows that the
finite sequence T'A}, ..., T'A%, is a basic sequence equivalent to the usual
basis of l%". Because of (a) and (b) and the fact that ¢ and 6 are independent
of n, the constant of equivalence for this basic sequence is bounded by
a constant independent of n. Specifically, for any scalars a;, 1 <7 <2,

(1—e)
> 14¢ 5”2% Zidi

This gives conclusion 2 of Theorem 4.2.

an

D ar4?

i=1
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Another property implied by the relative disjointness of 747, ..., TA%
is that their linear span is complemented with the pro;;eemon eonstant
bounded by

1T (1+e)
§ (1—s)?" .
It follows by a familiar compactness argument (see [4]) that the
closed linear span of (TA7),, is complemented. This is conclusion 3 of
Theorem 4.2, M

Proof of Theorem 4.3. We shall use the functions g, and g, and
the Li-valued measures v, and v defined in Section 3. The assumption that T
is an H-operator of constant 6 means that there is a bush (B}) with

(1) |D° fgn>6l 1e)

for infinitely many values of n. Lemma 3.2 says that g, — g in I Hence (1)
is actually true for all sufficiently large n and

1
ERLEE

Hence we may use Egoroff’s Theorem to find a subset F < [0,1] such
that

(2) [E‘" fq>61 —18),
(3) g, — ¢ uniformly on 7, .
and
(4) 0, (B2) - v(B%) uniformly on F.
‘We may also assume
(5) infg(t) > 0.
teF

Choose # so small that
(L—3e)(1 —68) > (1—e);
® (1—66) > 1/(1+8); and
6/(1—6p) < &.
Then using (3), (4) and (5), choose N so large that for n> N,

M  lga—gl<pBg on T
and
(8) 0< o(B)—v,(B)<pg onF

(for any F on which v, is defined).
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The next stage is to select a “subbush”, by choosing one of the sets
BY, i=1,..., My and all of its subsets in the original bush, with the
property that the image functions of disjoint elements in this subbush
are almost disjoint when restrieted to a fixed seb (to be called F,).

For each 4, 1<i<MN,

G = {t e F| for infinitely many wvalues of n, there exists

B?

, By < BY with g,(t) = |TE}(1)]}-
Then (since My is finite),

g =
Thus there exists 4, < M, such that
9) fo> 60 —1e)mY).
Gy
(If not, f g < 6(1—%e)|BY| for all 4; summation over ¢ contradicts (2)).

Let F,, = G, , B = EN and B = BINE? (for n > 0). We now restrict
our attention to the bush (B”‘) ‘We begin by showing that for t e ¥,

(10) g(8) < v(B) () < (1-+28)g(2).

(Intuitively this means that on ¥, the images of disjoint elements of the
bush (B}) are almost disjointly supported.)

To see the leff-hand inequality in (10), let E} be a subset of B} such
that g,(?) = |TE}(t)] (see the definition of G;). Then

9u(t) = ITE}(8)] = v, (B})(8) < v(BY)(D).

Since this is true for infinitely many values of n, the left-hand inequality
of (10) follows.

For the right-hand inequality of (10), note that for f e F, < F,

2(BY) (1) < vy (B (1) + By (1) (by (8)
= |TBY(t)|+ By (1) (since BY = I;)
< gn(®)+Pg®)
<@+2690) (by (7).

This gives (10).
Levma 4.4. For each O in oo/ (BY)) let

D(0) = {t e Fo: [TO@)| > (L—65)0(BY ()}

©
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Then @ is & Boolean o-homomorphism of o ((BY)) onto « o-algebra of
subsets of Fy ( modulo sets of measure 0) such that if Oy, ..., C,, are disjoint
members of o.oZ((BY), then for cach i

1) D 0 < T 170
Jvéz

for almost all e ®(0;). Moreover, if C,, € ol ((BY)) and |0, —0, then
O(0p) 0.

Proof. The bulk of the proof is to show that @ takes a finite o27((Bf))-
partition of B to a partition of F,. This is equivalent to showing that @
is & Boolean algebra homomorphism. Then it is shown that @ is a oc-homo=
morphism.

Let €y, ..., O, be disjoint members of oo (BY)). If t € D(0,), we have

0(0,) (1) = 170, ()| = (1 —66)v(BY (1).

Henee

'6
(12) Vlmoj ()] < 0(BINC,) () < 6v(BY)(¢ _ﬂﬁﬁ |TC, ().
Ja‘w

This gives (11), and also shows that if § 4, then |T0;()| < 6p8v(BY(1).
By (6), t¢ P(0;). Hence

(13) &(0,), ..., B(0,,) are (essentially) disjoint.

To compléte the demonstr %ion that @ takes partitions of B to parti-

tions of F,, we must show that U &(0;) =T, if U 0; = B}. This requires
several steps. o= =1
Define

1—48

#(0) = el 1T0WI> 57

o)),

—4
Notice that 1_[‘2g—> 1——6/{ so 9(0) = O(0).

‘We now show that
m m
(14) it By, ..., By e ((B]) with J B; = B}, then | w(B) =F,.
For suppose te Fy,. Choose n N o large that B;e &{(B?y.”-’BMn)
for 1< 1< m. (S0 |g,(t) —g(t)] < Bg(t).) Then by making n larger if necess-
ary, . g,(t) = [ ZE}t)| for some B}(= B}) contained in some B, (by the
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definition of F, = @& ). Then
ITB(t)] > | TB} ()| — é’ |TBy ()] = 2 TB}(#)] - 2 [TB(t

= 2|TB} (s )!—v](B")( 1) = 20, (8) — v, (BY (1)
= (2-28)9(0) —v(BY) () > 1_,_91/:@(3 (@) —2(B)E)  (by (10))
- i;;ﬁ o(BY) (1).

Hence ¢ € p(B,). So

U (@) =

- A=l

Note that if 0,B e ad((B;‘)) and |B,AG|—0 as k> oo, then for
some subsequence k;, lim ]y)(Bki)\cb(G’M =0. For there exists a sub-
1—4p
sequence with |78, [~ |T'C] a.e. Since 1 — 6ﬂ< 1725 xvm]q)\m(g,»o a.e.
By the dominated convergence theorem

fx,(B,q)\w(m —0in 1!, ie. [|p(B)\B(0)] 0.

We now show that if Oy, ..., 0, € o/ ((B})) with U ¢; = B!, then
i=1

m A=
U &(0;) = F, ae. Given 5>0, choose By,...,B, e < ((BY)) with

1==1

U B; = B} and |p(B)NB(C)| < n/m for 1 <i<m. Then

i=1

78 G 0)] = [OvEn (00| oy 0ay

C—s

[w(B>\U¢01H

1

Ms i

W(BINP(Cy)| < 7.

I
-

Since # was arbitrary, F, = U (0,

This together with (13) ,shows that finite o ((B))-partitions of BY
are sent by @ to (essential) partitions of F,.

Next note that &(0) = {t e Fy| |TC(t)] > (1—68) m.'fg(s)} by (10).

Thus if |{C,} — 0, then [TC,|—0 in L', and hence [@(0 ) —0.

To finigh the proof of the lemma, suppose (C;), ’L‘—- 1,2,...is a disjoint

sequence in o.+7((B})). Then |&({ J C,)| 0 as m — oo, 50 for some sub- ~
. ' {=m

icm°

sequence My, % s
[
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— 0.a.e. Then

v Cp)
1=’lﬂk
mp—1 ©
Vv - M a.e
I 412 /2, Xacy
o(uey = Yo e voop S
i=1 t=my,

So (U C))
i=1

We are now in & position to construct the trees (A7) and (F}) with
the properties listed in the conclusion of Theorem 4.3.
Define a measure u: oo ((BY)) -~ R by

w(0) =101, [2(BY, [2(0).
Fo

2()
This meagure is non-atomic since |0}, |D(C)l, and [o(C)] all tend to 0
as |0] - 0. Hence, by Liapunov’s convexity theorem (see [7]), the range
of p is convex. Note thab

u(BY) = (1Bil, va° Jo(BY).

Fy

foo .
= #(0)) 2.e., and @ is a g-homomorphism. m
i=1

L]

Thus we can find a tree (47}) with

Ay =B} '

and
B(AD) = o n (4,
j.e., with
1

(15) A7) = ;T:IAQI
and

1
(16) [0l =3 f (49 = f (A7),

A Fy

w(A,z) v
Define F} = &(47}). (in particular, ¥ = F, = &;.) We now verify
conclusions (b), (¢), and (d) listed in the statement of Theorem 4.3.

[17471> 1-6p) [ v(ad)
FZ} o4l
o [oay

= (1—6p) (by 16))
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> (1-69) a(l—g) 143 (by (9) and (10)

437
> (1—gs 22 by (®)

This gives the left-hand inequality in (b).
For the right-hand inequality in (b),

[izan=a-op [ o4

N
7] (4T

—@—op) [o( (by (10)

0
Fl

>0 [1m41> = [1man oy @),

0
Fy Fy

-Inequality (¢) is immediate from (12) and (6). For (d), notice that
from (15) and (16) in follows that for any B e oo/ (E5))

f 4 =T ]A” f 0(43).

o(B)

Now let By, ..., B, be disjoint members of oo/ ((A?)). Then since @(B;)
are disjoint,
fmax |IB;l > v f 1By

I<jsm

t—]. D(B;
' (Bj)

>1-6p) > [ o(4h

=1 o(B)
=@-6p) [ oty
2.2
10z,

— _6 0
(=09~ [t
Fl

>(1—-s)5}_UBi] (by (10), (9) and (6)). m
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5. Corollaries of Theorem 4.2. We have proven Theorem 4.3, and
hence have proven Theorem 4.2 and the divect implication in Theorem 4.1.
Before proving the reverse implication in Theorem 4.1, we deduce some
corollaries of Theorem 4.2. Recall first the result of Dor [5]:

ProposITION 5.1 (Dor). If T I}~ L' is an (into) isomorphism, then
for any partition (E;), i =1, M, of a set E of positive measure, we have

IE\ fmax |TE,].

||T WTE i

COROLLARY 5.2. Let Z =1L'. If X is o subspace of Z and X ~ L',
then there exists a subspace Y of X with ¥ ~ I' and with ¥ complemented
wn Z.

Proof. Let T: L*—Z be any isomorphism onto X. Proposition 5.1
implies that T is an E-operator. Theorem 4.2 gives the result. m

COROLLARY 5.3. If a complemented subspace X of L' contains a subspace
isomorphic to L', then X ~ I%

Proof. Apply Corollary 5.2 a.nd Pelczyﬁskl s decomposition method
12]. m
: ]Before stating the next corollary we make the following

Remark. If 7y 4T, is an E-operator, then either T, or T, must be
an FE-operator. For

(n Jmax|(Ty+ T) By < [max | Ty 87|+ [ max| T,
i T ©

for each n and for any bush (B}). If neither 7, nor T, is an F-operator,
then as n-> oo the limit of the right-hand side, and hence the left-hand
side, of (17) is 0. Since this is true for all bushes, Ty + T, cannot be an
E-operator. A continuous version of this observation is given in Prop-
osition 7.2.

COROLLARY 5.4. I' 48 pnmcwy, i.6., if I' ~ X®Y, then either X ~ I
or ¥ ~ I (or both).

Proof. Consider X and ¥ as complementary subspaces in L' with
projections P onto X and I —P onto Y. Since these two operators sum to
the identity operator, which is certainly an H-operator, one of them (let
us say P) is an E-operator. Theorem 4.2 then asserts the existence of
a complemented subspace of X (the range of P) isomorphic to L'. Pel-
czytiski’s decomposition method [12] implies that X ~ L' m

A generalization of Corollary 5.4 is

COROLLARY 5.5. Suppose L' is isomorphic to am unconditional sum of a
sequence of Banach spaces X;. Then there is o j such that X; ~ I

9 — Studia Mathematica LXV, 2
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Proof. By a result of Lindenstrauss and Pelezyiiski [8] the hypo-
thesis imiplies that the I, sum of the spaces X; is isomorphic to Z*. Hence
we may regard X; as asubspace of I*[1/2%,1/25'],¢ = 1,2, ... Let X denote
the 7, sum of these X;, 50 X < I'[0,1]. We are given that X ~ L. Let
T: I' -+ I' be an isomorphism from L' onto X. By Proposition 5.1, T
is an E-operator, i.e., for all n

f max |[TE}| = 6
1<i2
—1

for some § > 0, where B} = (%27L y 2n] Hence there is a &k such that

max |TE}| = é/2
fyzk,y 1S
for all sufficiently large n (since by Lemma 3.2 max [TH?| converges
1<ia™
in I as m - co). Thus the operator ByyuryT is an H-operator. By The-

orem 4.2 its range, which is (Z‘@X (a complemented subspace of

X ~I') contains a complemented subspace isomorphic to I'. Thus by
Pelezynski’s decomposition method ( Z’ Xy,

=1
(Corollary 5.4); there exists j, 1<<j<<k, with X; ~I' m

~I'. Since I' is primary

6. The proof of Theorem 4.1. This section is devoted to the proof
of the converse implication in Theorem 4.1, and to one simple corollary.

LevmA 6.1. Let 8: L' I be a bounded linear operator. Then given
Jiy ooy fmamd by, ooy By in I

| f max 18F:] —

< IS Dfi— Rl
Proof.

IS < 180 + 18 (f— Bl < max|Shy + ) 18(f; =Ryl
F]

So

max |8f < ma.x|Sh,t+2]S —R)l.
Integration gives the result. m

The next lemma, a consequence of Lemma 6.1, shows that the class
of B-operators is invariant under the natural isometries of L' determined
by a change of sign and density.

Ry denotes the operator on I' which restricts functions to the set B.

icm°
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LuMMA 6.2. Let 8: I* — L' be a bounded linear operator. Suppose there
is @ function f € I* and a bush (F), 4 =1, ..., M5 n = 0,1, ..., such that
—]I-n:f max I;S’R n(f)] > 0.

A0 1<’i<M
Then S is an H-operator.
Proof. By approximating f sufficiently closely by a step funetion

we have by Lemma 6.1 that

0 < lim f max lSR
n—so0 " I<I<M,y,

[ Sroa)|

= hlnf max l Y‘c »S'Raj ),

n—so0 ” IKISMy, 7T

This shows that the operator 2 ojSRg is an F-operator. Then there

exists a j with SRy, an E-operator (see the Remark following Corollary 5.3).
Indeed

0 < lim [ max [SBg (F})| = lim [max [8(G;nF)],
N->00 7 N->00 i

which shows that § is -an F-operator. m

Proof of Theorem 4.1. The direct implication is given by The-
orem 4.2. To prove the reverse, let 8: L' — L' be a bounded linear operator
and assume that there is a subspace X isomorphic to I' with S|z an
isomorphism. We may assume without loss of generality that [S]| = 1.

Let T: I' - I* be an isomorphism of I*' onto X with ||T|| = 1. Then
8T: I' = I' is an isomorphism, and by Dor’s result (Proposition 5.1)
there is a number 4 > 0 with

(18) fma.x |ST(B,)| A2|UB i
for any finite disjoint collection (B;). Also by Dor’s result T is an E-oper-
ator. Choose 6 > 0 such that T is of constant 6, but not of constant &+
+3(4%/2)% Let s > 0 be such that e<< 4%/8 and

212 1[4 2
(1—g)d+ ('%—) > (H_—E (—2") .

Find trees (A7) and (F?) with properties (a), (b), (¢) and (d) listed in
Theorem. 4.3.
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We claim that

A2
19 li max |SR_,(TAN] > — 14
(19) tim [ max SE (P47 > 5~ 14l

Tor if (19) fails, then by (18)
. A? o
(20) lim [ X, 18R, 3 (TAD)] > - 143

00 ¥ 1K
Define V: L'— I' by
Vi = SR[D,l]\Fg(Tf)- .

Staternent (20) asserts that V is an H-operator of constant larger that
A2[2, so by Theorem 4.2 there is a non-atomic oring & < o ((4})) such
that

A2
Wil= 5 Ifl  for all feI(%).
Sinee 8] =1,
Az
By, (THI = 5y vl

for all fe IMA).
By Dor’s Theorem (Proposition 5.1), for any finite disjoint collection
(B < %,

AZ 2
[ maxized > (T 1B
[0, Ny

By property (d) in Theorem 4.3,
[ max|TB> (1—e) 3|UBY.
P i

Addition of the lagt two inequalities would give that T is an H-operator
of constant
AQ. 2 1 AZ 2
1—¢g)d+{— §+—{—
{ s)‘+(2)> +2(2)
which is a contradiction. Hence (19) is true.

Next we use Lemma 6.1 to show thab

3

(21) " lim f max |SE F,,(TA‘;)]>-§— 149,

n—>o0 <i<ah

icm°®

For each # and %,
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B (T4 — B o (LA

7y
= [y 24+ S (TP R (PAD — g (T4
izi IRy (ZADI+ 1B, g (TADI
<elTAP+e [ 1747

n
Ty
P

(by Theorem 4.3 (c), (b))

Az A2
<26|TAZ< T ITAN < T 1471

Summation over ¢ and application of Lemma 6.1 and (19) give (21).
Lemma 6.2 and (21) complete the proof that S is an H-operator. =&
COROLLARY 6.3. Let T': L'~ L' be a bounded linear operator. If there

ewists a subspace ¥ isomorphic to L' with T'|y an isomorphism, then there

ewists o subspace Z isometric to L' with T'lz an isomorphism and with TZ
complemented.

Proof. Combine Theorems 4.1 and 4.2. =

7, Further propositions and open problems. Our next proposition
deals with the absolute value of an operator on L', If I's I'— I} is 2 bound-
ed linear operator, its absolute value |T'| is the operator on I} defined
for f>0, fel!, by

(1) (1) = sup { 3] 1TF;(0)]: )_jf =1 fi>0}

=1

for all £ e[0,1], and defined for gemeral f e I} by linearity, writing f
as the difference of two positive functions. It is a fact that |T| is bounded
with norm { 7). (See Chapter IV of [16] for a general discussion of [T'].)

ProposITION 7.1. Let T: It — I* be a bounded Vinear operator. T' is an
E-operator if and only if |T'| is an H-operator.

Proof. Suppose T iy an F-operator. Since for any measurable set H,
«z 1§ non-negative, we have |T|F = |TH|. Hence any bush which shows T
is an E-operator shows alzo that |7'] is an H-operator.

Suppose now that |T'| is an E-operator. From Theorem 4.3 (c) (using
& = }) there exist trees (A7) and (F}) with

7 j=1
Fy awi

2')’!
fZ[T;A;Lg%‘ f|1‘]Ag<i— [ 1.
o FY
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Summation over ¢ and reversal of the order of summation gives

(22) f {T]A”<‘ f |TyA0.
i= 1 FINFY

From the definition of |T], we ean find functions f; > 0, 1 <k < m, with

m
> fr =1, and with
=1 4y

m

- 1

(23) [ D=5 [mas.
k=1 FO

1 1
We shall show that there is a constant ¢ > 0 such that

m
(24) X f max TR ofi] >

- 1<i<2®
k=1 Fl

for all m. This is enough to complete the proof, for it T' were not an
E-operator, then for each &,

[max |TR ,fil 0
as m—+ oo, by Lemma 6.2

We now show (24). 2 [TR nfk| |T'f;|. Hence

e DY $ [z ,,fk!>z [ [ima
2

k=1 jnl FD k=1 1—0

v (23). Notice that by the definition of [T,

D) ITR L fil < 1TI47
7

k=1
So by (22),
m m
@) > [ IR f< V’ [ map <3 f 7143,
j=1 k=1 F‘;\F" J=1 F“\F”

Subtraction of (26) from (25) yields

ZFJITRJA = (g =0>o0.
F‘i

k=1 j=1 F"’

This implies (24). &
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For our last proposition we present an application suggested by a ques-
tion of A. Pelozynski. Let @ be the circle group and let 4 be normalized
Haar measure on §. Let T, be the translation operator on L@, p) defined
by

To(f)(a) = fla—yg)
for each a, g €G- :

Suppose 8: LHG) ~ I}@) is a bounded linear operator. Consider the
operator

§ = [1,8T_,dpn(g)-
@

PROPOSITION 7.2. If 8 is am T-operator, then 8 is an H-operator.

Proof. Suppose § is not an H-operator. By Theorem 4.1 T,8T_,
is not an H-operator. Then for any fixed bush (#}),

= fmzmx|1’gST_g(E?)l—> 0
i

as m— co, For each n, A% is & continuous function of g, and 17 < 1811
The bounded eonvergence theorem implies that

[ 22du(g) 0
¢
as N —> oo,
For any partition (4,) of & into arcs, and any g; € A;, we have for
each n

fmax[ZT ST B7) (8)- 4 ()|t

</ 2 max | T, ST, (B)(0) w(4)1dt = ) 75, (A7)
[ i

By taking the limit over a sequence of refining partitions, we con-
clude that

fm&xlﬁEZ{”l < fl;‘dy(g)-
4 i &

Since the right-hand side tends to 0 as - oo, and sinee this is true for
any bush (H}), the operator § cannot be an E-operator.

We end. by posing two problems. The first is part of the larger question
whether any complemented infinite dimensional subspace of I} is isomor-
phie either to L' or to I,. Recall that an operator T' is said to have the
Dunford-Pettis property if the 1mage under 7' of a weakly compact sets
has compact closure.
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PROBLEM 1. Suppose a projection P: L' — L' fails to have the Dunford—-
Pettis property. Must P be an E-operator?

H. P. Rosenthal [13] has congtructed an example of an operator on I
which, when restricted to the span of the Rademacher functions, is the
identity operator (and hence fails to have the Dunford—Pettis property),
but which is not an FH-operator.

The second problem concerns a local version of the property which
defines an H-operator.

ProeLEM 2. Let T be an operator on . Suppose there exists a constant
&> 0 such that for each m,

sup fmax]TEd X
1<i<n

where the supremum is taken over all partitions (), ¢ =1, ..., %, of
[0, 1] with |B,;| = 1/n. Mnst T be an H-operator?
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