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An estimation of the Lebesgue functions of biorthogonal systems
with an application to the non-existence of
some bases in ¢ and I

by
STANISLAW KWAPIEN and STANISEAW JERZY SZAREEK (Warsaw)

Abstraet. We prove the non-existence of a normalized basis in I consisting of
uniformly bounded functions and the dual fact for C. In the proofs we make use of
Olevskil’s technique from [6], Chapter I. We show also, using methods of p-absolutely
summing operators, some connections between integral and numerical inequalities,
which together with econsiderations of Olevskil’s type give a new proof of the Botka-
riev inequality from [1].

0. Introduction. In this paper we show, answering the gquestion of
Olevskii ([6], p. 36, (vi)), that there is no normalized basis in L' 0,1)
congisting of uniformly bounded functions. We prove also the “dual”
fact for the space (0, 1). Thede results generalize a theorem of Olevskif
(see [6], Chapter I, § 2, Theorems 2 and 9): )

No uniformly bounded orthonormal system is & basis in I* or 0. Our
statements admit two methods of proof. The first one makes use of Olevskii’s
technique, the second one starts from a certain inequalify on averages of
partial sums of numerical series proved by Bodkariev ([17]).

The paper consists of four sections. Seetion 1 has a preliminary charac-
ter. In Section 2 we prove the equivalence of the approaches of Bodkariev
apd Olevskil. As the common vocabulary for them we muse the theory
of absolutely summing operators. Section 3 contains the proofs of the
non-existence of a normalized structurally bounded basis in I*, the “dual”
result for ¢ and some further strengthenings. Section 4 contains in fact
the new proof of the Bodkariev inequality, which is based on the results of
Section 2 and the proof of Theorem 1 of Section 3.

To make the paper selfcontained we present a complete proof of
Lemma B, (Section 3), which is essentially a special case (and conse-
quently much easier to prove) of Theorem 1 (Chapter I, § 1) in [6] (see re-
marks on p. 35, [6], also Lemma 1 of [2]).

Aknowledgement. \The lauthors lexpress - their gratitude to Pro-
fessor A. Pelezyniski for ingpiration and valuable discussions.
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1. Preliminaries. Our terminology and notation for classical Banach
spaces is standard (see e.g. [5]). For normed spaces B, F we denote by
B(E, F)the space of bounded linear operators from E to F, considered
as a normed space with the respective operator norm |- llzz, ;- - Instead
of B(E, H) we use B(H).

Given Banach spaces B, F and an operator T: B — F, we say that T
is p-absolutely summing iff there exists a constant ¢ such that Van Yz,
By ooyl €EB )

.on
ITzll” < 0 sup [y ()"
veB "It {1

[\

1

It
)

The infimum of suech constants we denote by 7,(T) (p-absolutely
summing norm of 7). If B, F are Hilbert spaces, we say that T: B— F
is a Hilbert-Schmidt operator iff for a given (and then, in fact, for an arbi-
trary) orthonormal basis (¢;) of B _jZ’i[TejIF < co. Then we write (3|76}

7

= | Tllzs (the Hilbert-Schmidt norm of T). It is a well-known faet that
1T llgs = 7a(T).

Throughout the paper the capital ¢ (possibly with some index)
stands for universal constants. '

In this paper we consider spaces over the real field, although all the
results and their proofs are valid also in the complex case.

2. This section contains the proof of some “formal equivalences”
of some facts proved by Bodkariev and Olevskif and a statement in terms
of 2-absolutely summing operators.

ProrostrioN. Let O, be a positive constant. Then the Jollowing facts
are equivalent:

(A) Given n, there emists a scalar matriz (aylis-y such that

(i) 2 lagl® > Colnn,
i,J=1
7 k 1/2
. daf kg‘li '—lwii = < 2\1/2
(i) O e = X
i=1 j=1

Jor @ = (21, @s, ooy @,) € BT,

(B) Let (8, &, m) be a measure space. Then for every positive integer n
and for every n measurable functions hyshay ...y by, on 8 such. that

@ ille <1 for i=1,2,... n,
n n ’
- \ 51172
(i) | Do >(3 10 for ..., aeR,
i=1 i=1 ) .
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we have
n k
313,
(3if) I > Gl

(C) Given m, lof By ={weR" yp@)<l}, B=convB, and Y
= (R", |'llg), where ||-|p denote the Minkowski functional of B. Then

Ty ((iz,B)*) = (Goln'"')llz;

where i, p denotes the formal identity map regarded as am operator from 17
into Y.

Remark I. (A) was proved by Bodlkariev; a weaker version of (B)
was established by Olevskil ([1], [6]).

Remark IL In the proof of “formal equivalence” the guantity
C,Inn may be replaced by an arbitrary one.

Proof. (A) = (B). Let us consider a system of functions %y, by, ..., b,
satisfying eonditions (j) and (jj) of (B). Then, by (A), there exists a matrix
(o511 satisfying (i) and such that (by (ii)) we have, for every s € S,

n k

SIShe . .
max Jh,(s)] 2=t 5 ¥ (Z ay hj(s)) .
1<i<n w i=1 9=1

Integrating both sides of the above inequality and making use Qf (3>
and (jj), we get

which combined with (i) yields (jjj). v

(B) = (0). Using (B), we estimate from below the qua,ntity. Wy (42 5)
(lag: ¥*— £ is the formal identity map). To attain this, consider the
canonical isometrical embedding §: ¥* - K, where X denotes the clf)g-
ure of the set of all the extreme points of the unit ball B of ¥, ie. j is
defined by

@1(k) =2(k) = Dok (2 =(z)e ¥ K = (k) e K < ¥).
I=1
Clearly K < 6B,. Hence
(1) y(k)=1 for kek.
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Now, by the Pietsch—-Grothendieck theorem (cf. [81), there exists
a Borel measure on K, say m, such that .

fu (k)[Pm(dk) = |lis 5(2))F for zeX*

with lm]| = nz(%’ 5)2 Hence we have

T

2

I\t

= 15 5@E< [ 15(2) ) Fm(an)
B

- IIZ%F m(dk) = ]lﬁzfﬁr-nm&m(dk»
K = j=1 ' x = lleo

Now it is easy to see that the measure space (K_, %)% m (dk)) and the
functions k; = &/lklle (£ =1,2,...,n) satisfy conditions (j) and (jj)
of (B). Thus, by (jij) and (1),

]!2

Colnp g I= =1

<,
]
-

llkli (k)

= [ Eym(an) = m(®) < iml = w0,
K

which yields the desired conclusion.

(C) = (A). We recall first the following well-known and easy fach
about 2-absolutely summing operators.

LeMMA 1. Let H be o Hilbert space and let 8: X — H be a linear
operator. Then
73(8) = sup{IS4llzs| A: H > X, 4] < 1}.
If dim H < oo, then the supremum is attained (the proof follows immediately
from the definitions).

Now assume that (O) holds. Thus, by Lemma 1, there exists an oper-
ator 4: I} - ¥* sueh that

{2) 4l<1,

{3) iz 2 Alls = VColnn.

Thus, remembering that |4] = 14*, 1 Tgs = IT*|lzs, We obtain
{29 4% <1,

(3") 140, 5 llzs > VI,
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Denote by [ay;l};-, the matrix of the operator ¢, gAY in the natural

basis of R". Then
s, 54 lms = 1/2|“ij|2-
1,1

Thus (3’) yields

n
(8" D' el = Cplnn,
,J=1
while (remembering that 4, i3 & formal identity map) it follows from (2')
that

n n

(2 21 aym|f = 14%0l; < ol < 7 (0

i=1 j=1

This proves implication (C) = (A) and completes the proof of the
proposition.

Remark.
{4) iz all = Npzll <O

Proof. Itiseasy to see that it suffices to prove (4)forn of the form 2%.

Let 4 (1<j<2%) be a basis ‘of the Haar type in R¥, normalized
in #-norm, i.e.

A =27, 1<i< 2k,

r—k
27 for (I—-1)2FT<i< (21—-1)2¥",
x(:i) — r—k . k—1
g —27% for (A-1)2FTl<igl 2,
0 otherwise
forj =2'+1, 0<r<k—1, 01

Given eR" we must show that |#lz < Cllzll,. By the definition
of |'|p this is cqmvalent to

inf 2 y(z;) < Clizfla-

Sxg

Let x,, be the orthogonal prOJectlon of # on a subspace of R™ spanned
by ¥ (2”"‘1 <j<g2mfor m =0,1, ...,k Then, by easy computations,

7 — Studia Mathematica LXVI.2
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uging the inequality

ol jaly _ Vp+1

g <z B

we geb
7 (@) < 27 -
Hence, by the Schwartz inequality and the Pythagoras Theorem

Zy Ta) < 22'"*’4uwmua<(22*”’2)"“(2n oalt )" < 2 ol

m=0 m=0_
and the proof is complete.

3. In the present section we show some applications of Lemma (B).

TrEOREM 1. There is no normalized structurally bounded basis in any
space IS, B, ) with Am LS, B, p) = co. In particular, there is no
normalized uniformly bounded basis in L*(0,1).

TEEOREM 2. Let (f,) be a normalized basis in C(8) (8 —compact, métrie,
infinite), and (u,) —its sequence of coefficient functionals. Then (w,) is
not structurally bounded. '

Let us recall that 4 = I (L —Banach lattice) is structurally bounded

(bounded in order) iff it is contained in some interval {—w, z) (#€L).,

Function spaces are considered as a lattice with respect to the pointwise

order.
For the proofs of Theorems1 and 2 we need the followmd wealker

version of (B):
LeMvMas B,. Let (X,%,m) be a measure space, and hy, hay ..., by —
measurable fumctions on X such that

i Il <1 for 1<i<m,
(i) 112 h, > 0<h<hHI< me
i=k+1 )

Then
(i) > Clnn.
1<k<n ! o3

Proof. Obviously it. suffices to .prove Lemma B, for n =5
(r =1,2,...). We shall show that there exist a positive integer ¢, a se-
quence of integers )

T—1=r>7n>..>7n,= -1
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and a sequence (e;) with ¢, = 0 or g, =1for k =1, 2, ..., ¢, such that if
k nk .
oy = 2 g8, F, = Zhi » o By = {{F}] > 51ty
=1 i=1 :

for 0<k<g, then
G J, = fka;dm Oy(ry—7py) for %k =0,1,2,...,q,

which yields for k = q the desired conclusion

P> [ |F,)dm > Cyr = Clun.

Eq
For convenience we put
nk
fo=0, fir= Fk—JXX\Ek ot 2 for K =1,2,...,q.
i= nk..1+1

We define the sequences (r,) and (g,) by induction:

1° We have Fy =0, B, = @, n, = 0. We put , =r—1.

2° Suppose that r; for 1 < j < % and ¢ for 1 < j < k—1 have been
chosen. We define &, to be either 0 or 1 in 01der to get

(6) JlfigPam = Ifi [ > 38 .
X .

More explicity, we put
&y =0 if [ 1 Byal2dm > 357,
ENFpg -1
&, = 1 otherwise.
It follows from (j’) and the definitions of B, _, and fk0 that

) ' oo < 657,
(8) ]fkol < 5”00 on 'Eko—l'

In the sequel we ghall need the following

Lemwva 2. Let (X, B, ‘m) be a measure space If @ measurable function f
on 8 satisfies the conditions

(2) 1flleo << 104,

(b) Il = 1A,

then there exists an imieger t > 1 such that

(9) . [f|dm > 16-107%¢.
ifl>drs—t+1
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Proof.
oo
A< [ Ifpdm< D) ) IfPdm
X =1 4 24
= =
«© o 1
<No2a-s™" [ flam< (9A2u BT max = f1dm.
u=1
vt i> > =

Now to get (9) it suffices to compare the first and the last terms.
Thus Lemma 2 is proved.

To define 7, ,, observe that f =f , = b satisfy the assumptions
of Lemma 2. Henee, for some positive 1n1:eger trys WE have

(10) I, = | [figl dm > 16107,
Vko
where V= {Ify,] > 5% "%}

If tko > 7y, We put ¢ = ky and 1y 0 = —1, otherwise we define

{11) Trgrr = Tip— iy

It remains to prove that (5) holds for k¥ = k,. To do this, we make
use of the inequality

k-1

12) Jez L+ 2(1— R —'5?_7)1{ (k=1,...,9),

which combined with (10) and (11) gives (5).
‘We prove (12) by induction. To this end, we make some observations:

{13) ENE,_, = V;\E,_,
because

{14) Fpy=f, on IX\E,,.
Also l

{15) By > By,

because

{16) F,=F,+fp on By

50 By = Py — [f] = 578 — 5% > 57 > 5%+ on F,_, (by the defini-
tions, (8) and 7, > r,,;), whence (15) follows.
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Now we turn to the proof of (12).

Observe first that it is trivially satisfied for k¥ = 0. Suppose that (12)
has been shown for k = k< ¢.

Then, remembering (13)—(186),

Topn = [ Wigaldm = [ \Fyuldmt [ 1By, ldm
Fiy+1 Breg -+1Fry By
= f eyl m+ f ey g
By 1Ny Egp
2 [ Afgldmt [ (Pl —Ife ) dm
By +1NEp, By *
= [ fiaddmt [ |Fylam—2 [ |f, ldm
By 41 Zy, Erq
=Ikﬂ+1‘|‘JkD_9 flfko—f-lldm;
E"-’O

on the other hand, by (3) and the definition of B;

o
f|fk0+l|dm< f5'k0+1dm = > f 57ko-+1dm
By, By J=1 BBy
kg .
< Brig
= Br+1T 1 dm
i=1 B\E;_
kp Ky
1
— by sty -1
= E Btk +17"5 41 If;ldm < E ST I,
J=1 ENEy—y J=1

which eombined with the previous estimation yields (12) for k = ky+1.
This completes the proof of (12) and Lemma B,. Before passing fo the
proofs of Theorems 1 and 2 we prove the following

LeMMA 8. Lei (S, 8, v) be a measure space and let the functions (f, 9x)

(k =1,2,...,n) form a biorthogonal sequence with respect to v, i.e.
1 if i=j
f figydy = . o
& 0 if i3],
Then

f ”Zn'f (-?)gk(t] v(ds)v (d) = n
s 8

k=1
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Proof.

[ J13 o100 0 (51t

§ 8 =1
U f‘jfk )9 t)l v(ds)»(dt) )llz (f flsz 19,8 ds)v(dt))llz
< i =
>[] (ka<8)9k(t>)( Zﬁ(t),yz(s))v(as)v(at)
5 8 k=1 =1

= Y [ [£9a0h0a(s)v(ds)r(@) =n

ki=1 § §

by the biorthogonality of (f;, ¢;), the Schwartz inequality and the Fubini
theorem,

Remark 1. Lemma 3 may also be proved as follows. The integral
K3

operator o f(s) = [K (s, 1)f({)»(di), where K (s,1) = > f3(8)g;(B), coincides
8 . 7=1

with the identity operator on the n-dimensional subspace of L*(») spanned

Y fiy ---, f,- Hence the Hilbert—Schmidt norm of # is not less than Va H
on the other hand, this norm is equal to ( [ [ |K (s, t)|*»(ds)»(d))".
s 8

Proof of Theorem 1. Assume, to the confrary, that there exists
a normalized basis in Z*(§, 4, u) such that

IG(®I<f(s) p-ae on Sforj=1,2,.

for some f € L' (u). Since (f;)i2, is a basis, f> 0 u-a.e. Let (g,),=1 denote
the sequence of coefficient functionals of the basis (f;). Then

lgille < M for some M and ¢ =1,2,...
Put v = M-f-u and let T: M8, u) — L8, ») be defined by
h(s)

Th =,
ThE) =7

Clearly T is an isomorphism. Hence, if we put f, = Tf;, then ( f,)j_l is a basis
in I*(8,») with coefficient functionals g; = 9;/M (in particular ( f, W5)5ea
‘is biorthogonal). Moreover,

"f;“oo 7 “gjuoo\ _fOI' j = 1 2 3

It now follows from Lemma 3 that the assumptions of Lemma B, are
satistied if we put

By =j'1.®gj (ie. hi(s,%) = j}(s) G}, m=v»Qy, X =g8x8§,
for j =1,2,...,n, where n is arbitrary.
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Hence, by (jii)',
]
17 SI [:(8)3;(0) | v (ds)»(dt) > Clum.
(17) Kklinsfsf’g“ )35 ()| »(ds)» (d)

On the other hand, since ( f,) is a basis, the norms of the operators of partial
sams (with respeet to (f)) 8,: 12 —>L1 are uniformly bounded (say, by

C; < oo). Since 8, is an integral operator with a kernel Z,’ F;(8)d;t
have

), we

I
Ci Sl = suwwess [| 3 G(0f(s)|»(ds
& S J=1

for ¥ =1, 2, ..., which, by the finiteness of », contradicts (17) for large n.
Thus Theorem 1 is proved.

Proof of Theorem 2. Let us assume the converse. Let (f;)52,
be a normalized basis in C(8) (S compact metric) and let its sequence of
coefficient functionals (u);2, be contained in the interval {(—w,»)
(v e 0(8") (ie. |uy(4) < »(4) for any Borel subset 4 of § and for
j=1,2,...). Then, by the Radon-Nikodym Theorem, g; = g;-» for
j =1,2, ... with some meagurable g;, lig;ll, < 1. Hence, for the same
reasons as in the proof of Theorem 1 we have simultaneously

. .
Walsiey = sup [| 30,158 | »(@0) < 0y
58§ y=1 .

for ¥ =1,2,... and, by Lemma B,

sup ff[Zf, 8)g;( [ yv(d) > O-Inn,

I<ksn § & =1

a contradiction for large n; thus Theorem 2 is proved.

Remark 2. It is easy to show that Lemma B, remaing true if we
replace condition (i) by (§"') Ukl < M and Olnn in (jji') by (C/M)nn
(using, for ingtanee, the substitution h, = Mhi, m = m[M*. Thus The-

. orem 1 remains true after replacing the assumption of structural bounded-

ness by 1f, (1) < a,f () for all n and all ¢ with some fe I! and a, = o(lnn).

Remark 3. It follows from Remark 2 by standard stability methods
that if m(t): R* - R* is such that hmm(t)/t = oo, f, is & normalized

basis in I and A,(t) = u({z: |g(x)] = t}) then

Iim f A e”‘(‘)dt + o0,

n—>o0 g
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The above fact is slightly stronger than the non-equi-integrability of e,

Strengthenings of Theorem 2 analogous to Remark 2 and 3 also hold.

Remark 4. The following local version of Theorem 1 (resp. 2) follows
from the local character of Lemma B;.

THROREM 1’ (resp. 2°). Let (f:, g:)icicn be @ uniformly bounded bi-
orthogonal sequence (say, ||file < M, lg:lle << BM). Then the basis constont
(with respect to L' (resp. 0) norm) of the sequence ( fi)icicn 8 ot less than

o
*EF ‘Inn.

As a consequence we have

THEEOREM 1”. Let X = I', Aim X = oo and let X be complemented in L.
Then there is no normalized structurally bounded basis in X.

ConyEcrure 1. Let (f,) be o normalized basis in L' (a sequence of
coefficient functionals of a normalized basis in O). Then {fa} is not weakly
conditionally compact (equivalently: (F,) does not weakly eonverge to 0),
i.e. {fu} are mot equi-integrable.

CONJECTURE 2. There is mo Hilbert (resp. Bessel) system which forms
a basis in L' (resp. C) (see [7]).

Recall that a sequence (¢,) in a Banach space F is said to be Bessel
(vesp. Hilbert) system iff

” Zanen“ > (resp. < )0.(2 [anlg)ll’.’.
~ for some constant ¢ and every choice of sequence of scalars (e,).

Remark 5. Let us call a biorthogonal sequence (f,, ¢,) & pseudo-
basic sequence (in O or L) iff

(+) sup [ [| 3)5(8)g(8) | m(ds)m(an < oo
n 88 k=1

and each function f, (and g,) belongs to a proper class of functions. In
particular, any basis is a pseudobasic sequence, but the converse is not
true, even if we add some density and totality assumptions. There exists
a suitable block permutation of the Haar system such that it satisties (),
partial sums of any continuous funetion converge everywhere, but there
is 16 uniform convergence. Cleaxly our proofs of Theorems 1 and 2 hold
for a psendobasis.

4. In the present section we prove (B), improving Lemma Bl. We
show that an average IL,-norm of partial sums is large (and even most
~ of them —we know that at least one of them is large). Precisely, we prove

LEMvA By. Let n = 5%, lat T = [1, p*] be a segment of positive in-

Hstimation of the ILiebesgue functions 197

tegers and let A < I be such that card A > }eardI. Then, under the assumpti-
ons of Lemma By (formally weaker than those of (B)),

sup H i’ hij

Jpdsed Tl

= 0sk = Cylnan.

Suppose that we have made this; put

< %Gak}.

i
4 =i<ism ”Ehi
=1
Then, by Lemma B,, card A < In; hence

i
card { j: HZ@HI > 10,k} > i,
i=1
whence assertion (jij) of (B) follows.
Thus it suffices to prove Lemma B,. To this end, we need the follow-
ing eombinatorial resulb:

Levma 4. Let J = [0, 2%—1] be a segment of positive imtegers and
let I, A be the same as in Lemma B,. Denote by Jj, the segment of positive
integers  [m-2°% (m+1)-2°—1] for 0<<s<<h, 0<mg 22 —1. Then
there exists @ map A: J — I such that

(a) AJ) = A4,

(b) A is -strictly increasing,

(e) max{diamA(J};), diamA(J5;,,)} < 3dist (A(T5), A(T50) for 07
< k’ 0 gj < 275—5——-1_1.

Suppose we have proved Lemma 4. We show that

M4) F
(%) sup‘ P k¢|1>03k,

je7 T i=a0) 41

which immediately, by (a), yields Lemma B,.

Our argument differs from the proof of Lemma B, only in technical
details, and so we only give a sketch of if.

We define two finite scquences:

(r;) sueh that F—1 =r >r,>...> 7, = —1,

(¢5) such that g; = 0 or ¢ =1 for 1 <j < ¢, such that if

J A(ng)
= er2, Fy= b, By={F]> 5 [Aln+29+)—An)]}
i=1 G=A(0)+1

for 0<§<q,
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then

®) Ty = [IFldm> Cy(ri—r4)
Ey

for k=0, 1,...,q,

which for % = ¢ yiclds (#*).
Alng)
We also pub fy =0, f; =Ty 1 yxm_,+ 3(2 +l)h¢.
. i=A(ny—
We define (r;) and (g) by induction. Pub r, = 70—1-1 and suppose that
we have defined r; for 1<i<<j and g for 1<i<<j—1. Wo let ¢ be0
or 1 in order to get

(6" [1f12am > 3TA(9;_, +2%) — A(n;_1)].
X

Then f = f; satisfics the assumptions of Lemma 2 with 4 = A(n,_, +2%) —
— A(n;_;). Hence there exists a ¢; > 1 such that

[ 1fildm > 16-10"%;.
tj+1

=5 7 A
4> 7, wepub g = jand r;,;, = —1; otherwise weo define
) . Tipr = 15—

In any case we have
B+ [y +2"+1) —~ A(n;)] < Bdiam A [ny, n,+ 2741+ —1]
< B-B87Ydist (A([ny_y, my_y +27 —11), A([0y_, 2], my_, + 2741 —17))
< BT Amy_y +27) — A(my_y))
by (c) applied #; times. Hence we have
(10" Vf]f,ldm > 161074, > 16107 (r; —1;,,),
f
where V; = {|fj| > 5-[A(n;+2"+1) — A(n;)].
Analogues of (13)—(16) also hold; we have on E,\H,_, for i< j
51 < Almyy +271) — Amyy) < B0 (2 27041) — A(my)
< B (A (ny+2741) — A (my)) < BT = BT R
‘We use here (¢) (applied r,—1y ﬁmes), the fact that (7)) strictly decreases

and the definitions of B, and f,. Thus we are now able to prove ( 12"), which,
combined with (10"), yields Lemma B,.

It remains to prove Lemma 4. To this end, define o, = {J% n J},
A 1= {Iin I}, where I} = [(I—1)-5*+1,1-5*]. We define by induction
(with respect to the inclugion order) & map

A: Ay > Ay
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satistying the following conditions:

(a) AWJE)nA =@ for all J7,,
(b’) supJ;',h< infdyz = sup A(J7) < inf A7),

(¢") max{diam 4 (Jy), diam A (Jh;,1)} < jdist(A(T3), A(T500)),
(4" Tk, < I, = AR = A(JR).

Ohviously, having such a 4, it suftices to put for m e J ag 1(m) any el-
emant of A(J0)NA == @ (by (2) (remember that Jo, = {m}).
Congtruetion of A. Lot us introduce some notations. Let
card (It,4)
card I,

o(Ih) =

‘We shall sayy that I is o subsegment of I, (respectively, that the inclusion

I=Y < Tt is):
of type 1 iff o(I5") = Ko(IL),
of type L itf o(I5) > 3e(Th).
Noto that I, with ¢ > 0 containg either a subsegment of type IT or 7

- different subsegments of type I. Otherwise we have

28
o(Ih) = 5 ), e(I{mly 25 +u)
Pma )
<z [6-e(Ih) +19-F 0 (Tw)] = e(In),
a contradiction.
Now we turn to the mductive comstruction of A. Put A(JE) = I
(i.e. A(J) = I) and suppose we have defined A(Jj™) =1}, r>0.
We shall define A (J3;) and A (J7;,,). To this end, consider any maximal
sequonco

oIl s .ol

g .. T8
7 = I ny

i Mgy

with all inclusions of type IL. Suppose we have shown that ¢ > 0. Then I?,
containg at least 7 subsegments of typo L. Wo define A(J7;) and A(d%.4)
to be the first and the sevonth of them, respeetively. Then (af) follows
inductively from the fact that by inclusion of type either I ox II we pass
from gegments with non-empty intersections with A to those possessing
the same property; (¢’) follows from the fact that bebween each pair
A(J3), A(J; 41 Wo have b other segments of the same length; (b’) and (d’)
follow immediately by induction. .

Thus it remaing to show that ¢ > 0. Suppose that this iy not true,
then, taking into account the preceding k—»—1 steps of induction, we
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get a-descending sequence of segments:

- J¥e _ 72k 2%—1 s . T8 Tt
I=I Lo @ Ly @ oo @ 1] = 2.2l

.70
g - '-ZnLO?
where cach inclusion i of type cither T or II and inclusion of type T takes
place at most k—r—1 < k—1 times; henco :

12 oIy = Q@) oll) = GG g o 1,

a contradiction.
This completes the proof of Lemmas 4, 1B, and B,.

Added in proof. After this paper has beon subinittod for publication ihe go-
cond named author proved that overy normalized basis in an Ly-Hpace containg
a subbasis equivalent to the unit vestor basis of It. This ostublizhos conjeoture I
of. 8. J. Bzarek, Bases and biorthogonal systems In the spaces rmd'I/l Ark,
Mat., to appear. ) T

Tor a simplo proof of the Bodkariov inoquality of. B. 8. Kakin, Remarks
on estimation of Lebesgue functions of orthonormal systems, Mat. Sb. 108 (148) (1978)
DPp. 380-385 (Ruassian). ’
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