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Entropy of piecewise monotone mappings
by
M. MISIUREWICZ and W. SZLENK (Warszawa)

Abstract. The topological entropy of a piecewise monotone mapping of an
interval is studied. It is proved that the entropy of a piecewise monotone mapping f

1 1
is equal to h‘m—;'—log Var f* = lim —log ¢,, where ¢, is the smallest number of
n a M

intervals on which f* is monotone. If the entropy is positive, then a phenomenon
similar to the horseshoe effect iz observed. The entropy is also considered as a function
of mapping with 0° and O topology. There are given some sufficient conditions for f
to be a point of semi-continuity and continuity of the entropy. The results are also
true for piecewise monotone mappings of the circle.

The aim of the paper is to study the topological entropy of piecewise
monotone mappings of intervals and their invariant cloged. subsets. -

In Section 1 there are some formulas connecting the topological
entropy of a map f with: (i) the agymptotic behaviour of the numbers ¢,
of maximal intervals on which f* is monotone; (ii) the asymptotic behaviour
of variation of f*. If f is a piecewise strictly monotone mapping of an
interval, then ¢, is the number of the points at which f* has extrema (41,
according to whether the end points are taken into account or not). The
formulas obtained are as follows:

1 1
h(f) = lim—loge, = lim —logVarj™.
neroo T nsoo W

In Rection 2 the action of a piecewise monotone mapping with posi-
tive entropy is studied. It turns out that there is a subset on which a phenom-
cnon gimilar to the horseshoe effect is observed. In the case of a map f
of an interval this makes it possible to estimate the agymptotic behaviour
of the number of periodic points. Namely, the following inequality holds:

h(f) < limsup %log(}ard{w: (z) = »}.

In Section 3 the topological entropy h(f) is regarded as a function
of f where f belongs to the set of all ° or O* mappings of an interval re-
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spectively. There are given some sufficient conditions for f to be a point
of semi-continuity and continuity of the function &(-).

Section 4 contains examples showing that the assumption that map-
pings are piecewise monotone is essential for some theorems in Sections
1 and 3.

In Section b it is shown that the results of Sections 1-4 are also true
in the case of piecewise monotone mappings of the ecircle.

One of the examples of Section 4 in the case of the circle indicates
some difficulties which may occur if one attempts to prove the entropy
conjecture.

Some results of the paper are related to the results of Bowen [4]
and Block [2].

1. We shall use the following notations. By X we denote the space
under congideration. The first capital letters of the alphabet: 4, B, ..., &,
denote families of subsets of X (mainly covers or partitions); their el-
ements are denoted by a, b, ..., e. Some fixed subsets of X are denoted
by subsequent capital letters: J, X, L, ..., Y. The‘mappings are denoted
by £, 9, ¢, D, o; the letter % is reserved for entropy only. Numbers are de-
noted by Greek letters a, ..., s and by Latin letters ¢,...,» (also ¢,).

‘We assume that the reader is familiar with the common definitions
of topological entropy [1], [8]. Let us recall some notions from [6].

Let X be a compact Hausdorff space, f: X—-X — a continuous
‘mapping, ¥ = X — an arbitrary subset of X, U(X) — the set of all
finite open covers of X, 4 and B — two finite covers of X (not necessarily
open). We set;

n—1

A" =V F7H(4).

=0
It we congider more than one map f, we shall mark 4™ by f: 4™ = 4%.

N(Y,A) =min{Card0: O c 4, Y= Jo} for ¥ = 0; N(B,4) =1,
ceC

N(A|B) = maxN(b, 4),
beB

1
h(f, A|B) = lim TlogN(A“lB"),

T->00

h(fIB) = sup k(f, A|B),
1(X)

AeA(3

W*(f) = inf h(f|B).

Bel(X)

The number A*(f) is called the topological conditional entropy of f. If
B = {X}, then h(f, 4]B) = h(f, 4).

icm
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We shall use the following results from [6]:

(1.1) h(f, A|B) < logN(A|B),

(1.2) h(f, A) < k{f, B)+h(f, A1 B),

(1.3) B (f™ = nh*(f) for every positive integer n,
(1.4) A< A(f, A)+h(f14).

From now on we assume X to be a closed subset of the interval I = <0, 1>
and f — a continuous mapping: f: X->X. Denote by . the set of all
possible subintervals of I (open, closed, half-open, degenerated). For
a family of sets C and a set ¥ we denote by O]y the family of sets {cn¥:
¢ € C}. In particular, #|, denotes the family of all subintervals of <0, 1),
each restricted to Y.

DerpINITION 1. A cover A is called f-mono if 4 is finite, 4 = F|x
and for any a € A4 the map f|, is monotone.

Lemva 1. If f,9: X—>X, A is an f-mono cover and B is a g-mono
cover, then A vf-1(B) is a gof-mono cover.

Proof. Clearly, 4 v f-*(B) is finite. For ae 4, beB the map
90 lans~1wy 18 monotone as the composition of two monotone maps;
furthermore anf-'(b) € £y because anf-(b) = (fl,)~*(b), the map f|,
is monotone and b € £|x. m

DEFINITION 2. A map f is called piecewise monotone (abbreviated
to p.m.) if there exists an f-mono cover of X.

It follows immediately from Lemma 1 that the coraposition of two
p.m. functions is a p.m. function.

Let us now fix a piecewise monotone continuous (p.m.c.) mapping
f: X->X. Let '

¢, = min{Card A: 4 is an f*mono cover}.
Levma 2. Let A © |y be a finite cover of X. Then there ewists a cover

B e WU(X) such that
h(f, A| B} < log3.

Proof. In view of (1.1) it is sufficient to find a B € A(X) such that
(1.5) N(A|B)<3.

1t is casy to construet an open cover B satisfying (1.5); as elements of B
we take the interiors of elements of 4 and we add some small intervals
in order to get a cover. The number 3 may be attained if an element
b eB containg an @ .4 such that Inte =@. m

LemmA 3. Let. A be an f-mono cover and let D.< F|x be a finite cover.
Then h(f, D|A) = 0.
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Proof. By an end point of an element of |y we mean the end point
of the minimal interval containing it. Let us fix a positive integer » and
ana e A™. Inviev of Lemma 1 the map f*|, is monotone for & = 0,...,n—1,
and therefore for any d e D the set anf=*(d) = (f],)"*(d) belongs to Sy,
and thus it has at most 2 end points. Hence the elements of D"|, have
ati most 2nCardD end points in a.

Every element of D"|, has at most 2 end points (it may contain them
or not — there are 4 possibilities), and so the cardinality of D"|, is less
than 4(2nCard D). Therefore

1
lim—l——logN(D"iA") < lim —log16n2(Card D)* = 0,
n-rco M n-ro0 T
which implies h(f, D|4) = 0. m
COROLLARY 1. If a cover A is f-mono, then h{f|4) = 0. m
THBEOREM 1. If f: X—>X is a p.m.c. map, then

lim —erlogcn = h(f)

and %b—logon> h(f) for any n.

Proof. Let 4, be an f™mono cover of minimal cardinality, n= 1, 2, ...
Let m and % be fixed. By Lemma 1, the cover f~%(4,,)v 4, is an f™*+*.mono
cover. Since

c'm+k < Card (f—‘k(—Am)V Alc) < Cm"Cpy

. 1
the sequence (logec,)s..; is subadditive and therefore lim . loge, exists.
N—>00

By Corollary 1 and (1.4) we have
1 1 1 1
h(f) = =h() < -h(f", 4,) < —logCard 4, = —loge,

for n =1, 2,... By Lemma 2 there eoxists a B, e A(X) such that h(f",
4,|B,) < log3. Hence, by (1.2)

.1 .1 .1 :
hm—]—logak = lim ——%logcn,a < }:_120 -WlogN((A i

niy n)
ko0 koo

1 n 1 n ‘ 1 N
“—“-;h(f 7An)<—,y?h(f 7Bn)+'%h(f s Ayl By)
1. .1 B 1
S—h{fM+ —log3 = h(f)+~n—log3-

icm®
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Since » is arbitrary, we obtain

lim—l—logang h(f). m
-

Remark 1. It follows from the proof of Theorem 1 that if A is
an f-mono cover, then h(f, A) = h(f). But if we take 4™ ingtead of 4,,
then we shall obtain also a(f, 4) < h(f) (because (A");‘n = A™*). Thercfore,
if 4 is an f-mono cover, then h(f, 4) =h(f). =

TurorEM 2. If f: XX is a p.m.c. mapping, then h*(f) = 0.

Proof. If 4,, B, are ag in the proof of Theorem 1, then, in view
of (1.8), Lemma 2 and Corollary 1,

1 1 1 1 1
W) = = W) < BB < —B(f*, A,] Bo) + —h(f"4,) < —log3

for n =1,2,... Hence h*(f) = 0.

COROLLARY 2. If f: X—X is a p.m.c. map, then the measure eniropy
of f, regarded as « function of measure, is upper semi-continuous ([6]).
In particular, there ewists a measure with maximal entropy for f ([6]). m

Now we shall study the growth of the variation of the iterations of f
under the assumption that f has the Darboux property, i.e, for any J & 4|y,
f(J) e Alx. Of course, this condition is fulfilled in the case where X is
an interval.

Levua 4. If f: X—>X is a continuous surjection and f has the Dar-
boux property, then

1
limin B—IogVarf"' = h(f).

Proof. Since f**' = fof and f is a surjection having the Darboux
property, there exists a monotone function ¢g: XX such that fog = idy
and therefore

V‘z]:l’ f"‘.’d > Vﬂ.vl' fn’

Let 4 e A(X) and let &> 0 be such that 4e¢ is less than the Lebesgue
number of 4. We take a maximal (n, e)-separated set {@,, ..., 2}, #; € X,
t=1, ..., 88 <@ <...<u (sce [3]). For-any ie{l,...,s—1} there
exists a k; € {0, ..., n—1} guch that |f¥(z;) — f% (@, ,)| > & and therefore

n=1,2,..

. Nwie 1
-~ O .
(s—1)e= 2’ Var f& < n- Vo f*
=)
(here § = s(n, &) iy the maximal cardinality of an (n, s)-separatoed sot).
The family of sots

{fwe X |ff @) —fo (@) < 26 for k=0, ..., 0—1}: § =1, ony 8}

4 — Studia Mathematica LXVILL
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i3 a cover (because of the maximality of {#,,-.., #,}) and it is finer than A",
Therefore N (4") < s and hence we have

Var f* = " (N(A”) ‘ 1).
But

hmilog( (7 (am) 1)) =h(f, A)

n->00 M

and therefore

liminf-lr—ll—logVaul’f“>h(faA)

N->00

Since A4 is an arbitrary open cover, we obtain

1
liminf—ilogVa,r *Zh(f) w
H>00

THEOREM 3. Let f: XX be o p.m.c. map having the Darbour prop-
erty. Then

lim %logVa;r f* = h{f).

00

Proof. LetJ = ﬂf" (X). For every & we have f*(X) € #|, and there-

fore also J e S|4. ’I‘he map flz: J—J is a surjection and we can apply
Lemma 4. Thus

hmmf—logVal = hmlnf—logVar (fl)" = h(fl7) = B(f).

n—>00 N—>00

Obviously Var f” < ¢,, and so by Theorem 1 we get

1
hmsup—-logVar J* < lim —loge, = h(f).
g

N—>00 N—+o0

Hence

lim —1—10gVa,1 = h(f).
M-r00

2. Now we shall investigate the nature of p.m.c. mappings having
the Darboux property. In their action one can distinguish. a phenomenon
which is very similar to Smale’s horseshoe effect.

Let fr X—X be a p.n.c. map. Then there exists an f-mono cover 4
which is also a partition. In this case the reader may consider the dynamical
system (X, f) in terms of symbolic dynamics. The family of sets A is
the alphabet, the elements of A" are words and f is the shift.
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For any J € S|y there are at most two elements of 4 not contained
in J and having with it a non-empty intersection, i.e.

(2.1) Card{a e 4: anJ # O and a\J = @) < 2.
Let E be a subfamily of A defined as follows:
B = {a eA: llmSup—— logN(a, A™) = h(f)}

f—+00

It follows from Remark 1 that the family ¥ is non-empty. Let B denote,
ag for covers, the family of sets

T 1

{NF7e): B fori =0,...,n—1}.

i=0

We shall use the following
Lmvma 5. Let (a,)p, and (8,)T_, be two sequences of real non-negative
numbers and let -

1 1
t = max (hmsupw a,, limsup — ﬂn)

n->00 N—>00

Then

k3
1
lim sup - log (2 e""“n—k) <.
!

N0 k=0
Proof. Let us fix an arbitrary « > t. Then there exist two numbers
1 1 1
s=>u andp > 0 such that: ~an<uand~—“ﬁn\uforaﬂn)p,;ang s
and —ﬁn s for any n. X n>2p and k{0, ..., n}, then either %> p,

or n—%k>p and hence a,+f,_; < ps+(n—p)u < ps-+nu. Therefore

n
1 "
lim sup — log( ? e“’c“n—k) <lim
V]

N—>00 ey N~>00

1 . 1

—1 1)+— = u.
(% og(n—+1)+ " (ps +nu) U
Since u > ¢ is arbitrary, we get

n
1
1imsup~—log( S’ e"k'“’n-fc) <t m
e
LmMmA 6. For any a e F the following equality holds:

limsup —logOard (E™a) = h(f).

n—+0

Proof. The inequality

lim sup ——10g0ard (E" u) h(f)

00
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follows from the fact that Card(E"|,) < Card(4"|,) = N(a, A") < N (4"
and from Remark 1.

Denote: a, = fy =1, a,=logCard(B",), B,=log( > Oard(4"],))
bed\E
n=1,2,.. It i3 easy to see that

Card(A",) < ) etin=k

To=0

(% is the smallest number such that the image of a given element of 4™,
under f* ig contained in an clement of ANFK). For any b e ANE

1
lim sup ?log Card (4™,) < h(f)

N-+00
1
and therefore limsup . Bn < h(f). By the definition of the set F we have
n—»oo N

1
lim sup —ElogOard(A”]a) = h(f), and so in view of Lemma 5 we must

n—>oo

have

I
lirruwp--,;’—ozﬂ Zh(f). m

N—+00
Now for any a,b e F we set
y(a, b, n) = Card{e € B*|,: f*(e) = b}.
LmMuA 7. Let f: X—X be a p.m.c. map having the Darbouw property
and let h(f) > log3. Then there ewists an a, € B such that

. 1
(2.2) limsup — logy (@g, &, n) = h(f).
N> n
Proof. Let us fix a set a € F and a real number % such that logd <
< h(f). Suppose that there exists a number p such that for any n>p
1
—JlogOa,rd(E"la) > U
implies
Card (B"*1|,) < 3Card (B",).
It is eagy to see that then

1
limsup - log Card (E"|,) < u,

n—>00

icm®
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which contradicts Lemma 6. Therefore
(2.3) for every number p there exists an integer # > p such that

1
-?Tlog(}ard (E) > u
and
Card (B"*+Y|,) > 3 Caxd (H"],).

Fix a set ¢ € E"|,. The set f"(¢) belongs to |, and therefore by (2.1)
if it has non-empty intersections with » elements of E, then it contains

* at least r—2 of them. But r = Card (E"*?|,). Therefore

Oard {p € B: f*(e) > b} > Card (B™+|,)—2.
Summing over e € E*|,, we obtain
Z’ y(a, b, n) > Card (B*Y),) — 2 Card (B™,).
bel
In view of (2.3) we conclude that

1
limsup glog (2 y(a, b, n) )> U.
bell

| n—oo

The number % is an arbitrary number less than h(f); therefore

lim sup -i—-log(Zy(a, b,n) )> (f).

N~>00 bEE
Since ¥ is finite, there exists a mapping ¢: B—E such that
. 1
limsup —logy (, p(a), n) = h(f)

for any a € B. The mapping ¢ has to have a periodic point. Denote it by a,,
and by m — its period. It is easy to see that

m—1 m-—1 X
¥ (%7 Gy, Z "i) = V(‘P’(a’o)z "+ (ay), '”'i)
1=0 i=0
for any n;, ¢ = 0,1, ..., m—1. The last inequality implies immediately
that

1

lim sup —;logy(ao, ay, n) = h(f).
N—>00

On the other hand, it is easy to see that y(a,, ay, n) < Card A", and so

in view of Remark 1 equality (2.2) holds. m
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TerorEM 4. Let f: X—X be a p.m.c. map having the Darbouz prop-
erty. Then there ewist:
(i) a set J eS|y,
(i) a sequence (D, )., of partitions of J by elements of Ay,
(ili) @ sequence (k,)n., of positive integers such that

1
(2.4) lim — log Card D, = h(f)

n-sc0 16y,
and fin(d) = J for any deD,.
o0
Prooi. Ifi(f) = 0, then we set J = (.f/(X), D, = {J}, and k, = n,
J=0
n=1,2,..
e - log3
If h(f)> 0, then we take a positive integer r > W and we

apply Lemma 7 to f”; we set J = a4, &, = rm,, where

n

.1 ,
lim —logy (aq, a, m,) = h(f"),
n—0 mn 3

and D, is a partition by elements of /|y such that for every d e D, there
exists exactly one element ¢ eEfmr”[ao for which ¢ = @ and f™n(e) > a,. m
CorOLLARY 3. If f: I—I is continuous and X < I is a closed invariant

set such that h(flx) = h(f) and fl|x satisfies the hypotheses of Theorem 4,
then

1
Iimsup;%—log(}a;rd{m el: f*(w) =2} > h(f). m

Remark 2. In the case of X = I the result of Theorem 4 can be
obtained in another way. Let 4 € .# be an f-mono partition of minimal
cardinality. We say that there is a transition from an e e A to a be A
if there exists a positive integer j such that f~7(a) has a component in
Intbd. Denote by A’ the set of all elements of .4 such that there is no tran-
sition from & to any other element of 4, and by A’* the set of all elements
of A such that there exists only a finite chain of transitions ending up at a.
It turns out that Card (A"),.) < a-2" for any o'’ € 4" where ¢ is & constant
number. Suppose & (f) > log3 and let » be an integer such that Opp1 2 36y
Then for every o’ e A’

Card{a e A™: anf™(a’) # @} <¢,/2.
From those two facts we easily obtain Lemma 7 and directly Theorem 4. m

3. Now we shall study topological entropy as a function of mapping.
‘We shall consider two- cases: (i) fe 0°(I, I). — the space of all continuous
mappings of the interval I into itself with O"topology; (i) f e O*(, I)—

icm®
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the space of all mappings f of class C® of the interval I into itself with
(*-topology. The results obtained, namely Theorems 1 and 4, enable us
to prove some continuity properties of entropy.

We shall use the following lemma:

Levwa 8. Let f: I->1I be a p.m. mapping of class O having a local
ewtremum at each critical point. Then for each positive integer m the Junction
J™ also has a local emtremum at each oritical point.

Proof. Let (f™)'(x) = 0. Then for some ke{0,1,...,m—1} we
have f’{f*(#)) = 0. Thus f has a local extremum at f*(z). The map f is
continuous, and so it maps an open (in I) interval containing (@) onto
an interval with one of the end points at f***(z). Hence f™ maps an open
interval containing & onto an interval with one of the end points at (%)
and therefore f™ has a local extremum at z. m

The first continuity property is a slight generalization of a result
of Bowen [4]. )

PRrOPOSITION: 1. Let f: 11 be a mapping of class O such that for any
z eI at least one of the numbers f' (w), f*(x) is non-zero. Then the topological
entropy regarded as a function h: O*(I, I)->R is upper semi-continuous
at f.

Proof. Notice first that if g e C*(I, I) is sufficiently cloge to f, then
also for any € I at least one of the numbers ¢'(») and ¢ (x) is non-zero.
Therefore g, as well as f, is p.m. We can restrict our attention to those
mappings g. Let ¢ > 0 be fixed. By Theorem 1 there exists a positive
integer m such that ‘

1 ) e
(3.1) Wlogom < M +5-

Let 0 ==, 24, ..., @, 1y %, =1 be the points at which f™ has local
extrema. Let {J;:4 = 0,1, ..., ¢,} be a family of pairwise disjoint open.

(in I) intervalg-such that z; eJ;. It follows from Lemma 8 that if g is
[

m
sufficiently close to f, then g™ has no local extrema in the set I NUE/B
i=0

Suppose that for a fixed ie{0,1,...,0,}
Card{k e {0, ..., m—1}: f has a local extremum at To ()} == 7.

For g close enough to f the number of maximal intervals contained in J;
on which ¢™ is monotone is not greater than 2” (for any % for which 9’ lgr 73

vanishes at one point the number of intervals of monotonicity can grow
at most twice). Therefore g™ has at most 2" +1 local extrema in the set J;.
If there is no % such that f*(z,) is periodic and f has a local extremum at
F*(@;), then r < ¢,+1 and g™ has at most 2%+1 11 local extrema in the set
J;. Notice that if f(#) = 0 or 1 for some € (0, 1), then f’ (z) = 0. Therefore
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we need not congider separately the case of a periodic point 0 or 1 (the
cage of a fixed point 0 or 1 and the case f(0) = 1, f(1) = 0 are trivial).
Let ¥ = Uf({yel: f(y)=0 and y is periodic}). If ¢ is close
j=0
enough to f, then for an open (in I) set U = ¥ wehave g(U) < U. Moreover,
all the points of U except a finite number are g-wandering. Denote
X, =1I- _Ug“’(U). Then X, is closed, g-invariant and h(glx) = h(g).

J=0 .
If f*(2;) € Y for some k € {0, ..., m —1}, then we may assume that J,
is g0 small that for any ¢ sufficiently close to f we have J,NnX, = @.
Finally, we see that if g is close enough to f, then the minimal number
of clements of a ¢™|x -mono cover is not greater than (0 1) (217 2,
By Theorem 1 and (3.1) we obtain

1
h0) < - 10g[(0+1) (2714 4 2)] < 10g (6, 2°7)

< h(f)+ -+

e ¢ +3
2.
pos log

2(c,+3
If m > —(—01—:—)—10g2, then h(g) < h(f)+e w

Now we pass to the second continuity property.

TueorEM B. Let f: I—-I be a continuous mapping and let X be a
closed invariant subset of I such that h(flx) = h(f) and f|x: XX is p.m.
and has the Darbouws property. Then the topological entropy regarded as
a function h: C°(I, I)—=R is lower semi-continuous at f.

Proof. Let J, (k) and (D,)7_, be as in Theorem 4 for fiy. If wo
replace J and the elements of D, by minimal intervals containing them,
then we obtain an interval K and a sequence (F',)5.; of families of inter-
vals pairwise disjoint (for a fixed ») and such that Card?, = CardD,
and fen(d)> K for all deF,, n =1,2,...

Let &> 0 be arbitrary and pick n such that

1
(3.2) Tlog(Oa.ran-M = h(f)—e

(this is possible because of (2.4) and the fact that A(f|y) = R (f)). It is easy
to see that there exists an interval K, such that K, < IntK, no element
of F, has non-empty intersections with both X, and K\K, and Card F,|x
> Card F,,—4. Then K, < Int(f*n(d)) for all & e F,|,. , and hence, if ;
is sufficiently close to f (in 0° topology), then K, cnInt(g"n(d)) for all
deF,|g, - Now we slightly modify F,|¢, to obtain a partition &, of K,
by intervals such that the images of the end points of elements of @,
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(perhaps except the end points of K,) under g*» do mot belong to K,,
Card@, = CardF,|x, and K, < Int(g"(d)) for all de@,. Denote

i o
Y = N (¢»~(K,). Then @,y is an open partition and for any d e @,|y

=0
we have gn(d) = ¥. Therefore h(g*|y) > logCard@,. Thus we have

1(g) = ——h(g) > ——h(gly) > —logOard, > log(Card D, —4).
Ty, I, %, k, "
The last inequality and (3.2) give h(g) > h(f)—e. m
TamoreM 6. If f: I-—I satisfies the hypotheses of Proposition 1,
then f 48 o point of continuity of topological emtropy h: C*(I, I)-»>R. m
4. Now we shall present two examples showing that some assumptions
of Theorem 3 and Propogition 1 (and therefore of Theorem 6) cannot
be omitted. .
We define two auxiliary functions.
1. p: R—R ig given by the formula:

p@) =Ho— PP S+t for oxi ad pd=t
The function ¢ is of class (" and ¢ (3) =0for¢ =1,...,r

2. @: R—>{0,1) is a function of class 0° such that ®(z) =0 for
ze(—oc0,1>U(B, + o) and P(x) =1 for <2, 4).

TramoreM 7. For every non-negative indeger r the topological entropy
regarded as o function of C" p.m. mapping of the interval I into itself is not
upper semi-continuous in C'-topology.

Proof. Let f: I->I be a mapping of clags ¢" such that:

G f0) =0,f(1) =1,f(}) =4, f'(}) =F () =0 and f(z) #0 fo
@ % }, }; moreover f™(}) =0 for n =1,2,...,7 .

(i) f@) = 3+a@—%) for weld—g D

where o is a fixed number such that

(if) o> 3t
(see Fig. 1). There exists an f-mono cover of I of cardinality 3, and so
h(f) < log3. For t> 0 we set :

f@) = f@)+ (p(@) —f(@)) @ (o — )-

Tt ¢ is large enough, then f,(I) <= I. Obviously, f, is of class O7.

We claim that the perturbation f,—f tends to 0 in ("-topology as
t— - ¢o. To show that, we have to estimate its kth derivative, & = 0,
1,...,7. The support of the perturbation is contained in the interval
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<t—% #+3>. The following equality holds:
(41)  (p(2)—f(2)) & (t(2—1)®

k i
= i;; (f) ((p(i) (o) —f‘i)(m)) =1 plii—1) (t (v— &)) .

The derivatives from 0th to (k—4)th of th : ;
e function ¢t — f@
to 0 at the point }; therefore ¢ —f® are equal
sup - (p9(2) —fO(@) 50 as

> oo
1 .
w=(G-55+5

But |~ (t(x—1}))| is bounded b ’
y the C™-norm of @, and t in vi
of (4.1), the C™-norm of f,— f tends to 0as t— - oo.’ s, I view

Applying the method from the
: proof of Theo: i
k(f;) from below. For any ¢ e B, e cstimate

— ol 1,21 4
fi(@) =¢(z) for me<z+.t_,z+_t_>__

This interval can be divided into E(M) —2 =1 (—t) —2 inter
. ki3 4ir ‘ i
vals such that the image of any of them under Ji containg the interval

<_3_ 1(2 w3 3 1 3
i i t) ’Z>' For $E<Z_'27’7[> and ¢ large enough we

have f,(x) = f(») and therefore it follows from (ii) that if L (—2—)%“0:” 51
‘ 4\t =

"2“1
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then
3 1 {2\ 3 1 3
S -F5) o)) 2 (o)
4 4\ 1 4 4" 4

1 21 4 t
Thus, the interval ( — -+ —,— 4 — )canbe divided into B {—) — 2 inter-
4 4 t 4m
vals such that the image of any of them under fi* (where =
¢\ 1.2 4
= T (log (2 (5—) )/log a) - 2) containg <~4— - 7 —i— + T> in its interior.
Thergfore the arguments used inthe proof of Theorem 5 show that for
any f, sufficiently O°-close to f, we have

i
[ETT)

loga

(4.2) n(f) =

(we consider f, because we are not pure whether f; is p.m.‘).

lo
The right-hand side of (4.2) tends to 2r—gi—cjlf ag >+ oo. For any ¢

we pick a polynomial function ﬁ: I-I such that inequality (4.2) holds
and f,—~f in O"-topology. In view of (ili) we have

loga
= h(f).
ol >log3 = h(f). w

lim suph (f)) =

fert00
THEOREM 8. For any non-negative integer there emists a Or-mapping
g: I—I such that
1
liminf — log Varg™ > h(g).
N—+00 n

Proof. There exigts a ("-mapping ¢g: I—I such that

(1) g(0) =0, g)=1, g =14
(ii for a cerfain ¢> 0 we have g(#) = p(z) for ®e<}~c, 1+ed;
(dii gw)y>z for we(0,4);

v g(@) = t+al@—4) for weli—o,i+c)

(a is ag in the proof of Theorem 7) (seé Fig. 2). o
By (i) and (iv) we have ¢(¢}, 1) = (&, 1) ?md in view of (iii) all
the points of (0, }) are wandering. Hence, by (iv), we have h(g) = 0.

)
) .
{iv) g is increasing on the interval <(},1>;
)
i
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Bl
T
]
1
i

But the same estimations as in the proof of Theorem 7 show that
loga
2r+1

Remark 3. Slightly modifying ¢ in the neighbourhood of the
point }, one can easily obtain a O"-mapping §: I--I for -which

>0. m

1 .
liminf — log Varg" >
nsco M

1
lim;logVaJr §"-does not exist. m
n

5. After some small modifications the results of Sections 1—4 are
valid algo in the case of mappings of the circle into itself.

We shall consider the circle as the set §° = {#eC: |z| =1}. Let
o: 0,1)~8" be given by the formula o(z) = ¢ and let [ 88t
be a continuous mapping.

DerFINITION 1'. A cover 4 of 8" is called f-mono if o= (A) is (6~ 0 fo )-
mono.

The map ¢ ofo ¢ is not necessarily continuous on the interval <0, 1),
On Fig. 3 we present o~ ofo o for f(z) = 2~

DrrFINITION 2. A map f: 88! is called piecewise monotone if
there exists an f-mono cover of S

Denote

¢, = min{Card4: A4 is an f*mono cover},

OororLARY 1°. If f: 8'>8' is a pam.c. map and 4 is an f-mono
cover, then h(fld) = 0.

icm
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Fig. 3
TumoreM 1'. If f: 8>8" is a p.m.c. map, then
.1
hﬁn;logon = h(f)
and for any n
Zloge, > h(f).
n

Remark 1'. If f: 8'—§" is a p.m.c. map and 4 is an f-mono cover,
then h(f, 4) = k(f).

TemorEM 2. If f: 88 is a p.m.c. map, then B*(f) = 0.

COROLLARY 2'. If f: 8*—8" is a p.m.c. map, then the measure entropy
of f, regarded as a function of measure, is upper semi-continuous. In par-
ticular, there ewists a measure with mamimql entropy for f.

TEEOREM 3'. If f: 8'>8" is a p.m.c. map, then

lim inlogVarf‘" = h(f).

n—0
TeEOREM 4'. If f: 8'—=8" is a p.m.c. map, then there ewist: an irc
J < 8, a sequence (D)2, of partitions of J by arcs and a sequence (k,)pn:
of positive integers such that
1
lim ——1logCard D,, = h(f)
fsc0 Hp,
and f™(d)> J for any d eD,.
CorOLLARY 3'. If f: 88" is a p.m.c. map, then

lim sup -ib—logOa.rd{w eS8 fYz) = x} = h(f).

N—00
Agusual ¢ (8, 8*) denotes the space of all C" mappings of the circle St
into itself with O topology, * > 0.
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PROPOSITION 1. If feC* (8, 8" and for any = e §* either f'(x) # 0
or ' (w) 5= 0, then the topological entropy regarded as a function h: 02(;8’ Sl)
=R is upper semi-continuous at f.

TuporEM 5. If feC'(8*, 8) is p.m., then the topological entropy
regarded as & function h: C°(8, 8*)~R is lower semi-continuous at f.

' TaEOREM 6'. If o map f satisfies the hypotheses of Proposition 1',
then f is a point of continwity of topological eniropy in C*-topology.

TamoREM 7'. For any non-negative. integer v the topological entropy,
regarded as a function of p.m. O"-mapping of S* into dtself, is not upper
semi-continuous (in C"-topology).

TEHEOREM 8'. For any non-negative integer v there exisis a O mapping
g: 8*—>8* such that

1 .
liminf —log Varg™ > h(g).
naoo N

Remark 3'. For any non-negative integer r there exigty a " map-
1 .
ping §: 8'—8" such that lim—ﬂ; logVar §" does not exist.
n

We shall also make two other remarks.

Remark 4. Bvery proper subset of 8* is homeomorphic to a subset
of I, and so the results obtained for subsets of I are valid for subsets of
S.om

Remark 5. Sacksteder ‘and Shub define [7] for a smooth mapping
Sf: M- M (M is a manifold) some numbers &, , hy, hy velated to the topolo-
gical entropy b = h(f). They prove the inequalities log 1 < hy << hy > hy < b,
where 1 is the spectral radius of the transformation induced in the homo-

. 1
logy groups. The number %, is defined as limsup—n—log 4,, where 4,

iy- the integral of the maximal “multidimensional expansion” of f* over
the whole manifold. In the case M = §' we have

w= [1(f"] = Var f~.
Sl

Hence it follows from Theorem 8’ that for some g we have hy(g) > h(g)
and therefore hy(g) > hy(g). Thus one cannot hope to prove the entropy
conjecture in this way. m _

Nearly all of the proofs in Sections 1-4 may be repeated almost word
by word in the case of §*; only some small modlflca,tlons have to be made.
‘We shall now list them.

1. We must put §* instead of X, a(.ﬁ[<0 y) or the set of all ares
instead of #|y and sometimes consider o~'ofo¢ instead of f, and the
points and subsets of either §* or <0, 1).

icm
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2. In Lemma 3’ we must replace “D < |y be a finite cover” by
“D be a finite cover of §' consisting of arcs of length < =”. Furthermore,
since we consider the whole circle, there is no need to make any assump-
tions of the Darboux property.

3. In the proof of Theorem 3’, if J 3 8%, then we use Lemma 4;
if J = 8§, then we use the corresponding Lemma 4.

4. In (2.1) for S* the set J is an are.

5. In the proof of Proposition 1’ we mmust consider various cases.
If f is a local homeomorphism, then h(f) = log|deg f| (see [5]) and the
same holds for all mappings (*-close to f. If f is not a local homeomorphism,
then we may consider, instead of f, a mapping f, given by the formula

1
fo?) = . f(#-#), where f has a local extremum at 2,. Then f, is smoothly
0

conjugate to f and f, has a local extremum at 1. Then if we add to the
set {mi}'fg»o (from the proof of Proposition 1) the inverse images of 1 under
fy' we obtain the end points of the elements of the minimal ~f{,”—mono cover.
The cardinality of the inverse image is not greater than ¢, (the number
of all points in which (f*)' is equal to 0) and therefore

k(fo) = h(f)-

Furthermore, if there exists a periodic point of f, at which £, is equal to 0,
then we apply Theorem 1 for ¢; otherwise we apply Theorem 1’.

6. In the proof of Theorem 7’ we must use trigonometric polynomials
multiplied by the identity instead of ordinary polynomials.

Theorems 1-8’ generalize some- results of Block [2] and answer
some questions formulated there.

The authors are very much indebted to K. Krzyzewski for prof-
itable talks.

.1 .
lim —logé,, =
M~300
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