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A criterion for subharmeonicity of
a function of the spectrum

by
ZBIGNIEW SLODKOWSKI (Warszawa)

Abstract. The following is a special case of the general result proven in the paper.

Let y: Fo(C)—~[— oo, + oo0), where F, (C) denotes the collection of all non-empty
compact subsets of the complex plane C. Assume that x(K)< (L), if K < L, and
2(NE,) = limy(Ky,), whenever K,.; < Ky forn =1,2,.... Then conditions (a) and
(b) are equivalent: (a) for every analytic function a from @ < Cinto a Banach algebra 4
the funetion A—)x(n(a(}.))) is subharmonic; (b) the same for 4 commutative.

An application to uniform algebras is given.

1. Introduction. Consider a typical situation: we are given a Banach
algebra A (the case A = the algebra of all bounded operators on & Banach
space X being the most interesting) and an analytic function a: G—4,
where ¢ = C is open; suppose that we are interested in studying the
behaviour of the set-valued function K (i) = o{a(4)) (= the spectrum).
One way of doing it is to consider some characteristics y of compact sets,
and to analyse the functions A->x(E (4)). In many instances x(X (1)) was
found to be subharmonic (e.g. for x(K) = logmax {|2|: 2z € K}, ¢f. Vesen-
tini [14], and g(K) = logdiam(K), cf. Aupetit [1], and x(K) = nth
diameter of K or the logarithmic capacity of K, cf. Stodkowski [10]).

In the realm of uniform algebras J. Wermer [16] began to study the
multifunction K (1) = §(F'(4)), where f,ge 4, a uniform algebra on
a compact space X, and 4 € o(f)\ f(X). Here, too, x(K(A)) is subharmonic
for the same characteristies y as above, cf. [3], [5], [8], [10], [17], [18].

Since this approach has resulted already in many interesting appli-
cations to uniform algebras and operator theory (see [1], [2], [3], [8], [12],
[16], [18]), it seems worthwhile to find out some general and easily appli-
cable conditions on y, that would guarantee subharmonicity of 2 (K (4)
for K (1) = o(a(d) or g(f(2))- (CL. [1], Oh. 3, § 1, Remarque.)

Incidentally, each concrete y mentioned above fulfils trivially the
following condition. (This observation was made by B. Aupetit.)

(*) T a: G4 is analytic, and A is & commutative Banach algebra
then A->y(o(a(4))) is subharmonic.
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In this respect it is suprising to observe that, in general, (*) is “almost”
all what is needed (up to mild topological assumptions). More specifically
we prove: .

TEEOREM 1. Let z: F,(C)—[—oco, + o0) satisfy (x) (F,(C) denotes
the family of all compact non-empty subsets of C). Assume moreover:

(i) x(K) < y(L) whenever K = Lj

(i) (N E,) =limy(L,) if Koy e K,y K, eF (C)yn =1,2,...

Then for every analytic function a(A), into @ Banach algebra A, the
Sfunction A—y (a(a(l)) ) is subharmonic. Stmilarly, for every f, g € A, @ uniform
algebra on a compact set X, the function Z——»x{g( f“’(l))) is subharmonic
in o(F)NF(X).

In Section 2 we give a4 more general result (Theorem 2), for y defined
on subsets of C xF,(C), and we show an application. Section 3 containg
the proofs.

2. Results. In order to formnlate Theorem 2 we need some auxiliary
notions.

It is convenient to consider F,(C) with the upper semi-finite topology
(shortly x=-topology, cf. [6], §18.JI). It has the property that every u.s.c.
map (= upper semi-continuous; cf. [6], §18.I) is x-continuous. The
topology of the Cartesian product of € and (F,(C), «) is also called x-top-
ology. The upper limit of a sequence (K,) of closed sets (cf. [6], § 29, IIT,
Definition) is denoted by LsK,.

DEFINITION 1. A function y: H—[— o0, 4 oo), where H < € < I',(0)
i3 %-open, is said to be subharmonic if it fulfils conditions (i) and (ii):

(i) For every sequence (4, I{,) € H, such that 1,—1,, and Ls K, < I,
and (4y, K,) € H, we have

limsupg(2,, I0,) < x(doy Ko).

(ii) If m is an integer, ¢ > 0 and (@g, byy ...y Gy, by) € C**12 is such

that (ag, \J%y D™ (e, &) € H, then the function

n
Z—»x(ao +Aby, | D~ (a;-+ Aby, a))
Pt

is subharmonie in a neighbourhood of 0 (here D~ denotes the closed dise
of given centre and radius).

In case y does not depend on 4, Def. 1 agrees with asswmptions on g in
Theorem 1. This theorem follows from Theorem 2 (cf. See. 3), due to the
tact that the multifunctions o{a(4)) and §(f~*(4)) are analytic in the senso
of the following definition.

DerpiNmrion 2 ([7], [11]). An ws.e. multifunction I: G@—F,(C),
where G = C is open, is said to be analytic if the set

U={41,2): 1e@,z¢LK(1)}
is a do main of holomorphy.
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THEOREM 2. Let G < C be open and H = C xF,(C) be x-open. Assume
that K: G—T,(C) is an analytic set-valued function, y: H—[— oo, + o)
is subharmonic and {(1, K(A)): Ae@} c H.

Then the function A—y (Z , K (Z)) 8 subharmonic in G.

The following Corollary is an immediate application of Theorem 2.
(It was announced in [9]; it may be also obtained by applying [11], Th. 3.2,
{v); Cor. 5.1 (iii) and Def. 4.1.)

COROLLARY. Let G < C be open and let K: G—+F,(C) be an analytic
set-valued function. Assume that w(k, 2, ...,2,) is a plurisubharmonic
function defined in a neighbourhood W of the set {(2,21,...,2,): 1e@,
g el(A),i=1,...,n}.

Then the function @(A) =max{y(d, 2y, ...,2,):
..., 0} is subharmonic in G.

Observe that if we specialize p(1,2,, ...,2,) = (2/n(n—1)) 2 loglz;—zl,

eK(A), i =1, ...

then we obtain subharmonicity of nth diameter of K (1), menztjéned in the
introduction (ef. [107 for another proof for K (1) = o(a(4)) and [8], [10]
in case of g{f(A))).

Proof. Put H = {(1, K) e CxF,(C): {A} x K" <= W}; by [6], §18.1I
this set is »-open. We define
{1) x4, K) = max{p(d, &,...,%): K,i=1,...,n}

for (1, K) e H. Since p(i) = y(4, K (%)), we have to show that y: H—
[— oo, -+ co) is subharmonic in sense of Definition 1. Condition (i) of
Definition 1 is satisfied, for v is w.s.c. (details omitted). Assume that
a;, b;, ¢ are the same as in Condition (ii), Def. 1.

Observe that

p(4) = Z(C"o‘i'ﬂbo: LLJID*(ak‘i‘}'bm 3))

== max {y (@ + Abo, @y + Ay +2hnys -+ o5 Gagny T Ariny 2y
I<EE) Sm, gl <e it =1,...,0}.

Thus ¢ (4) can be represented as the supremum of a family of subharmonic
functions (defined in a common neighbourhood of zero) and since ¢ is
w.8.¢., therefore it is subharmonic by [15], Sec. 9.6 (in tome neighbourhood
of zero). m . ‘

The detailed proof of Theorem 2 is given in Section 3. Now we describe
its basic steps. The following approximation lemma helps to reduce the
general problem to simpler cases.

LEaA 1. Let G = C be open and K: G—F,(C) and K,: G-F,(C) be
w.s.c. multifunctions, and let y: H—[—oco, + o), where H = € xF,(C) is
x-open, satisfy Condition (i) of Definition 1.
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Assume that the sets {(A, K(D): AeG} and {(4, E,(4): 4eG} are
contained in H, and for every compact subset Z = G it holds

(2) sup{lel: # € K, (A), AeZ,n =1,2,...} < oo.

If, moreover, the velations I(2) = (K, (4) and LI, (A) = K () hold,
and oll functions "

(pn(}“) = X(AJ Kn(l))
are subharmonic in @, then the function

() = 2( K@)

is subharmonic as well.

The next two lemmas cover the non-trivial part of the proof of The-
orem 2; the first one may be considered as an extension of the usual maxi-
mum principle for plurisubharmonic functions (consider e.g. x defined
by (1))

LEMMA 2. (i) Let H <« F,(C) be w-open, -and x: H-»[ —oc0, -4 oc)
be subharmonic. Then for every Z € H it holds y(Z) = x(8%). In particular,
if X,ZeH and 8% =« X < Z, then 3(X) = x(Z).

(ii) If, moreover, H = F,(C), then y(%) = w(Z") for every 7 e F,(C)
(where Z~ denotes the polynomial hull of Z).

LEMMA 3. Theorem 2 holds under the additional assumption that there
is a neighbourhood V of (@ x C)NOU, where

U ={(2,2) €GxC: 2 ¢ K(A)},
and a strictly pulrisubharmonic function o: V->R, such that
UnV = {(2,2) e V: g(},2) < 0}.

The proof is an application of a result of B. K. Levi (in that being
similar to [11], Sec. 2 and [19]), of Lemma 2, and of the following critierion
for subharmonicity (ef. [10], Proposition which iy & direct consequence of
[15], Sec. 9.4, p. 58).

ProrositioN L. Let G < C be open and @: G-+[—o0, --00) he UN.C.
Assume that for every Ay €@ there arve ¢ >0 and a subharmonic function
g () Jor
A eD(2y, &). Then @ is subharmonic.

Once we have Lemma 3 we prove Theoremr 2 approximating (in
sense of Lemma 1) a given multifunction K (1) by multifunctions I, (4)
satisfying assumptions of Lemma 3.

icm
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3. Proofs.

Proof of Lemma 1. By Definition 1, (i), if K =« K’, then x(4, K)
< x(4, K'),and, it | J, K, is relatively compact, limsup y (4, K,) < ¢ (4, Ls K.,).
Therefore @(1) = limsupeg,(4). Moreover, ¢(4) is u.s.c. by Definition 1,
(i); the sequence (g,) is locally uniformly bounded (from the above by (2),
and ¢, are subharmonic: therefore by [15], § 9.6, ¢(1) = limsupe,(4) is
subharmonic, too). m

ProrosITION 2. Let H < CxF (C) be »-open and let y: H—[—oo,
+ co) satisfy condition (i) of Definition 1. Then each of the following condi-
tions is equivalent to subharmonicity of .

(1) For every € > 0 and for every integer m the function

m
Y(2oy B1y ooy fm) = Z(zm L_JID” (%4, '9))

is plurisubharmonic on the open set on which it is defined.
(if) For every integer m,e; >0, ..., &, > 0, and functions ay, ay, ..., a,,,
analytic in a netghbourhood of 0, the funciion A—y (ao(l), K (l)) is subharmonic

in a neighbourhood of 0, where .
m
(3) E() = U D (w3, o).
e

(ii) Let @ = C be open, and f: G XY —C be continuous, where ¥ is
a compact space. Assume that (-, y) is analytic for every y and {(l, F{Arx 'Y)):
Ae G} c H. Then the function l—>x(l, F{A x 17)) 18 subharmonic.

Proof. Condition (i) is equivalent to subbarmonicity of . Indeed, by
our assumptions on yx, funetion y is u.s.c., and so it is plurisubharmonie
if and only if its restriction to every complex line is subharmoniec (where it
is defined). But the latter condition is the same as (ii) of Definition 1.
For convenience we consider a modification of condition (ii). (ii)" = (ii) with
alle; = &> 0.

(i) =(ii)’. The function (3) is, in this case, the composite of the pluri-
subharmonic function ¢ with the analytic function l——>(a0(l), ay(A)y ...
< vy Gy (), and so it is subharmonie.

(i)’ =(iii). Take any @, relatively compact in G; we will show that
¢(A) = x(4, f({A} x ¥)) is subharmonic in G,. Put K (1) = f({A} xY) for
A e@y; we apply Lemma 1 to show that the function ¢(4) = x{4, K (1)) is
subharmonie in @,. Take & sequence (&,)n-, with ime, =0 and ¢, >0, %
=1,2,... Theset

{(1,2) e@y XC: g'e K(A)}

is compact and covered by open sets
V() = {4 2) e@XxC: |a(d, y) —2| < &},


GUEST


42 %. Slodkowski

where y ¢ ¥; we take a finite subcovering V(y,1)y ---» V(¥,, imy) and define

i
2,000 = U0~ (a2 10, )
‘One checks easily (we omit this) that the multifunctions
K,: Gy—F (C); K: Gy—F (C)

satisfy all assumptions of Lemma 1. In particular, functions ¢,(1)
=z(2, K »(4)) are subharmonic by condition (i)’ and so is ¢, by Lemmu 1.
(iif) =>(ii). Just take ¥ = \J%, D" (d,, ¢;), 50 that all dises are mu-

tually disjoint and pub f(4,2) = a,(A)+2—d,,if z2e D~ (d;, &). The vest
follows. Finally (ii) implies subharmonicity of y immediately. m
Proof of Theorem 1. We will apply Theorem 2 to K (1) = o(a(2))

and g(f™(4); this can be dome because these two multifunctions are
analytic in sense of Definition 2 by [11], Corollaries 3.3 and 3.4. Next, in
case y does not depend on 4, conditions (i) and (ii) of Theorem 1 imply
condition (i) of Definition 1. Indeed, if ol (| ., K,) is compact, then
IsK, = (\,4,, where 4, = | .., X, (cf. [6], § 29.IV.8). Since K,= 4,
for every =, and since (4,,) is a decreasing sequence of compact sets, we
have y(Ls K} = y((a4,) = lim z(4,) > limsup x (K,), as desired. Finally,
(*) implies condition (ili) of Proposition 2 and so x iy subharmonic in
sense of Definition 1 (indeed: put 4 = 0(Y¥) and define a(d) ed by
a(A)(y) = f(4, ¥); the details follow easily). m

Proof of Lemma 2. Observe first that (i) =(ii); cloculy oz
gince y is momnotonous we have x(a(z ))\ 22 y(Z7).
terms being equal, x(Z) = y(Z").

Concerning part (i), take a sequence (g,) with e, > 0 and lime, = 0,
and cover dZ by open dises D(e, 41 En)y WDEXC 2,1, ...y R, ey € 04, Dub
Zy, = ZUA,,where 4, = | JMI D~ (2 Zyis €). Then 0Z = 4, forn = 1,2, ...
LSA,L = 0Z,and Z < Z,, LsZ, = A By those relations and properties of y
it holds %(Z) = limsup X(Zn) and x(0Z) = limsupy(4,). Thus to get
%(Z) = x(0Z) it is enough to prove that y(Z,) = x(4,), which follows from
the following fact.

Assertion. Let y, H and Z satisty assumptions of Lemma 2. Let
&> 0and 2y, ...,2, €07 be such that 42 < U}’;ll) (2;, &) and ZUlJP, D™
(2, &) € H. Def.me K: C—~H setting K (0 /UU"‘ID“ (2;, &) and, for
t 0, X(t) = {Jr,D (2, ¢). Then th(IC is subharmonie.

This subharmonic function is constant on C\{0}, therefore by [13],
IL4, Remark, it must be constant on C. Applying this to above situation
we get 1(Z,) = y(4,), as desired.

It remains to prove the Assertion. We will apply Lemma 1; first we
approximate the multifunction K by a suitable sequence K,, . Fix # > 0 such

Nezeat
The exueme

iom
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that B~(8Z, 4n) = \ L, D(2;, &), where B~(8Z, 4n) denotes {zeC:
dist(z, 82) < 49}. Fix a point 2, outside K (0) and consider multifunctions
of the form L,(?) = 2,+at+D~ (0, ); we construct XK, with their help.
Denote IntL, = {(f,2): |s—2,—ai| <%} and by Gr(L,) the graph of
L,, that is {(2, 2): & € L,(A)}. For every » there is some J, > 0, such that
whenever Gr(L,) intersects D~(0, 6,) XB~(Z,n) and L,(t) =« B~(Z, 1),
then [f| <1/n. (We omit an easy proof.) Observe that the sets Int(L,),

a € C, cover aD(0, 8,) XZ, and choose a finite subcovering, say Int(L, ),

=1,2,..., j(n); further on we write L; instead of L . Put

Iy ={teC: Ly(t) = B~(Z, n)};

we define K, as the multifunction whose graph is equal to the set

1) tn) G (Ly| ;) WG (K)UD™ (0, 6,) XZ,

where I;|F'; denotes the restriction of I, to F,. Now it is clear that K, is an

w.8.c. multifunction mapping € into H < F,(C). Moreover, by definition

of 6, and by (4) it holds
Gr(K) < Gr(XK,

n) € Gr(EK)uD~ (0, 1/n);

therefore for every t € C we have K (f) = K,(t),n =1,2,...
=IK(t). -

Observe now that if we show that ¢, (t) = y(K,(t)) is subharmonic,
then (K,)y., and K will satisfy all assumptions of Lemma 1 and so sub-
harmonicity of ¢ - [ K (t)) will follow. By Proposition 2, (ii) it is enough to
show that each multifunction X, is locally of the form (8). We consider
three cases. If 4, € D(0, 6,), let by, ..., b, bean 5-net of Z, then, in a neigh-
bourhood of %y, it holds

and Ls K, (t)

m

8
Ka@t) = le D™ (2, e)u L__}ID_(bﬁ ),
as desired. If ¢, e 8D (0, 6,), then the open sets Int(L;), ¢ = 1,2, ...,j(n),
cover {t,} xZ, and so they also cover D~ (f,, u) XZ for u > 0 small enough.
Consequently the representation

2 () = L) D (e, E)Ugjl Db

i=1

i1 1)
holds in D (¢, x), too. The last case, ¢, ¢ D™(0, 6,), is more delicate. Put
&= {teC: I;(t) = B(Z, )},

where

B(Z,n) = {z e C: dist(z, Z) < 7};
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clearly @, is open and G5 < F,. Divide indices {1,2,...,j(n
sets
I, = {it t,eG; I, = {i: t, ¢ 7).

Only in case ¢ € I, the behaviour of I; |7, near %, needs some comments.
If 4, e F\G,, then Ly(t,) = B~ (Z, n) but L,(t) ¢ B(Z, 1), hence there is
an o e Ly(t,)n0B(Z, n) and so for some xy€Z we have |#—| = 7.
Clearly @, € ¢Z and 50

L,(t)) = B~ (0%, 3n)

)} into three

I, = {i: ty e F,\NG} and

(diam Ly (%) == 29),
and

m
L,(t) = B(8Z, 4n) = U D™ (%, e) .
gl

if ¢ is near t,. Consequently, in & neighbourhood of %y, we have

£ = ) D, O U Lt

il 1
This ends the proof.

Proof of Lemma 3. We will apply Proposition 1 to show that ¢(Ay
= z(4, E(4)) is subharmonic. For cach 4, €@ we find 7 = 7(1,) > 0 and
an ws.c. mulbifunction L = L : D(d, r)>F(C), such that ()
= y(4, L(A)) is subharmonic, L(4) = K(4) for AeD(l,r) and G (i)}
= L(A). Observe that ¢ (1) = x(1, L(A) < p(d) (since x(2, ) is monot-
onous) and (i) = @(4,) (by Lemma 2); thus the agsumptions of Prop-
osition 1 are fulfilled, and so @(4) = x (2, K (4)) is subharmonie. It remains
to construet L with the desired properties.

Fix 1y €@ and denote, for ¥ = (4,2, €V,

(8) P4, 2) = @(y)(A— o)+ 0, (¥) (2 —20) + 02 (¥) (A — Ao)* +
+ 203, (4) (A = 4) (2 —20) + 0. (%) (2 —20)*,

(where o, = —f( 8@ - TO‘Q
2\ dey (&N
IX.B.2, polynomials p¥ have the following property: for overy ¥,
= (A, %) € ¥V, such that g(y,) =0, there is » = »(y,) > 0 guch that
whenever y' = (', 2') € D(Ay, 7) X D(2y,7) and o(y') = 0, then

(6)  {(A #) € Dk, #) X D(20,1): (4,2) <0, 2" (4, %) =0} = {y}.

Denote Y = {i} x 8K (4y), and let | J%,D (A, r) XD, 1), Where 7;
= (Ao, &), # € 0K (), be a finite covering of the compact set ¥Y; by
[6], § 41.VI Cor. 4d there is 7, > 0 such that for every 2, e 8K (4,) it holds

D(Roy 7o) XD (25 10) = D (Ao, 1) XD (25, 1)

), ? == 2y 12y, otc., cf, [4], T.A.2). By [4],
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for some 4. This and (6) implies that for every y = (49, %) e ¥
(7) ¥ = 0}nD(4y, 7o) X D(2y, 1) = Gz (&).

Denote by €}, for » >0 and y € ¥, the connected component of {p¥
= 0}ND~ (44, 7) X C containing y. Construction of the multifunction L is
based on the following assertion (to be shown later).

ASSERTION. There is v > 0 such that for every y = (Ay, %) € ¥
(8) 0y = D™ (4, 7) X D (2, 14),
9) a(0y) = D7 (4, 1), 7k, %) =A.

Let L’ be the multifunction whose graph is |J,.pCj. By (9) L'(4)
= @& for every €D (1, 7). Since p is 0°, one can show (cf..(5)) that
the map y—>05: ¥Y—F,(C*) isw.s.c., and so L(4) e F (C) for 2 € D~ (4, )
and, moreover, L': D~ (4, r)=>F,(C) is ws.c., too. Put L = IL'|D (2, 7);
by (8) and (7) we have L(1) c K (1) for 1 € D(4y, 7). Finally 0K (4,) = ¥
< L(4,), by construction.

Thus we have all properties of L that we need, except for subharmon-
icity of 9(4) = x(, L(4)). For this we apply Lemma 1 first. Take
(e,) With lime, = 0 and e, > 0. Clearly for every y € ¥ the set V(y)
= C}+ {0} ><D 0,¢,) is rvelatively open in D~ (0 ryxC, and Gr(L')
= UrVy Choose a finite covering {V(y,.1), -+-s V({Yuym)} of Gr(L'),
and let L, be the multifunction such that

where

(n)
Gr(I;) = U (0;,,+{0} xD7(0, 5,)).

iZ1
Put L, = L,|D(4y, 7). By the construction L(2) = L, (%) for n = 1,2, ...
and A € D(4,, »). Since the remaining assumptions of Lemma 1 are fulfilled,
it is enough to prove that w,(3) = (4, L,(4)), » = 1,2, ... are subhar-
monie, in order to getithat y(1)is subharmonic. Let 1, € D(4,, r) be arbitrary,
and let 6 > 0 be small enough, so that for everyi =1, ..., (n) the set
0{,n : N (D(4;, 8) X C) is the graph of a single or two-valued analytic function,
with at most one ramification point at 1,. A closer look at (B) assures
us that each of these functions has one of the following three forms: either
a3(4), o b;(A) £V (A— A1)20;(A), oF dy(A) £V 2 — Ay £, (4), Where a;, by, ¢;, &y, €,
are regular in D(4,, §). Introduce & uniformizing variable ¢, so that 1— 4,
=}, Put

=) D™ (a;(4), n)UUD (by(2) +120s(2), &)V
UUD (B;(A) —t2¢;(A), n)uUD (d(3)

v LkJ D~ (dk(z) —tey(4), 37»)’

) +16(2), €,V
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where 4 = 4,12, and [t| < 6'*. By Proposition 2 (ii) the function ¢~ (1)
= 7(2 12, R(t)) is subharmonic in D(0, 6"). On the other hand, v,(4)
= y, (A, +12) = " (). Since for i w0 the mapping ¢—~1*+4, is locally
biholomorphie, v, is subharmonic in D (4, 6)\ {4,}. Moreover y, is bounded
from the above in D(iy, 8), and Hmsup,.p, (A, +$) = lmsup,,,p" (8%}
= 9" (0) = v,(4) (by the Oka-Rothstein theorem [1], App. IL, Th. 11);
therefore by a result due to Brelot [13], Th. IIL. 30, v, is subharmonic
in (i, 8).

We close the proof of Lemma 3 with the proof of the Assertion.
Observe first that

(10) (05(9); 0ws(y)) # (0,0) for all ye X,

Indeed, if not, then by (8) {4 = A5} = {A} x C = {p? = 0}, and so, by (7),
D (zy, 7o) = K (4y), which is false since 2, € 0K (4,). By (10) there are
compact sets 4 and B, such that AUB = ¥, and o,(y) # 0 for every
y € A, and g, (y) # 0 for every y € B.

We consider two cases.

Case A: there is 7 > 0 such that for every y « A relations (8) and (9)
hold.

Rewiite polynomials (5) as

PY(Ay #) = a¥(A) (2 — o)’ +V(A) (z —20) + ¢ (A)
where a¥(2) = o,(Y);
W (A) = . (¥)+ 20, (1) (A4,
and
¢ (2) = e (1) (A— %)+ en(y) (A— ).

Let us remark that if |ac| is small in comparison with [b], then it is con-
venient to represent the roots of a (2 — 2,)2 + b (2 —2,) + ¢ in the following form

—20/(b(1+ (1 —dach=2)")),
(12) oo —2y = —b(L-+(1—4dach=2))/(2a);

I

(11) 2, —2

last formula valid for a = 0, otherwise #_ doos not exist; «'* denotes here
the branch taking 1 at w = 1.

Fix M, a >0 such that « <inf,plo,(¥)] and sup,er|0. W) < M.
Then for every & >0 thereis r = #(g) > O such that fory e Y and 2 e D~ (A, )
it holds

lof = le"(A) <5 a<[b]=[Y(4) and o =|a¥(2)| < M.

Using these estimations in (11) and (12) we obtain that if e > 0 is small
enough, then for every 4 € D~ (4, #),r = (&) it holds 24 (1) € D (=,,const-¢),

e ©
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while 2¥ (1) ¢ D(2y, a/43]); consequently
€y ={(%, 2% (2): 2D (4, 7} = D™ (4, 7) XD(2y, 74)s

for every y e ¥ (for small ¢), as desired. We get (9) by observing that (11)
is well defined (with a = a?(2), etc.) for every 4 € D~ (4, ), if # = 7(e) and
eMa™ < 1/8.

Case B: there is » > 0 such that for all ¥ € B relations (8), (9) hold.

Relation (9) holds for every y € B because g,,(y) # 0 (cf. (5)). Choose:
B > 0 such that g < inf, plo.,(y)]. Suppose that (8) does not hold on B
uniformly, i.e. there are sequences ¥(n) = (4, 2(n))eB and y'(n}
= (A (n), 2 (n)) e 0,’/{,‘1) such that |2'(n)| = r,; observe that lim A’ (n) = 2,.
Sinee |g,, (y(n))| > #, the roots z = 2’ (n) of p*™(1’(n), 2) form a bounded
sequence; passing to subsequences, if necessary, we may assume that
Y(n)—=>y = (4, 2) and ¥’ (n)—=>y' = (4, 2’). In particular,
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(13) W) =0=9p"y) and |y—y'|=w,.

Observe that there is no sequence 1" (n(k)), with n(k) co, such that
A7 (n(k))—7%, and polynomials p”(""‘))(}.”(n(k)) y z) have double roots.
Buppese en the contrary that (k) are cuch deukle roots Then

ndky) f 01 o nf? (1 a ) 1 "
pylnR) (/, (n(k)), 2 (k)) =0 = sz"("‘“)(l (n(®)}, 2 (k)),

By the latter equation and by the relations lim A (n(k)) = 2, o,, (y(fn(k))
> B, the sequence 2 (k) converges to some &'; by both equations p¥(2,,

0
2") =0 and ?z—p” (4, 2"") = 0. Consequently the quadratic polynomiak

2Y(%g, #) has at least three roots (2, 5 2/, cf. (13), and a double one at &),
which is impossible (otherwise p¥|{,} x C = 0, contrary to (7)).

Thus there is 7" >0 such that for every leD (4,,7) and for
% =1,2,..., the equation p*™(1, 2) = 0 has two different solutions.
Thus the set {p¥™ = 0}nD~(4y, 7') xC is the graph of a two-valued
(algebraic) function, without ramification points, and, by the monodromy
theorem, has two components (branches): €5, is one of them and denote
by 8, the other. We may also assume that {p? = 0}nD~(4,, ') xC
has two components, €7 and S (use the fact that p¥(1,, +) does not have
double roots and take smaller +, if needed). Since y'(n) -y’ €8, and
Ls;(){,ém < 0 and LsS, < 8, therefore 4'(n) e S, for large n, instead to
Opmy» 88 assumed. This sebtles case B.

The smaller of values of » obtained in cases A and B fulfils the Asser-
tion. m

Proof of Theorem 2. It suffices to prove that ¢(4) = x(l, K (/1)) is
subharmonie on each velatively compact subregion @, of . Fix such G


GUEST


48 7. Slodkowski

since K is w.8.c., there is B > 0 such that
Z =Gy x{p: bl =Rl U = {(2,2) @ xC: 2 ¢ K(A)}.

By Definition 2 the set U is a domain of holomorphy and by [4], TX.D>.4,
there is a sequence (D,)2.; of strictly pseudoconvex domains (in the sense
of Levi) such that D, = Dyyy, n =1,2,..., and UnD,= U; clearly we
may assume that Z < D,. Moreover, by [4],IX.A.4, there ig aneighbourhood
V. of éD,, and a strietly plurisubharmenic function o V=R such that

DNV, = {(A;2) € V.2 (4, 2) < O}
Put :
Un = (GO XC) f‘\(D,,yUGoX {]z] > R})’

and let K, be the multifunction with the graph G, xC\U,. Now it is
clear (we omit the details) that K, : ¢, —F,(C) and is u.s.c.; moreover, if
we put V, = Von(Go x {l2| < R}) and o, = g,|V,, then K,, g, and V,
satisfy all assumptions of Lemma 3 and so ¢, (4) = x(4, K, (4)) is subhar-
monie in Gy,n =1,2,... Observe that multifunctions K|Gy, K,, »
=1,2,... satisfy all assumptions of Lemma 1 (in particular (M),IC,(4)
=K(%), and K,.,(d) c K,(4), n=1,2,... for 1e6,); therefore ¢(1)
= 5(, E(4)) is subharmonic in G;). &
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