

Continuous selections for a class of non-convex multivalued maps

by

ANDRZEJ FRYSZKOWSKI (Warszawa)

Abstract. Let S and T be compact spaces, Z a separable Banach space and $L_1(T,Z)$ the Banach space of μ_0 -integrable functions $u\colon T\to Z$, where μ_0 is a nonnegative regular normed Borel measure on T.

We say that the multivalued map $K: S \rightarrow 2^{L_1(T,Z)}$ is decomposable if for each

S

 $(P) \qquad \qquad u \cdot \chi_{\mathcal{A}} + v \cdot \chi_{T \setminus \mathcal{A}} \in K(s) \quad \text{ for each } u, v \in K(s) \text{ and } \mathcal{A} \ \mu_0\text{-measurable.}$

We prove the following generalization of a recent theorem of Antosiewicz and Cellina:

Assume that $K \colon S \to \operatorname{cl} L_1(T,Z)$ is decomposable and lower semicontinuos. Then there exists a countable family of continuous selections $k_n \colon S \to L_1(T,Z)$ such that

$$K(s) = c1\{k_n(s), n = 1, 2, \ldots\}.$$

Introduction. Let (T,\mathfrak{M}) be a compact topological space with a σ -field of measurable sets \mathfrak{M} , given by a nonnegative and regular normed Borel measure μ_0 . By Z we denote a separable Banach space with the norm $\|\cdot\|$ and by $L_1(T,Z)$ the Banach space of functions integrable in the Bochner sense, with the norm $\|u\| = \int |u(t)| d\mu_0$.

We call a set $K \subset L_1(T, \mathbb{Z})$ decomposable if for all $u, v \in K$ and $A \in \mathfrak{M}$

$$\chi_{\mathcal{A}} \cdot u + \chi_{T \setminus \mathcal{A}} \cdot v \in K,$$

where χ_A stands for the characteristic function of set A.

The multivalued map K(s) from the topological space S into space N(X) of nonempty subsets of the topological space X is called *lower semi-continuous* (l.s.c.) if the set

(0.1)
$$K^+F = \{s \in S \colon K(s) \subset F\}$$

is closed in S for every closed $F \subset X$.

The well-known theorem of Michael [6] gives us the existence of a continuous selection of the multivalued l.s.c. map $K \colon S \to \operatorname{cl} X$ (cl X denotes nonempty and closed subsets of X), where S is a paracompact topological space and the values of K(s) are convex.

The purpose of this paper is to show that in the case where $X = L_1(T, Z)$, then an analogue of Michael's theorem holds with the convexity assumption replaced by condition (P). We prove this for compact S but it holds also for locally compact and separable S.

The first result of this type has been obtained by Antosiewicz and Cellina [1] for K(s) given by

$$(0.2) K(s) = \{ u \in L_1([0,1], R^m) \colon u(t) \in P(t, s(t)) \text{ a.e. in } [0,1] \}$$

defined on a compact set S of continuous functions on [0,1] into the Euclidean space R^m . Above P(t,x) is a multivalued map from the Cartesian product $[0,1] \times R^m$ into compact subsets of R^m measurable in t, continuous in x and integrably bounded. Under these assumptions they proved that there exists a continuous map $\varphi \colon S \to L_1([0,1],R^m)$ such that $\varphi(s)(t) \in P(t,s(t))$ a.e. in [0,1], that is, a continuous selection of K(s) given by (0.2). This theorem was further extended by Bressan [2] and Lojasiewicz [5]. They weakened the condition of continuity in x of P(t,x) replacing it by lower semicontinuity.

The above theorems were applied by those authors to prove the existence of a solution to the Cauchy Problem $\dot{x} \in P(t, x)$ and $x(0) = x_0$, where the values of P(t, x) may be non-convex.

It is obvious that K(s) given by (0.2) satisfies (P). This condition is a kind of substitute for convexity.

The existence of a continuous selection of K(s) when the multivalued map K from a compact topological space S into $\operatorname{cl} L_1(T,Z)$ is l.s.c. and the sets K(s) satisfy condition (P), which we prove in this paper, is an abstract version of the above-mentioned result of Antosiewicz and Cellina.

The main result and the construction of a continuous selection is given in Section 3. Section 1 contains a proposition which is a consequence of the Liapunov theorem on the range of a vector-valued measure and which is quite instrumental in solving the problem. In Section 2 we give some consequences of decomposability property (P).

The author is grateful to Professor C. Olech for formulating the problem and for numerous conversations.

1. Some properties of a vector measure. Let us consider a nonatomic, complete vector measure $\vec{\mu} = (\mu_1, \dots, \mu_m)$. We shall consider below the space M of such vector measures with the topology induced by the norm $\|\vec{\mu}\|$ equal to the variation of $\vec{\mu}$.

From the famous Liapunov theorem we know that the set $\mathscr{R} = \{ \widehat{\mu}(A) \colon A \in \mathfrak{M} \}$ is compact and convex. In particular, this theorem implies the following:

Remark 1.1. For an arbitrary $A\in\mathfrak{M}$ there is $B\in\mathfrak{M}$ such that $B\subset A$ and

$$\vec{\mu}(B) = \frac{1}{2} \cdot \vec{\mu}(A)$$
.

Using this we shall prove:

PROPOSITION 1.1. For the above measure $\vec{\mu}$ there exists a family of measurable sets $\{A_a\}_{a\in[0,1]}$ such that

(1.1)
$$A_{\alpha} \subset A_{\beta}$$
 for $\alpha < \beta$,

of the measure. This completes the proof.

$$(1.2) \quad \ddot{\mu}(A_a) = \alpha \cdot \vec{\mu}(T).$$

Proof. From Remark 1.1 we may construct a family of sets A_{α} satisfying (1.1) and (1.2) for $\alpha = k/2^n$, where $n \in \mathbb{N}$ and $k = 0, \ldots, 2^n$. Having this for arbitrary $\alpha \in [0, 1]$ we put $A_{\alpha} = \bigcup_{k \geq n} A_{k/2^n}$. Condition (1.1) holds by the definition of A_{α} , while condition (1.2) follows from the continuity

Remark 1.2. We may additionally require in Prop. 1.1 that $\mu_0(A_a) = \alpha$. Indeed, it is enough to construct the family $\{A_a\}$ for the measure $\overrightarrow{\nu} = (\mu_0, \mu_1, \dots, \mu_m)$.

Let us consider a family of nonatomic complete measures $\overrightarrow{\mu}_s = (\mu_s^1, \ldots, \mu_m^s)$.

Proposition 1.2. Assume that the map $s \rightarrow \overline{\mu}_s$ from a compact topological space S into space M is continuous. Then for every s > 0 there exists a family of measurable sets $\{A_a\}_{a \in [0,1]}$ with the properties

(1.3)
$$A_{\alpha} \subset A_{\beta}$$
 for $\alpha < \beta$,

$$(1.4) \quad |\overrightarrow{\mu}_s(A_a) - \alpha \cdot \overrightarrow{\mu}_s(T)| < \varepsilon \text{ for all } \alpha \in [0, 1] \text{ and } s \in S,$$

(1.5)
$$\mu_0(A_a) = a$$
.

Proof. Let us take an $\varepsilon>0.$ The family of open sets $\{V_{s_0}\}_{s_0\in S}$ given by the formula

(1.6)
$$V_{s_0} = \{s \colon \|\vec{\mu}_s - \vec{\mu}_{s_0}\| < \varepsilon/2\}$$

is an open covering of the compact space S. Let s_1,\ldots,s_k be such elements of S that $S=V_{s_1}\cup\ldots\cup V_{s_k}$. From Prop. 1.1 for the measure $\vec{v}=(\vec{\mu}_{s_1},\ldots,\vec{\mu}_{s_k},\mu_0)$ there exists a family of measurable sets $\{A_\alpha\}_{\alpha\in[0,1]}$ such that (1.3) holds and

(1.7)
$$\vec{v}(A_{\alpha}) = \alpha \cdot \vec{v}(T) \quad \text{for all } \alpha \in [0, 1].$$

To end the proof we show that the family $\{A_a\}$ satisfies (1.4). For an arbitrary $a \in [0, 1]$ and $s \in S$ we have

$$\begin{split} |\overrightarrow{\mu}_s(A_a) - a \cdot \overrightarrow{\mu}_s(T)| \leqslant |\overrightarrow{\mu}_s(A_a) - \overrightarrow{\mu}_{s_t}(A_a)| + |\overrightarrow{\mu}_{s_t}(A_a) - \alpha \cdot \overrightarrow{\mu}_{s_t}(T)| + \\ + |\alpha(\overrightarrow{\mu}_{s_t}(T) - \overrightarrow{\mu}_s(T))|, \end{split}$$

166

where s_i is such that $s \in V_{s_i}$. The first and the last terms of the right-hand side of the above inequality are estimated by $\varepsilon/2$ because of (1.6), while the middle term is equal to 0 because of (1.7). Hence (1.4) holds.

We shall now prove

Proposition 1.3. Let $\{A_a\}_{a\in[0,1]}$ be a family of measurable sets with the following properties

(1.8)
$$A_{\alpha} \subset A_{\beta}$$
 for $\alpha < \beta$,

(1.9)
$$\mu_0(A_a) = \alpha$$
,

and let $p: S \rightarrow [0, 1]$ and $k: S \rightarrow L_1(T, Z)$, where S is a topological space, be continuous maps. Then the map $l(s) = k(s) \cdot \chi_{A_{n(s)}}$ is continuous.

Proof. The continuity of map l(s) follows from the inequalities

$$\begin{split} \|k(s) \bullet \chi_{A_{\mathcal{D}(s)}} - k(s_0) \cdot \chi_{A_{\mathcal{D}(s_0)}}\| &\leqslant \|k(s) \cdot \chi_{A_{\mathcal{D}(s)}} - k(s_0) \cdot \chi_{A_{\mathcal{D}(s)}}\| + \\ &+ \|k(s_0) \cdot \chi_{A_{\mathcal{D}(s)}} - k(s_0) \cdot \chi_{A_{\mathcal{D}(s)}}\| \\ &\leqslant \|k(s) - k(s_0)\| + \int\limits_{A_{\mathcal{D}(s)} - A_{\mathcal{D}(s_0)}} |k(s_0)(t)| \, d\mu_0 \end{split}$$

and the equality $\mu_0(A_{p(s)} - A_{p(s_0)}) = |p(s) - p(s_0)|$, which is true for arbitrary s_0 and any s from S.

2. The decomposability property. For an arbitrary set $\mathfrak A$ of measurable real-valued functions defined on $(T,\mathfrak M)$, we denote by $\operatorname{essinf} a(t)$ the essential infimum. It is known (see [3]) that there exists a sequence $\{a_n\} \subset \mathfrak A$ such that

(2.1)
$$\operatorname{ess\,inf}_{a\in \mathbb{N}} a(t) = \inf_{n} a_n(t) \text{ a.e. in } T.$$

Consider now a nonempty and closed set $K \subset L_1(T, \mathbb{Z})$ which fulfils the decomposability property (P). We denote

(2.2)
$$\varphi(t) = \operatorname{ess\,inf}|u(t)|.$$

There exist functions $u_n \in K$, for $n \in N$, such that a.e. in T

$$|u_1(t)| \ge |u_2(t)| \ge \dots$$

and

(2.4)
$$\psi(t) = \lim_{n \to \infty} |u_n(t)|.$$

Let $v_n \in K$ be such that (2.1) holds; $\psi(t) = \inf_n |v_n(t)|$ a.e. in T. Let us put $u_1 = v_1$ and inductively $u_{n+1} = u_n \cdot \chi_{T_n} + v_{n+1} \cdot \chi_{T_n} - v_{n+1} \cdot \chi_{T_n}$ where $T_n = \{t \colon |u_n(t)| < |v_{n+1}(t)| \}$. Then (2.3) and (2.4) are implied by the inequality

$$(2.5) |u_{n+1}(t)| \leq \inf\{|v_1(t)|, \dots, |v_n(t)|\}.$$

PROPOSITION 2.1. Let $K \subset L_1(T,Z)$ be a closed and nonempty set which satisfies condition (P). Then there exists an element $u_0 \in K$ such that

(2.6)
$$|u_0(t)| = \psi(t) = \underset{u \in K}{\operatorname{essinf}} |u(t)| \text{ a.e. in } T.$$

Proof. Let $u_n \in K$ be a sequence satisfying (2.3) and (2.4). Then the multivalued map $P(t) = \operatorname{cl}\{u_n(t), \ n \in N\} \cap \overline{B}\left(0, \psi(t)\right)$ $(\overline{B}\left(0, r\right)$ denotes a closed ball with the centre 0 and radius r) is measurable and has nonempty values a.e. in T.

Let u_0 be a measurable selection of P(t). We shall prove that $u_0 \in K$. Fix $i \in N$ and for $n \in N$ put $T_n = \{t : |u_n(t) - u_0(t)| \le 1/i\}$. Then $\bigcup_{n=1}^{\infty} T_n$ is a set of full measure. From property (P) and (2.3) we see that v_i given by the formula

$$v_i(t) = egin{cases} u_1(t), & t \in T_1, \\ u_2(t), & t \in T_2 \setminus T_1, \\ \ddots & \ddots & \ddots \\ u_n(t), & t \in T_n \setminus \bigcup_{k < n} T_k \\ \ddots & \ddots & \ddots & \ddots \end{cases}$$

belongs to K and the inequality $|v_i(t)-u_0(t)| \leq 1/i$ holds a.e. in T. And so $u_0 = \lim v_t$ belongs to K. Clearly u_0 satisfies (2.6).

DEFINITION 2.1. We will say that the multivalued map $K: S \rightarrow \operatorname{cl} L_1(T, \mathbb{Z})$ is decomposable if for all $s \in S$ the sets K(s) satisfy property (P).

Proposition 2.2. Assume that the map $K\colon S{
ightarrow}{
m cl} L_1(T,Z)$ is 1.s.c. and decomposable and put

(2.7)
$$\psi_s(t) = \underset{u \in K(s)}{\operatorname{ess inf}} |u(t)|.$$

Then the multivalued map

(2.8)
$$P(s) = \{v \in L_1(T, \mathbb{R}^1) : v(t) \geqslant \psi_s(t) \text{ a.e. in } T\}$$

is l.s.e. and decomposable.

Proof. Let F be an arbitrary closed set in $L_1(T, R^1)$. It is enough to show that if for a sequence $s_n \to s_0$ we have $P(s_n) \subset F$, then $P(s_0) \subset F$, too.

For this purpose take an arbitrary $v_0 \in P(s_0)$. From Prop. 2.1 there exists a function $u_0 \in K(s_0)$ such that

$$|v_0(t)>|u_0(t)|=|\psi_{s_0}(t)|$$
 a.e. in T .

Let $u_n \in K(s_n)$ be a sequence such that $\lim_{n \to \infty} u_n = u_0$ (such a sequence exists

because K(s) is l.s.c.). Then the sequence $v_n = |u_n| + v_0 - |u_0|$ belongs to $P(s_n) \subset F$ and converges to v_0 . Since F is closed and $v_n \in F$, $v_0 \in F$ also. But v_0 is an arbitrary point of $P(s_0)$; hence $P(s_0) \subset F$, which was to be proved.

Let $K: S \to \operatorname{cl} L_1(T, Z)$ be a decomposable and l.s.c. multivalued map. We shall prove that these properties are preserved where we take an intersection with certain special multivalued maps. We have the following

Proposition 2.3. Let $K: S \rightarrow \operatorname{cl} L_1(T, Z)$ be an 1.s.c. and decomposable multivalued map and $\varphi \colon S \to L_1(T, \mathbb{R}^1)$ and let $k \colon S \to L_1(T, \mathbb{Z})$ be such continuous maps that the set

$$L(s) = \{u \in K(s): |u(t) - k(s)(t)| < \varphi(s)(t) \text{ a.e. in } T\}$$

is nonempty for any $s \in S$. Then the map $L: S \rightarrow N(L_1(T, Z))$ is decomposable and 1.s.c.

Proof. Let F be an arbitrary closed subset in $L_1(T,Z)$. It is enough to show that if the inclusion $L(s_n) \subset F$ holds for the sequence $s_n \to s_0$, then $L(s_0) \subset F$. For this purpose take an arbitrary $u_0 \in L(s_0)$. Because of the lower semicontinuity of K(s) there exists a sequence $u_n \in K(s_n)$ such that $\lim u_n = u_0$. Without any loss of generality we may assume that $u_n(t)$, $k(s_n)(t)$ and $\varphi(s_n)(t)$ converges to $u_0(t)$, $k(s_0)(t)$, and $\varphi(s_0)(t)$ a.e. in T. For each $i \in N$, let T_i be such a compact set that the functions u_n , $h(s_n)$ and $\varphi(s_n)$ restricted to T_i are continuous and converge uniformly and that the following inequality holds:

(2.9)
$$\int_{T \setminus T_{\epsilon}} \varphi(s_0)(t) d\mu_0 < 1/i.$$

Since for $t \in T_i$, $|u_0(t) - k(s_0)(t)| < \varphi(s_0)(t)$, there exists n_i such that for $n \geqslant n_i$ and all $t \in T_i$ we have the inequality

$$(2.10) |u_n(t) - k(s_n)(t)| < \varphi(s_n)(t).$$

We may additionally assume that $n_1 < n_2 < \dots$ Put $v_n = u_n \cdot \chi_{T_i} + w_n \cdot \chi_{T \diagdown T_i}$ for $n_i \leq n < n_{i+1}$, where w_n are arbitrary but fixed elements from $L(s_n)$ for $n \in \mathbb{N}$. Then the sequence v_n is converging to u_0 , because for $n_i \leqslant n < n_{i+1}$ we have the inequalities

$$\begin{split} \|v_n - u_0\| &\leqslant \int_{T \setminus T_i} |w_n(t) - k(s_n)(t)| d\mu_0 + \int_{T \setminus T_i} |k(s_n)(t) - k(s_0)(t)| d\mu_0 + \\ &+ \int_{T \setminus T_i} |k(s_0)(t) - u_0(t)| d\mu_0 + \int_{T_i} |u_n(t) - u_0(t)| d\mu_0 \\ &\leqslant 2 \cdot \int_{T \setminus T_i} \varphi(s_0)(t) d\mu_0 + \|\varphi(s_n) - \varphi(s_0)\| + \|k(s_n) - k(s_0)\| + \|u_n - u_0\| \\ &\leqslant 2 / i + \|\varphi(s_n) - \varphi(s_0)\| + \|k(s_n) - k(s_0)\| + \|u_n - u_0\|. \end{split}$$

It is easy to check that v_n belongs to $L(s_n) \subset F$. Since $v_n \in F$ and F is closed, $u_0 \in F$ also. But u_0 is an arbitrary point of $L(s_0)$; hence $L(s_0) \subset F$, which was to be proved.

3. Construction of a continuous selection. The scheme of the construction is analogous to the proof of Michael's theorem [6]. Namely, we shall construct a sequence of approximate selections which, in the limit, will give a continuous selection. We begin with the following

Lemma 3.1. Take a decomposable and l.s.c. multivalued map $K: S \rightarrow$ $\operatorname{cl} L_1(T,Z)$. Then for every $\varepsilon > 0$ there exist continuous maps $k \colon S \to \mathbb{R}$ $L_1(T,Z)$ and $\varphi \colon S \to L_1(T,R^1)$ such that

(3.1)
$$\int_{T} \varphi(s)(t)d\mu_{0} < \varepsilon \quad \text{for each } s$$

and the set

(3.2)
$$L(s) = \{u \in K(s): |u(t) - k(s)(t)| < \varphi(s)(t) \text{ a.e. in } T\}$$

is nonempty for each $s \in S$.

Proof. Fix $\varepsilon > 0$. From Proposition 2.2 and Michael's theorem we see that for every fixed $s_0 \in S$ and $u_0 \in K(s_0)$ there exists a continuous function $\varphi_{s_0,u_0} \colon S \to L_1(T, \mathbb{R}^1)$ such that

$$\varphi_{s_0,u_0}(s)(t) \geqslant \underset{u \in K(s)}{\operatorname{ess} \inf} |u(t) - u_0(t)| \text{ a.e. in } T$$

and

$$\varphi_{s_0,u_0}(s_0) = 0.$$

Consider the family of sets $\{V_{s_0,u_0}\}_{s_0\in S,\,u_0\in K(s_0)}$ given by the formula

$$(3.5) V_{s_0,u_0} = \left\{ s \colon \int_{\mathbb{T}} \varphi_{s_0,u_0}(s)(t) \, d\mu_0 < \varepsilon/4 \right\}.$$

It is an open covering of the compact space S. We can establish a finite partition of unity $p_1(s), \ldots, p_r(s)$ subordinate to this covering. Let V_{s_i,u_i} denote such sets that

(3.6)
$$p_i^{-1}(0,1] \subset V_{s_i,u_i}$$
 for $i=1,\ldots,r$.

Then for every $s \in S$ and i = 1, ..., r the following inequalities are satisfied:

$$(3.7) p_i(s) \cdot \int\limits_{T} \varphi_i(s)(t) d\mu_0 \leqslant (s/4) \cdot p_i(s), \text{where} \varphi_i = \varphi_{s_i, u_i}.$$

Consider measures $\vec{\mu}_s$ with the Radon-Nikodým derivatives

(3.8)
$$(\varphi_1(s)(t), \ldots, \varphi_r(s)(t)).$$

Since $\varphi_i(s)$ are continuous in the norm topology of $L_1(T, R^1)$, $\overrightarrow{\mu}_s$ is continuous in M. Therefore from Prop. 1.3 we have the existence of a family $\{A_a\}_{a\in[0,1]}$ of measurable sets such that

(3.9)
$$A_{\alpha} \subset A_{\beta}$$
 for $\alpha < \beta$,

(3.10)
$$|\vec{\mu}_s(A_a) - \alpha \cdot \vec{\mu}_s(T)| < \varepsilon/4r$$
 for all $s \in S$ and $a \in [0, 1]$ and

(3.11)
$$\mu_0(A_a) = \alpha$$
.

Define functions $\varphi(s)$ and k(s) by the formulas

(3.12)
$$\varphi(s) = \sum_{i=1}^{r} \left(\varphi_i(s) + \varepsilon/4 \right) \cdot \chi_{A_{z_i(s)} \setminus A_{z_{i-1}(s)}},$$

(3.13)
$$k(s) = \sum_{i=1}^{r} u_i \cdot \chi_{A_{z_i(s)} \setminus A_{z_{i-1}(s)}},$$

where $z_0(s)=0$ and $z_i(s)=p_1(s)+\ldots+p_i(s)$ for $i=1,\ldots,r$. From Prop. 1.3 it follows that k(s) and $\varphi(s)$ are continuous. We shall prove that $\int_{-\pi}^{\pi} \varphi(s)(t)d\mu_0 < \varepsilon$. From (3.10) we have

$$\Big|\int\limits_{A_{\alpha}}\varphi_{i}(s)(t)d\mu_{0}-\alpha\cdot\int\limits_{T}\varphi_{i}(s)(t)d\mu_{0}\Big|<\varepsilon/4r\quad \text{ for }\quad \alpha\in[0,1].$$

Therefore

$$\begin{split} \int\limits_{A_{z_i(s)} \backslash A_{z_{i-1}(s)}} \varphi_i(s)(t) \, d\mu_0 &= \int\limits_{A_{z_i(s)}} \varphi_i(s)(t) \, d\mu_0 - \int\limits_{A_{z_{i-1}(s)}} \varphi_i(s)(t) \, d\mu_0 \\ &< \left(z_i(s) - z_{i-1}(s)\right) \cdot \int\limits_{s'} \varphi_i(s)(t) \, d\mu_0 + \varepsilon/2r \,. \end{split}$$

Since $p_i(s) = z_i(s) - z_{i-1}(s)$, by (3.12) we have

$$\int\limits_{T}\varphi(s)(t)d\mu_{0}<\sum_{i=1}^{r}p_{i}(s)\cdot\int\limits_{T}\varphi_{i}(s)(t)d\mu_{0}+3\varepsilon/4$$

and by (3.7) we have the required estimate.

It remains to establish that $L(s) \neq \emptyset$ for $s \in S$. From Prop. 2.1 there is $u_s^i \in K(s)$ such that for each $s \in S$ and $i = 1, \ldots, r$

$$|u_s^i(t) - u_i(t)| = \underset{u \in K(s)}{\operatorname{ess inf}} |u(t) - u_i(t)| \text{ a.e. in } T.$$

Then the function $u_s = \sum_{i=1}^r u_s^i \cdot \chi_{I_{z_i(s)} \searrow I_{z_{i-1}(s)}}$ belongs to K(s) because of property (P). On the other hand, we have by (3.12)–(3.14)

$$\begin{aligned} |u_s(t) - k(s)(t)| &= \sum_{i=1}^r |u_i(t) - u_s^i(t)| \cdot \chi_{A_{z_i(s)} \setminus A_{z_{i-1}(s)}} \\ &\leq \sum_{i=1}^r \varphi_i(s)(t) \cdot \chi_{A_{z_i(s)} \setminus A_{z_{i-1}(s)}} < \varphi(s)(t). \end{aligned}$$

Therefore $u_s \in L(s)$, which completes the proof of Lemma 3.1.

Now we are able to prove the main result of the paper.

THEOREM 3.1. Let a multivalued map $K\colon S {
ightarrow} {$

Proof. We shall define by induction a decreasing sequence of multivalued maps $K_n(s)$, for $n=0,1,\ldots$, which are decomposable and l.s.c., and sequences of continuous maps $k_n\colon S{\to}L_1(T,Z)$ and $\varphi_n\colon S{\to}L_1(T,R^1)$ for $n=1,2,\ldots$ with the properties:

(3.16)
$$\int_{a_{0}} \varphi_{n}(s)(t) d\mu_{0} < 1/2^{n}$$

and

(3.17)
$$L_{n+1}(s) = \{u \in K_n(s) : |u(t) - k_n(s)(t)| < \varphi_n(s)(t) \text{ a.e. in } T\}$$
 is nonempty for all $s \in S$.

For n=0, put $K_0(s)=K(s)$.

If, for a fixed $n \ge 0$, the multivalued maps $K_n(s)$ are defined, then the continuous maps $k_{n+1}(s)$ and $\varphi_{n+1}(s)$ are defined by Lemma 3.1 with $s = 1/2^{n+1}$, so that for $s \in S$ the sets

$$L_{n+1}(s) = \{u \in K_n(s): |u(t) - k_{n+1}(s)(t)| < \varphi_{n+1}(s)(t) \text{ a.e. in } T\}$$

are nonempty and $\int_{T}^{1} \varphi_{n+1}(s)(t) d\mu_0 < 1/2^{n+1}$. Then from Prop. 2.3 we can put for every $s \in S$

$$K_{n+1}(s) = \operatorname{cl} L_{n+1}(s)$$
.

It is clear that $K_{n+1}(s) \subset K_n(s)$. For each $s \in S$ and $n \in N$, let u_n^s be an arbitrary point of $K_n(s)$. Since $K_{n+p}(s) \subset K_n(s)$, we have $u_{n+p}^s \in K_n(s)$ for each $p \geqslant 0$. Therefore by (3.17) we have, for each n and $p \geqslant 0$, the inequality

(3.18)
$$|k_n(s)(t) - u_{n+n}^s(t)| \leq \varphi_n(s)(t)$$
 a.e. in T .

Inequality (3.18) implies that

$$|k_n(s)(t) - k_{n+n}(s)(t)| \le \varphi_n(s)(t) + \varphi_{n+n}(s)(t)$$
.

Because of (3.16) the above inequality implies that $k_n(s)$ converges uniformly in the $L_1(T, \mathbb{Z})$ -norm to a continuous map $k_0(s)$. Again from (3.16) and (3.18) it follows that $||k_n(s) - u_n^s||$ tends to zero; hence $k_0(s) \in K(s)$. Thus $k_0(s)$ is a continuous selection of K(s), which completes the proof.

 ${\it Corollary 3.1.}$ Theorem 3.1 is also true when S is a locally compact separable metric space.

Proof. Let S_n be such a family of compact sets that $S_n \subset \operatorname{Int} S_{n+1}$ and $\bigcup_{n=1}^{\infty} S_n = S$. Theorem 3.1 applied to the mapping K(s) restricted to S_1 gives us the existence of a continuous function $k_1 \colon S_1 \to L_1(T, Z)$ which is a selection of K(s) for $s \in S_1$.

Let us define map $K_1(s)$ for $s \in S$ by the formula

$$K_1(s) = \begin{cases} \{k_1(s)\}, & s \in S_1 \\ K(s), & s \in S \setminus S_1. \end{cases}$$

It may easily be proved that $K_1(s)$ is l.s.c. and decomposable. Restricting $K_1(s)$ to S_2 and applying Theorem 3.1, we get a continuous $k_2 \colon S_2 \to L_1(T, Z)$, which is a selection of $K_1(s)$ for $s \in S_2$. Obviously, for $s \in S_1$, $k_1(s) = k_2(s)$, and so k_2 is a continuation of k_1 to the set S_2 . In this way, by induction, we get a selection defined on the whole S.

COBOLLARY 3.2. Let K satisfy the assumption of Theorem 3.1. Fix $s_0 \in S$ and $u_0 \in K(s_0)$. Then there exists a continuous selection $k_0(s)$ of the K(s) such that

$$(3.19) k_0(s_0) = u_0.$$

Proof. It can easily be verified that the multivalued map

$$ilde{K}(s) = egin{cases} K(s) & ext{if} & s
eq s_0, \ \{u_0\} & ext{if} & s
eq s_0 \end{cases}$$

satisfies the assumptions of Theorem 3.1. Then each selection of $\tilde{K}(s)$ fulfils (3.19).

In the case where, additionally, the values of K are assumed to be convex, it is known that there exists a denumerable sequence $k_n(s)$ of continuous selections such that $\{k_n(s)\}$ is a dense subset of K(s) for each s. A similar statement is true also in the case considered here. Namely, we have the following

THEOREM 3.2. For a decomposable and 1.s.c. multivalued map $K\colon S \to \operatorname{cl} L_1(T,Z)$ there exists a countable family of continuous functions $k_n\colon S \to L_1(T,Z)$ such that

(3.20)
$$K(s) = \operatorname{cl}\{k_n(s): n \in \mathbb{N}\} \quad \text{for all } s \in \mathbb{S}.$$

Proof. The space C of continuous maps $k\colon S\to L_1(T,Z)$ with the norm $\||k|\|=\sup_{s\in S}\|k(s)\|$ is a separable Banach space. The set $\mathscr{K}=\{k\in C\colon k(s) \text{ is a selection of } K(s)\}$ is closed in the norm topology. There exist selections k_n from \mathscr{K} for each n such that

$$(3.21) \mathcal{K} = \operatorname{cl}\{k_n \colon n \in \mathbb{N}\}.$$

We claim that, for an arbitrary s, (3.20) holds for this sequence. To show this let $k_0 \in K$ be a continuous map such that $k_0(s_0) = u_0$ for arbitrary but fixed $s_0 \in S$ and $u_0 \in K(s_0)$. For every $i \in N$ there exists n_i such that $||k_{n_i} - k_0|| < 1/i$. In particular, it follows that $||k_{n_i}(s_0) - u_0|| < 1/i$, and this means that $u_0 \in \operatorname{cl}\{k_n(s_0): n \in N\}$. This completes the proof.

COROLLARY 3.3 (Bressan [2], Łojasiewicz [5]). Suppose that $P: [0, 1] \times \mathbb{R}^k \to \mathrm{cl}\,\mathbb{R}^m$ satisfies the conditions

- (a) P is $\mathcal{L} \otimes B$ -measurable,
- (b) $P(t, \cdot)$ is l.s.c.,
- (c) there exists a $p \in L_1([0, 1]), R^1$ such that for every $x \in \mathbb{R}^m$

$$\sup \{|z|: z \in P(t, x) \le p(t) \text{ a.e. in } [0, 1]\}.$$

Let S be a compact subset of Banach space $C([0, 1], \mathbb{R}^k)$ of continuous functions from [0, 1] into \mathbb{R}^k , and for $s \in S$ put

$$K(s) = \{u \in L_1([0, 1], R^m) : u(t) \in P(t, s(t)) \text{ a.e. in } [0, 1]\}.$$

Then there exists a continuous selection $k: S \rightarrow L_1([0, 1], \mathbb{R}^m)$ of K(s).

Proof: It is enough to prove that conditions (a), (b), (c) imply the lower semicontinuity of K(s). Let F be an arbitrary closed set in $L_1([0,1],R^m)$. We need to prove that if $s_n\to s_0$ uniformly, $K(s_n)\subset F$, then $K(s_0)\subset F$ also. For this purpose take $u_0\in K(s_0)$ and define $u_n(t)$ so that $u_n\in K(s_n)$ and

$$(3.22) |u_n(t) - u_0(t)| = d(u_0(t), P(t, s_n(t))) \text{ a.e. in } [0,1].$$

Because of (a) such an u_n exists, is measurable and, because of (c), integrable. There is a set $T'\subset T$ of full measure such (3.22) holds for each n on T'. For each fixed $t\in T'$, (3.22) and (b) imply that $u_n(t)\to u_0(t)$. Hence because of (c) $u_n\to u_0$ in L_1 -norm. Since $u_n\in F$ and F is closed, $u_0\in F$ also. But u_0 an arbitrary point of $K(s_0)$. Hence $K(s_0)\subset F$, which was to be proved.

Remark. If we assume additionally that the values of P are convex, then the corollary easily follows from the fact that there exists a selection p(t, x) of P(t, x) which is measurable in t and continuous in x (see [4]).

References

- II. A. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), 386-398.
- [2] A. Bressun, On differential relations with lower continuous right-hand side, ibid., 37 (1980), 89-97.
- [3] N. Dunford and J. T. Schwartz, Linear operators, Part 1, N.Y. 1958.
- [4] A. Fryszkowski, Carathéodory type selectors of set-valued maps of two variables, Bull. Acad. Polon. Sci. 25 (1977), 41-46.

A. Fryszkowski

174

[5] St. Lojasiewicz, jr., The existence of solutions for lower semicontinuous orientor fields, ibid. 28, 483-487.

[6] E. Michael, Continuous selections I, Ann. Math. 63 (1956). 361-381.

INSTITUTE OF MATHEMATICS. TECHNICAL UNIVERSITY OF WARSAW 00-661 Warsaw, Pl. Jedności Robotniczej 1

> Received September 14, 1981 Revised version May 10, 1982

(1706)

STUDIA MATHEMATICA, T. LXXVI. (1983)

On the existence of unitary representations of commutative nuclear Lie groups

by

WOJCIECH BANASZCZYK (Łódź)

Abstract. A proof is given that if I is a discrete subgroup of a nuclear space X. then the quotient group X/I admits sufficiently many continuous characters.

In many situations nuclear spaces seem to be a more adequate generalization of finite-dimensional spaces than are normed spaces. Indeed, many important facts concerning finite-dimensional spaces remain valid in nuclear spaces but not in infinite-dimensional normed spaces. An example of this kind is given in the present paper.

Let us consider the following property of a topological vector space X:

(*) If Γ is a discrete subgroup of X, then the quotient group X/Γ admits sufficiently many continuous characters.

(The terminology is explained below.) Every finite-dimensional space X satisfies (*), which is trivial, and no infinite-dimensional normed space X satisfies (*), which has been proved in [1]. We shall prove here that every nuclear space X satisfies (*).

We begin with some notation and terminology. N, Z, R, C will denote the sets of positive integers, integers, reals and complexes, respectively. Vector spaces will often be regarded as additive topological groups. If A is a subset of a vector space X, then GA will denote the group generated by A. and span A - the linear span of A. The distance from a point u to a set Awill be denoted by d(u, A). For a topological vector space X the conjugate space will be denoted by X^* .

Let H be a real Hilbert space, and let $u_1, \ldots, u_n \in E$. Then Gram (u_1, \ldots, u_n) ..., u_n) will denote the Gram determinant of the vectors u_1, \ldots, u_n . If E is n-dimensional, and if K is a discrete subgroup of E which spans E, then K is an abelian free group with n linearly independent generators u_1,\ldots,u_n , and the number $Gram(u_1,\ldots,u_n)$ does not depend on the choice of generators; we denote this number by $\operatorname{Gram} K$. A subgroup K of a Hilbert space will be called r-discrete if $||u-w|| \ge r$ for any distinct $u, w \in K$.

Let G be a topological group. By a character of G we mean a homomorphism of G into the multiplicative group $\{z\in C\colon z\bar z=1\}$. We say that G