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Continuous selections for a class of
non-convex mudtivalued maps

by
ANDRZES PRYSZEOWSXI (Warszuws)

Abstrack. Lot 8 and 7' be ocompact spaces, Z & scparable Banach space and
Iy 2) the Banach spnee of po-integrable functions w: T'->Z, where yy is a non-
negative rogular normed Borel measure on I

Wo swy that the multivalued map K: §-»25(142) ig decomposable if for cach

sal
) Uy Vg4 €K (8)  for each w, v ell(s) and 4 Hg-meagurable.

‘We prove tho following genoralization of & recent theorem of Antosiewicz and
Cellina:

Assumo that K: §-olLy (7, 2Z) is decomposable and lower semicontinuos. Then
thero oxigts n countable family of continuous selections T,: S-Iy (T, Z) such thab

J(8) == cl{lon(8), n = 1,2,...}.

Introduction. Lt (77, M) be a compact topological space with a o-field
of meagurablo sets M, given by a nonnegative and regular normed Borel
measure u, By Z wo denote a separable Banach space with the norm {-|
and by L, (7, Z) the Banach space of functionk integrable in the Bochner
sense, with the norm [ju|| = [ |u(3)|due

I

We call a set K = I, (T, Z) decomposable if for all u, v ¢ K and 4 e M

(®) LU+ 2rav €K,

where y, stands for the characteristic function of seb A.

The multivalued map K (s) from the topologieal space 8 inbo space
N(X) of nonempty subsets of the topological space X is called lower semi-
continuwous (Ls.c.) if the set

(0.1) KR == {se§: K(s) = I'}

is closed in & for every closed I = X.

The well-known. theorem of Michael [6] gives us the existence of a con-
tinuous selection of the multivalued Ls.c. map K: S—>clX (clX denotes
nonemypty and closed subsets of X), where § is a paracompact topological
space and the values of K(s) are convex.
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The purpose of this paper is to show that in the case where X
= I (T, Z), then an analogue of Michael’s theorem holds with the con-
vexity assumption replaced by condition (P). We prove this for compact
8 but it holds also for locally compact and separable S.

The first result of this type has been obtained by Antosiewiez and
Cellina [1] for K(s) given by
(0.2) E(s) = {weLy([0,1], R™: u(t) e P(t, s(2)) a.e. in [0,1]}
defined on a compact set § of continuous funetions on [0,1] into the
Euclidean space R™. Above P (i, #) is a multivalued map from the Oar-
tesian product [0, 1] xR™ into compact subsets of R™ meagurable in ¢,
continuous in « and integrably bounded. Under these assumptions they
proved that there exigts a continuous map ¢: S—+I,([0, 1], ™) such
that ¢(s)(t) eP(t,s(t)) a.e. in [0, 1], that is, a continuous selection of
K (s) given by (0.2). This theorem was further extended by Bressan [2]
and Lojasiewiez [5]. They weakened the condition of continuity in # of
P(t, ) replacing it by lower semicontinuity.

The above theorems were applied by those authors to prove the exist-
ence of a solution to the Cauchy Problem #eP (i, x) and x(0) = x,,
where the values of P (i, #) may be non-convex.

It is obvious that K (s) given by (0.2) satisfies (P). This condition
is a kind of substitute for convexity. :

The existence of a continuous selection of K (s) when the multivalued
map K from a compact topological space § into cl.L (T, Z) is Ls.c. and
the sets K (s) satisfy condition (P), which we prove in this paper, is an
abgtract version of the above-mentioned result of Antosiewicz and
Cellina.

The main result and the construction of a continuous selection is
given in Section 3. Section 1 contains a proposition which is a consequence
of the Liapunov theorem on the range of a vector-valued measure and
which is quite instrumental in solving the problem. In Section 2 we give
sore congequences of decomposability property (P).

The author is grateful to Professor 0. Olech for formulating the pro-
blem and for numerous conversations.

1. Some properties of a vector measure. Let us consider o nonatonic,
complete vector measure Z = (uy, ..., 4,,). We shall consider below the
space M of such vector measures with the topology induced by the norm
[l equal to the variation of 7.

From the famous Liapunov theorem we know that the set %
= {ji(4): A eI} is compact and convex. In particular, this theorem
implies the following:
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Remark 1.1. For an arbitrary 4 € M there it B e M such that B= 4

- 37 (A).

and
‘ H(B) =
Uxing this woe ghall prove:

ProrosiIoN L.1. For the above measure T there ewists a family of
measurable §¢i8 {4 yaeoyy Such that
11y A, e Ay for a<p,

(L2) (4, = a B (D).

Proof, From Remark 1.1 we may construct a family of sets 4, satis-
fying (1.1) and (1.2) for a = /2", where n ¢ NV and & = 0, ..., 2" Having
this for arbitrary a € [0,1] we put 4, = |J .4;,n. Oondition (1.1) holds

Mgy .
by the definition of 4,, while condition (?2? follows from the continuity
of the meagsure. This completes the proof.

Remarkl.2. We may additionally require in Prop. 1.1 that py(4,)
= a. Indoed, it is enough to construet the family {4,} for the measure 7

=2 (fhgy fhyy +o vy Mn)e
Let us consider a family of nonatomic complete measures 7, =

ey i)

ProposrrroN 1.2. Assume that the map s—>g, from a compact fopo-
Togical space S into space M is continuous. Then for every &> 0 there ewisis
a family of measurable sets {4 }ueroy with the properties
(1.3) A, = Ag for a<< B,

(1.4) [z, (A4 ) o “ﬁs(T)]«’. ¢ for all a e[0,1] and s e 8§,
(1.B)  po(d,) =

Proof. Let us take an z> 0. The family of open sets {Vapteges

given by the formula

(1.6)

(I/qln “ee

Vi == {o: Uiy =Tl < /2}

is an open covering of the compact space 8. Lieb 8y, ..., §; be such elements
of § Lha,t 8 == Vo U .o UV, From Prop. 1.1 for the measure ¥ = (L, -

vry Bary Bo) Lhere exusfs o family of measurable sets {4.}sap,y such tha.t
(1.3) ﬁoldﬁ and

(1.7) F(A,) = aF (L) for all ae[0,1].

To end. the proof we show that the family {4.} satisfies (1.4). For an arbi-
trary o ¢[0,1] and s ¢ § we have

)[ - Wa; (Aa)
o (7, (T

a.:&ﬂi(T)l +
)~ (D)5

Jﬁs (A )= ';’j"s (T)l < I—I‘Zs (-A-a) :”'b,- (
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where s, is such that s e V,,. The first and the last terms of the right-
hand side of the above inequality are estimated by &/2 because of (1.6),
while the middle term is equal to 0 because of (1.7). Hence (1.4) holds.
‘We shall now prove
PrOPOSITION 1.8, Let {A }uepoy be @ family of measurable sets with the
Sfollowing properties
(1.8) 4, 4, for a<<f,
(1.9) @p(ds) = a,
and let p: S—[0,1] and k: S8—L, (T, Z), where S is o topological space, be
continuwous maps. Then the map 1(s) = Ic(s)-x%w) 8 conlinuous.
Proof. The continuity of map I(s) follows from the inequalitics

”7‘;(3)'7641,(3) ~%(8o) 'XA],(HO)|| < [1%(s) X sy —(8y) '%Al,(,,)” -+
+11%(s) *Kopsy =k () 'ZA_?,(,,O)H

SIe(s) =T+ [ 1else) (1)l
Ap(sy=4p(sg)
and the equality MD(AN,—HAWO)) == |p(8) —p(8y)], which is true for arbi-
trary s, and any s from S. )

2. The decomposability property. For an arbitrary set % of moeagurable
real-valued functions defined on (T, M), we denote by essinfa(t) the essen-
sl
tial infimum. Tt is known (see [3]) that there exists a sequence {a,} = U
such that

(2.1) essinfa (f) = infa, () a.e. in 7.
n

asl

Consider now a nonempty and closed set K < L, (T, Z) which fulfily
the decomposability property (P). We denote

(2.2) (?) = essint [u (2)|.

wek
There exist functions u, € K, for n e N, such that a.e. in T
(2.3) ()] 2= lug ()] 2 ...
and

(2.4) p(f) = lim ju, (9)|.

Let v, ¢ X be such that (2.1) holds; 4(3) = infiv, (4] a.e. in 7. Let us
n

put wu; =, and inductively w,,, = U i, Vg Az, Where T,
= {t: [, (£)] < [944(8)]}. Then (2.3) and (2.4) are implied by the inequality

(2.8) (4 (1) << it {Jo, (2)], .. o o (3.
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. ]Tlmn.ﬁOHyL:xfm 2.}. Let I < Ly (T, ) be o dosed and nonempty set which
satisfies condition (). Then there ewists an clement uy € K such that
(2.6) [t (£)] == 9 (8) = essinf | (v)| a.e. in 7.

. e

) :!."‘J.‘()O'f: Let a, € X be o sequence satistying (2.3) and (2.4). Then the
multivalued map - P(1) = cl{u, (1), neN}nB(0, p(#) (B(0,7) denotes
a closed ball with the centre 0 and radiug ?) is measurable and has
nonempty values a.o. in 7.

Liet 20y o o measurable scleetion of P (). We shall prove that u, e IC.
0

Tix & e N and for n e N pub 1, = e oty (8) =y (1)] <5 1 fi}. Then \J T, is
rog X sl

a reli of Tull mearure, Trom proporty (T) and (2.3) we see thadjﬂwi given

by the formula

wit), tel,
Uy (), e l,\N\Ty,
(1) == e e e e e
i, (t>7 te Tn\ U Tk
k<n

belongs to L and the inequality [v,(2) ~ o (#)] << 1/i holdy a.e. in 7. And
#0 1y lime, belongs to K. Clearly u, satisfies (2.6).

Aumtny
We will now pass to the investigation of a multivalued map K: 8~
=reldoy (T, 74), where M iv o topological space.
Drraneeion 20, We will say that the multivalued map K: S—
= LIy (1, 72) is decomposable it for all s & § the sets I () satisty property (P).
Provoserion 2.2, Aseume that the map K: S—elLy (T, Z) is ls.c.
and decomposable and put
(2.7) P (1) =+ ossint ()],
uek ()
Lhen the amnltivelued map

(2.8) Ls) o Ar e L (1, BY s () 3= 9,(0) aee. i T
28 Leoes and decomposable.

Prroot. Lot 17 be an abitenry closed seb in Ly (7, BY. It iy enough to
ghow thad i for w soquonee s, = &, wo have I’ (s,) < I, then P (s,) < , too.

Now00
Tror Ghiv purpose take an aebiteavy o, ¢ P (s,). From Prop. 2.1 there oxists
& Lanetion. wy ¢ K (x) sueh that
00 () T g (O] =, (1) oo, in T0,

Lot w, ¢ K0 (s,) Do o sequence sueh that lima, = 4, (such a sequence exists

N~po)
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because K (s) is Ls.c.). Then the sequence v, = [u,|+vy—|u%,| belongs to
P(s,) = F and converges to v, Since F is closed and v, € F, v, ¢ I also.
But v, is an arbitrary point of P(s,); hence P(s,) = F, which was to be
proved.

Let K: 8—e¢lL,(T, Z) be a decomposable and l.s.c. multivalued map.
We shall prove that these properties are preserved where we take an
intersection with certain special multivalued maps. We have the following

PrOPOSITION 2.3. Let K: 8—clL (T, Z) be an 1.8.c. and decomposable
multivalued map and p: 8—L, (T, R')Y and let k: S—L (T, %) be such con-
tinuous maps that the set

L(s) = {n e K (s) OB < p(E) (1) ae. in T}
18 nonempty for any s € 8. Then the map L: S—N(L ( 7 (
and l.s.c.

Proof. Let F be an arbitrary closed subset in Ly (T, Z). Tt is enough
to show that if the inclusion L (s,) = X holds for the sequence s, -» $,, then

tju(t)—Ek(s

T, 7)) is decomposable

N-~+00
L(s,) = P. For this purpose take an arbitrary u, € L(s,). Becausoe of the
lower semicontinuity of K(s) there exists a gsequence u, &K (s,) such
that limw, = w,. Without any loss of genereuﬂty we may assume that

71—»00

Uy (1), K(5,)(t) and @(s,)(t) converges to w,(t), %(s,)(t), and p(8o) (1) a.e
inT. For each ¢ e I, let 7, be such a compact seb that the functions U,y (8 ,,)
and ¢(s,) restrlcted to T'; are continuous and converge uniformly and thut
the following inequality holds:

(2.9) [ o (s0) () dpy < 113
NIy
Since for £ e Ty, |uy(t) —k(s,)(8)] < @(80)(t), there exists n; such that for
n=mn; and all tel; we have the inequality
(2.10) [1t, (£) =T (8,,) (8)] << () (%)
We may additionally assume that n, < n,< ... Put V== Uy, o, Wy oy

for n; < m < myy,, where w, are arbitrary but fixed elemems from L(s,)
forn e N. Then the sequence v, is converging 4o w,, becanse for n,; =5 2 << .y
we have the inequalities

J (o)

iy

"vn *uﬂ] Sp (t)l(lﬂﬂ """ f ]"‘ (S,,,) (i) —h (80) (d)l d/‘(] -

LA

L (0 0 = o ()l dpto - [ iy () ~ a0 1)
NIy @
-

<2 [ o) g+ Ip () — @)+ (5,) — T (80| -1t — ol

1y

< 2 [ lp (80) —@(80) 4 16 (8,0) —To (8)]| -+ [, — 0]
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It is casy to check that v, belongs to L(s,) = F. Since v, e ¥ and F is closed,
1o & J7 algo. Bub u, is an, arbitrary point of L (s,); hence L (s;) = F, which was
to he proved.

3. Construction of a continuous selection. The scheme of the con-
struction is analogous to the proof of Michael’s theorem [6]. Namely,
we shall construct a sequence of approximate selections which, in the limit,
will give a continuous selection. We begin with the following

Timvma 3. Take a decomposable and 1.s.c. multivalued map K: S—
olLy (I, Z). Thon for every >0 there emist comtinuous maps k: S
Ly (L, 2y and @i S->Ly(T, R such that

(3.1) [olo) W< e  for cach s
i

and the set
(3.2) L(8) == {u e K(s):
s nonempty for each s e 8.

Proof. Fix &> 0. From Proposition 2.2 and Michael’s theorem we
seo that for every fixed s, e S and wu, e K(s,) there exusts a continuous
function ¢, 4.2 8-Ly (T, B") such that

(1) — () (D] < @(s)(t) ae. in T}

(3.3) Pagrg (8) (1) 2 essinflu(t) —u o ()] ae. in T
ueK(s)

and.

(3.4) Py g (80) = 0.

Consider the family of sets {Vy}aes, uperisy given by the formula

(3.5) ) (£ g < 3/4}

Voo = { f%onuo

It is an open covering of the compact space §. We can establish a finite
partition of unity p,(s), ..., p,(s) subordinate to this covering. Let V,
denote such sets that

(3.0) PO, L] e Ty, for

Then for every ¢ e § and ¢ = 1, ..., r the following inequalities are satisfied:

8)+ [ al9) (Do < (/4) 24(9),
"ﬂ -

U3

P=1,...,7.

(8.7) where ¢, = Pagug

Consider measures 7, with the Radon-Nikodym derivatives

(3.8) (P2(8) (0, -5 21 (8) (1)
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Since ¢, (s) are continuous in the norm topology of Ly (T, RY), %, is continuous
in I Therefore from Prop. 1.3 we have the existence of a family {4}y
of measurable sets such that

(3.9) A, < 4, for a< B,
(3.10)  [d,(Ay) —a %, (T) << efdr for all s S and « €[0,1] and
(3.11) pe(d,) =a
Define functions ¢(s) and %(s) by the formulasg
*

(3.12) p(s) = Z (P2 (5) - & 14) Lty gty 00

=
(3.13) T(s) = Zui Kty gy

where zy(s) =0 and #z/(s) p,(s) cobpi(s) for 4 e=1,...,7. HFrom
Prop. 1 3 it follows that k(s) and ¢( ) are continuous. We sha,ll prove that
f(p (B)dpey << 6. From (3.10) we have

| [oe W ase—a- [ gz>1'(s)(t)d/¢,,’<s/éla‘ for  aef0,1].
Agy 7
Therefore
[ e@0ds= [ ¢ )W f 91(8) () o
J‘z[(s)\-izi__l(s) "l",(a) 27108

< (51'(4‘.’) — R 1 fV'a “‘ {)(’1”() f- {—/27'

Sinee p,(s) = 2;(s) —2;_,(s), by (3.12) we hmc

fw tl/'n<2p (8)- f«,‘ﬂ

and by (3.7) we have the required cstmmte.
vIt remains to establish that L(s) # @ for s € 8. From Prop. 2,1 there
is u; € K (s) such Lham for each s €8 and i =1,..,,7

(t) dppy-I- Be [4:

(3.14) 2l () ~—'LL ()] == essinf o () —u, ()] ace. in T,
ueK(s)
Then the function wu, = ) fu EZNEN, bu]mng,x to N (s) Decause of

property (P). On the othm hand, we ]mvc by (3.12)-(3.14)

(3.15) by () ~ T (s) (1) = }jww ~ O L 1y,
il

&1

S8
"

< V00 L s, < P (0
=

Therefore w, & L (s), which completes the proof of Temma 3.1.
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Now we are able to prove the main result of the paper.

Tumorem 3.1. Let o multivalued map K: S—clL,(T,Z) be Ls.c. and
decomposable. Then K has a continuous selection.

Proof. We ghall define by induction a decreasing sequence of multi- .
valued maps IC,(s), for n = 0,1, ..., which are decomposable and Ls.c.,
and sequences of continuous maps k,: S—L,(T, Z) and ¢,: S—I,(T, R*)
for m = 1,2,... with the properties:

(3.16) f @ (8) () ity < 1 (27
and
BAT) Ly (8) = {u & K (8): |u(8) ~To, (8) ()] < @n(8) (1) a0 in T}

iy nonempty for all s € 8.

Tor n == 0, put Jo(8) == K(s).

X§, for a fixed » = 0, the multivalued maps XK, (s) are defined, then the
continuous maps &, (s) and ¢,.,(s) are defined by Lemma 3.1 with
& == 1/2"*1, go that for s e § the sets

Ly (8) = {6 € K,y ()% 10(8) =Ty (8) (0] < @ (8)(0) e im0 T}
aro nonempty and 1[ P4 (8) (1) Ay << 1/2"+L, Then from Prop. 2.3 we can

put for overy s € §

I (8) = Ly (8).
It is clear that K, (s) = X,(s). For each se § and n e, let u; be an
arbitrary point of JC, (s). Since I, ,(s) = I, (s), we have u; ., € K, (s) for
each p 3 0. Therefore by (3.17) we have, for each » and p > 0, the in-
equality
(3':18) 170,1,(-5’) ('ﬂ)*—%fb‘,i,“(i)] < (pn(s) (t) a.e. in T.

Inequality (3.18) implies that
|7"’n("') (0) ”“I‘;n-i-p (‘9) ([')| £ an( )(t) +- P p( )(t)

Beeauso of (3.16) the above inequality implies that %, (s) converges uni-
formly in the L, (7, %)-norm to a continuous map %y (s). Again from (3.16)
and (3.8 it follows that |k, () —ugll tends to zero; henee f (s) & J(s).
Thug k,(4) is o continuous selection of K (s), which oomplotoq the proof.
GOROLLARY 3.1, Theorem 3.1 is also true when S is a locally compacs
separable melrie space.
'l’r oof, Let 8, bo such a family of compact sets that 8, < Inbl, .,

and U 8, == 8.

to S mv«m ug tho existence of a continuous function ky: 8;,->Iy (T, Z)
which i o selection of K (s) for s € ;.

Theorem. 8.1 applied to the mapping K (s) restricted
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Let us define map K, (s) for s € § by the formula

S {7‘;1 ()}
Hale) = {K(s),

seh,
8 e ONS;.

It may easily be proved that K, (s) is Lis.c. and decomposable. Restricting
K, (s) to 8, and applying Theorem 3.1, we get a continuons ky: 8,1y (T, Z),
‘which is a selection of K ,(s) for s € §,. Obviously, for ¢ € 8y, %, (8) == Jy(s),
and 50 %, is a continunation of %, to the set 8y In this way, by induction,
we get a selection defined on the whole §.

COROLLARY 3.2. Let K satisfy the assumpiion of Theorem 3.1, Fiw
soe S and 4, € K(sy). Then there ewists a continuwous selection ky(s) of the
K (s) such that ‘

(3.19) ko (89) = .
Proof. Tt can easily be verified that the multivalued map
! = o [K(s) if s ks,
£(s) = {{u,,} s =s,

satisfies the assumptions of Theorem 3.1. Then ¢ach selection of K (s)
fulfils (3.19).

In the case where, additionally, the values of K are agsumed to be
convex, it is known that there exists a denumerable sequence k, (¢) of con-
tinuous selections such that {k,(s)} is 2 dense subset of K (s) for cach s.
A gimilar statement is true also in the case considered here. Namely, we
have the following

TamorEM 3.2. For a decomposable and 1.8.c. multivalued map K: S—
cLL (T, Z) there ewists a countable family of continuous Sunctions k,: S—
Ly(T, Z) such that

(3.20) K(s) = cl{k,(s): ne N} for all sef.

Proof. The space ¢ of continuous maps %: §—L (T, Z) with the
norm ||[kll| = sup|%(s)|| is a separable Banach space. The set o = {I
&8

8
€ (: T(s) is @ selection of K (s)} is closed in the norm topology. There exist
selections &, from 4 for each n such that

(3.21) A = cl{k,: nelN}.
We claim that, for an arbitrary s, (3.20) holds for this sequence. To show
this let k, € K be a continuous map such that Eo(sq) == u, for arbitrary bub
fixed s, € 8 and u, € K (s,). For every i € N there exigts #; such that |||k, —
—xlll < 1/i. In particolar, it follows thatb [en,(s0) —woll << 1[4, and this
means that w, & cl{k,(s,): » € N}. This completes the proof.

s
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CoroLTARY 3.3 (Bressan [2], Zojasiewics [5]). Suppose that P: [0, 1] x
® RlE->clB™ satisfies the eonditions

(a) P 18 2@ B-measurable,

(b) P(t, ) 18 ls.c., T

(¢) there ewists a p e Ly ([0,1]), BY) such that for every x € R™

sup{lel: z e P, @) <p@) ae. in [0,17]}.

Let 8 be a compact subset of Banach space C([0,1], R¥) of continuous
Junctions from [0, 1] into R¥, and for s e § put

Then there owists a continuous selection %: 8—Iy ([0, 1], B™) of K(s).

Proof: It is enough to prove that conditions (a), (b), (¢) imply the
lower semicontinuity of K(s). Let F be an arbitrary closed set in
L,([0, 1], B™). Wo need to prove that if s, — s, uniformly, K(s,) = ¥, then

fi—+00
X (8y) @ I also. For this purpose take u, & K (s,) and define u,(¢) so that
uy, € I(s,) and
(3.22) [t (8) — 0 (8)] = @wo (8), P (2, 5, (1)) 2. in [0,1].
Beeause of (a) such an w, oxists, is measurable and, because of (c), inte-

grable. There is a get 7' < T of full meagsure such (3.22) holds for each
7 on 1". Hor cach fixed t e 1", (8.22) and (b) imply that w, (t) - w,(t). Hence

N0
because of (¢) u, — w4, in Iy-norm. Since u, ¢ F and F is cloged, u, e F
N=p00

also. But w, an arbitrary point of K (s,). Hence K (s,) = F, which was
to be proved.

Remark. If we assume additionally that the values of P are convex,
then the corollary easily follows from tho fact that there exists a selection
ot ) of P(¢, @) which is moasurable in ¢ and continuous in 2 (see [4]).
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On the existence of unitary representations
of commutative nuclear Lie groups

by
WOJCIECH BANASZCZYXK (Lb6ds)

Abstract, A proof is given that if I'ix a diserote subgroup of a nuclear space X,
then the quotient group X /I' admits sufficiently many continuous characters.

Tn many situations nuclear spaces seem to be a more adequate gener-
alization of finite-dimensional spaces than are normed spaces. Indeed,
many important facts concerning finite-dimensional spaces remain valid
in nuelenr spaces but not in infinite-dimensional normed spaces. An example
of this kind iy given in the present paper.

Let us considler the following property of a topological vector space X':

(%) Tf I is & diserete subgroup of X, then the guotient group X \r

adwits sufficiently many continunous characters.
(The terminology is explained below.) Every finite-dimensional space X
gatisfios (x), which. iy trivial, and no infinite-dimensional normed space X
satigtios (x), which has been proved in [1]. We shall prove here that every
nuclear space X satisfios (x).

Wae begin with some notation and terminology. N, Z, R, C will denote
the sels of positive integers, integers, reals and complexes, regpectively.
Vector spaces will often be regarded as additive topological groups. If 4 is
o subset of a veetor space X, then G4 will denote the group generated by 4,
and span.A —the lincar span of 4. The distance from a point u to a set A
will be donoted by d(u, 4). For a topological veetor space X the conjugate
space will bo donoted by X*.

Liob 1 bo o voal T ilbert space, and 1et ty, <., 44, € . Then Gram (4, ...
vovy 1hy) Will denote the Geam determinant of the veetors ty, .., . 1L 1
in m-dimonsionul, and i JC is o diserete subgroup of B which spans W,
then K is wh abelian froe group with o linearly independent genorators
Uy ooy thyy 0l Gho mumber Gram (v, ..., u,) does not depend on the choice
of gonerators; we denoto {this pumber by Gram K. A subgroup K of a Hil-
borti space will be ealled r-disoreto il [Ju— w| 3z v for any distinet u, w € IC.

Lot ¢ be w topologieal group. By & character of G wo mean. a homo-
morphism of ¢ into the multiplicative group {z & C: 28 = 1}. ' We say that G
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