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.Abstract. The topologization T8 of a pretopology 8 is the finest topology coarser
than. A necessary and sufficient condition is givenfor a pretopology 6 to be maximal
in T-1T 6. It is proved that Fréchet pretopologies 6 with the unicity of sequential
limits are the greatest elements of T-1T0. Examples of a topology = without maximal
pretopologies in T—1z and of a non-maximal pretopology which is not a power of
any other pretopology are given. Application to elementary (called also sequential)
non-Fréchet topologies is discussed.

1. Introduction. Pretopologies are the convergences which are deter-
mined by closure operations. Topologies are those pretopologies for which
the corresponding closures are idempotent. To every pretopology = there
corresponds the finest topology coarser than =, called the topologization
of # (e.g. Hausdorff [10], Choquet [3], Cech [2]).

The question that imposes itself {is for what topology v there is
no other pretopology whose topologization is 7. More generally, which'
pretopologies are topologically maximal (such that no other pretopology
with the same topologization is finer)? In this paper we characterize
such pretopologies (Theorem 6.1, Corollary 6.2). Moreover, we show that
Fréchet pretopologies with the unicity of sequential limits are the finest
among the pretopologies with the same topologization (Theorem 6.4).

The topologization of a given pretopology & may be obtained as
a power (of some ordinal order) of = (e.g. Hausdorff [10], Gech [2], Ham-
mer [9], Kent and Richardson [11], Novak [12]). We show that there
are topologically non-maximal pretopologies which are not powers of
any other pretopology (Example 6.6).

* Partially supported by Consiglio Nazionale delle Ricerche.
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We also observe that there are ordered sets of all pretopologies
having the same topologization, without any maximal pretopology (Hxam-
ple 6.5).

Besides powers, we consider (topological) products of pretopologies.
Their use enables one to confront various problems, for instance the
question of whether the infimum of two topologies (in the lattice of
pretopologies) is a topology.

‘We furnish some new examples of pretopologies and recall the pretop-
ology of Féron [6]. They are of importance since the topologization
of properly chosen pretopologies yields new topologies with some
prescribed properties. We give an example of application of this method
in obtaining elementary (traditionally called sequential) topologies which
are not Fréchet (at any point) (Section 7 and [4], Theorem 15.4).

2. Pretopologies. This section iy devoted to a recollection of some
basic facts concerning pretopologies. Most of these results are due to
Choquet [3]. They may be found dispersed in the book [2] of Cech. A new
side-light has been shed on them in [4].

Denote by X the collection of all the filters on X. Every relation
in X x X is called a convergence ([4]).

Convergences will be denoted by small Greek letters (, o, 0, 7, ...)
and also by Lim”, Lim?, Lim®, ... The value of a convergence = at a filter
& will be always denoted by Tim"# and called the limit of &F (in m). We
say that & converges to » (in #) whenever # € Lim™# . Of course, (Lim™) 'y
is the set of all the filters that converge to #. The domain D(w) is {#:
Lim™# = @},

We say that 0 is coarser than v (v finer than 0: ¢ > 6) if Lim® > Lim".,
A convergenee ¢ is called constants-preserving if

(2.1) Lim*#, ()22 for each z e X,

WheI_'e N(@) = {4 = X: w e A} is the discrete filter of a. Congtants-pre-
serving convergences form a complete lattice (closed sublattice of all
conve?rg:ences), the finest element of which is the diserete convergence
L ((L_lm Y le = {#.(®)}) and the coarsest is the chaotic convergence
o (Lim°# = X for each &).

A convergence £ is called stable if for every collection § of filters

(2.2) . LimfAf = (M) Lim‘s.
Fef
Pretopologies are the constants i
] A -preserving stable convergences [3]
(in [4]we do not require (2.1)). It follows that each pretopology x is isotone:

(2.3) F < ¢ » Lim"# ¢ Lim"g.
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A coilology £ of a ecomplete lattice IT is a subset of JI such that all the
suprema coincide in JT and Z. The map P which to every element  of I
assigns the greatest element of £ less than = is called the (cotlologi-
cal) projection on E. Coilological projections are precisely isotone idem-
potent maps less than the identity (see [4]). The set of all pretopologies
is a coilology in the lattice of convergences. The corresponding projection
P is called the pretopologization.

The infimum of all filters convergent to = (in &) is called the neigh-
borhood filter of » (in &):

(2.4) He(@) = A (Lim’y " z.
Constants-preserving convergences have the property - that
(2.5) xeQ for every Q e & (m).

A convergence is stable if and only if
(2.6) zelim F «F > N (),

o that pretopologies are the convergences characterized by (2.5), (2.6).
Accordingly, every pretopology =z is determined by its neighborhood
gystem 47;: X-—+pX which satisfies (2.5).

The interior int™ A for a pretopology = is the set of those points for
which A constitutes a neighborhood:

(2.7) ' zeint” 4 < A e /,(x).
The closure of a set 4 is defined by
2.8) "4 = (int"A°F.
Tnterior and closure are operations from 2% to 2%. They satisfy
ntX = X, Ag =0,

(2.9) A>intd, A cdA,
int(4dn B) = intAnintB; cl(4UB) = cldUclB;

already Hausdorff [10] studies spaces with, closure operations sat-
isfying (2.9).

Tnterior and closure constitute also relations (cl, int: 2% = X). Thus,
the inverse relations int™*,cl™" satisfy int~'z = {4: v eint4}, cl7'w
={d: zecld}.
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) _IEv_ery i;}terior satisfying (2.9) has the property that for each g
{nt @ is & filter such that each @ eint™'# comtains z. Therefore theré
is equivalence between pretopologies and interior operations:

Tet .# be a relation from a set ¥ to the space 2% of all subsets of
X (M = ¥ x2%) and let o be a family of subsets of ¥. The lower limit

of M along <7 is defined by ([4], [8])

oeX

(2.10) N o(m) = (intn)—-lw
3 ' (3.1) H(t)= U () A4
The conjugate % of a family s of subset of X is the family of the e
complements of those subsets of X which are not in «. In view of (2 s)e We have that
for each convergence, e (o (ot
‘ M N (A N (H),
(2.11) . a1z = [int~ o], 3.2) AL B =>M(L) = M(B),
The grill % of o is the family of all those subsets of X' which interseot
e"fl‘Y set in &/, If o is isofone (B < A and Bes imply 4 e. o), then where % > s means that for every A € </ there is B € # such that B = A
o = of* Therefore, by (2.10) and (2.11), P In particular, 47,(&7) is the family of all the sets which include an
(2.12) " element of 73 (A) (= {4}, Dy definition) is the family of all those
. vecld « QnAd # 0 for every @ e & (x). Q which belong to . (y) for each y € A. If {Z},y is 2 collection of isotone
As a consequence of (2.12 ), one has families of subsets of X, then
(2.13) dfd = |J Lim'#, (8.3) M ) = (M)
AeFH el iel
and one notes that if  is a pretopology, then Tf 7 is o filter and for each ¥, .# (y) is a filter, then .# (s7) is a filter. Then
(2.14) Lim"# = () ol"d. one has
AdeFH
M(A) = M,, where M, e # A e .
?;eirg_;?)he “sruprltlanllluglof F,% epX exists (in pX) if and only if & cg* () {,,B v v € HW, }
. We shall denote by Fv 4 tl e . a .
crete filber A, (4) = {¢ X-yA o he supmmum_. of # and of the dis- The composition no of pretopologies @ and o is the pretopology whose
We include the followj_n.a fo?ml%l’atwef - 0311111 e trace of & on 4, neighborhood filters are
'Wing lor e for neighborhoods, interior
closureg of suprema and infima becauge the turn out t ’ ].n te‘mms and (3.4 N (@) = N AN (@));
on various occasions y out to be instrumental ) o () A o ®))5
915 _ in other words, Q € 4 ,,(#) if and only if int"Q € N ,(x). On rewriting
( \) Nys(@) = V H(x) and  #,,(z) = A Ho(a). (3.4), one gets

The above serves to compute - ‘ (3.5) int™ = int°int”; - ™ = cl%cl”.
(2.16) intVTQ — The composition is associative. The discrete convergence is the unit
@=U U N int’Q and ntA%Q = M) int°Q and the chaotic convergence is the null element of the composition:
‘ vy

25X N Qee ael’

finite oeZ’ vel
(2 17) vVE (3.6) oo = 00 == 0; gL = Lo = 0.
2 clV¥4 = . )

st u AQA uLeJ: 4, and M4 =] cl°d. The composition is not commutative.

oo Exampre 3.1. Denote by Q the set of rationals in R. Let » be the
usual topology of R. Define

finite oceZ’

3. C iti i
omposition of pretopologies. Our firgt objective is to define

a composition of pretopologie i
o cetlen o pologies. To this end we shall need a set-theoretioal Aa0) =

‘/VL(T) if TEQ’
Ho(r) i r¢Q;
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“we have z» = o, while

W) = N () if reQ,
T ) i re0.

PROPOSITION 3.2. The composition is isotone and less than the imfimum:
(8.7) <o amd o< 0 =mp<ob,
(3.8) TOK WA @,
Proof. In fact, (3.7) follows from (3.2). To prove (3.8 ;
. ). S note tha
oL =mx and wo <K w0 = 0. @9 ° that
ProposITIoN 3.3. We have
(3.9) (01A09)7m = oymao,r and  w(AZ) = A mo.
. oel
A map #: X—¢X is called a selector of a conver i
M gence o if, for ever
zeX, s eLim’#(s), We shall denote this by #(-)e (Lim",)“l(-). v
THEOREM 3.4. Let o, m be pretopologies. Then

(3.10) Lim™# = U Lim"g.
R

Proof. Let # e Lim™%, that is, # > A/, (4':(s) i
: ) o[ w(@). Thus A4, is a ge-
gsetor axid py settlyg M =Ny & =N, (9), we have z in 1;1:0 union,
. onverse y', if there is a selector .4 of ¢ (that is, such that .4 (#') o 4, (2"
or each #'eX) and ¢ such that ¢ > 4 ,(z) and M) = F thena b
(3.2), N4 a(3)) = &, hence z e Lim* 7, ’ '
Let a be an ordinal number. The ath power of a pretopology « was

Yy 1 pera .
8
delfmed b Ha usdorff 0 (Hl terms of CIOSUI'G operat 1018 ) H ere 18 an

a—1

(3.11) R R it a-—1 exigts,

A af  otherwise.
f<a

Using (3.9), one obtaing
{3.12) (mA0)? < mo,
which is a companion formuls of (3.8).
T )
HEOREM 3.5. Let m, o be pretopologies, a, p ordinal numbers. Then
{3.13) 7t = g nf
H

(3.14) (%) = 2%,
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4. Examples of pretopologies.
ExAMpLE 4.1 (Féron cross [6]). Let ¢Xw» Dbe the “vertical” pretop-

ology on RE: A (1, 7g) = H,(r) XAH,(r,), where » is, as usual, the
natural (usual) topology of R. Let » X be the “horizontal” pretopology

on R2: W, (11, 75) = N, (1) XA, (#s). The pretopology & = (exXv)A(»X0)
is called the Féronm cross. A base for & at (ry, 7,) is formed of crosses
[(ry—e, 714+ &) X ]V {re} X (ra—e, 7o+ )]

1 _J+

r2 2 T

g] R f n

Recall that a filter & is called elemeniary if there exists a sequence
(@}, such that {{z;: k= 1} new cOnstitues a base of &. Denote by X the
collection of all elementary filters on X.

Rach filter of the form (&), where #:X-—>eX and &ecX is
called diclementary (2-elementary). A filter is said to be n-elementary if
it is of the form (%), where 4 : X~ ¢X and # is (n —1)-elementary;
the collection of all sueh filters is demoted by &"X. Every n-elementary
filter is (n--1)-elementary.

A pretopology s is called n-elementary at 2 if A ,(z) is an intersection -
of n-elementary filters; 1-elementary pretopologies are called Fréchet
pretopologies (see [4]). The Féron cross pretopology is a Fréchet pretopology.

THEOREM 4.2. A pretopology is n-elementary at @ if and only if xeecl A
implies that there is an n-elementary filter & convergent to @ suchthat A e #.

Proof. In view of (2.10), (2.11), we only need prove that if {F e
is a family of n-elementary filters such that every filter finer than some &
belongs to the farily, then (N #¥= ) #,. But this follows from: the

1el del /
fact that each trace of an n-elementary filter is n-elementary.

COROLLARY 4.3. The pretopology 7y, ... 7, is n-elementary if w
is a Fréchet pretopology for each k < n.

en a filter & is

Consider n-56QUENCeS {Lp ...k oy bigdor)eN™ The
a-elementary if and only if there is an n-sequence such that the family

of sets
1) {Brpyn, By Ky kg2 Ko(a)y ooy B = K (Foas oy ooy Fep1)}s
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where K; € N, K,: N—=N, ..., is a base of #. We say that the filter
F is generated by the n-sequence {B g, .k, oy kg lo)eN "

It follows from Theorems 4.2, 3.4 and Corollary 4.3 that for cach
n € N, the power £**! of the Féron cross is strictly coarser than " Indeed
the (n+1)-sequence (say, for n even) ’

(4.2) {(2—k1 +2—k1k2k3+ . +2——k1k2...kn+1’ 0 —kiky +2—-k17c2k3k4+ .

Rt

)}(lcl,...,r:n,,_l)eNn-H
generates an (n--1)-elementary filter convergent to (0, 0) in &, but not
in &°.

ExavrLE 4.4 (Cat fur).

QXG. axar QxR

=4
=) E—
[~ A

a '“‘“—’—‘V" O e
e e Z ST
£ i [~ 3] E—

°,
[~ ) S
[} SN

QF | e g e

n
=]
1

R,

[~ ST
R

=]
b
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By Q we denote the subset of rational numbers of R and let
Q° = R\Q. We define the “rational horizontal” pretopology of R? by

N (1) XA (7 if 5 2
) gy = 0 () i (ur) 0
A1y Ta) otherwise

and the “irrational vertical” pretopology ¢ of R® by

NPy, 7 it . 1) e OF
(44) Hp(P1y 1s) = (13, 72) (71.’ e 9
N (1) XA (1) otherwise.

The infimum & = pAgp is called the cat fur.

To describe the consecutive powers of the cat fur we use the above
diagram. To every point of & neighborhood in & we add a neighborhood
of that point in £, obtaining a generic neighborhood in £°. Since the
composition is associative and we only shall consider the finite powers,
we may act differently by adding to each point of a neighborhood in
&1 its neighborhood in &; there will also result a generic neighborhood
in & In the diagram we shall take into consideration only ome typical
point at each stage. One observes that all the three pretopologies &, &,
& are distinet, and that & = & for each a > 3.

ExamprE 4.5 (Domino). Consider R, = [0, o) with the usual top-
ology » induced on R, from R. Define the domino & by

(4.5) H5(0) = HH(0);  Ha(@) = H.([0/2,32/2) i @>0.
We have, for ne N,

(£6) S n(0) = H,(0);  Ha(w) = H([A2)z, 32)2)) i 2>0,
while for the fir.st infinite ordinal,

(4.7) Hpo(0) = A,(0);  Ho(@) = H[(0, +o0) it @ > 0.
Finally, for «> o+1,

(4.8) N (0) = {0, +oo)}; Aa(@) = &0, +o0)) H  2>0.

RxAMPLE 4.6. Define &, on R by: 47 (0) = N ([#—1, x-+1]). Then
H (@) = N ([2—2n+1, 2+2n—1]) for n e N, and dj=o.
]
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5. Topologization. A pretopology = on X is called a topology if for
each » € X, and each @ € 4",(z), there is V e 4. () such that @ e /' (V)
(Cech [2]). In other words, = is a topology, whenever for every @ e 4, (@)
int’Q e 47, (2). By definition (3.4) we have

THROREM 5.1. A pretopology = is a topology if and only vff T == 72,

’

It is known (e.g. [2]) that the above motion of topology amounts
to the usual one.

Let z be a pretopology on X. A subset @ of X is called open if it iy
equal to its interior: @ = int™Q.

TEBOREM 5.2. 4 pretopology @ is a topology if and only if dts every
neighborhood filter has & base composed of open sets.

Open sets of each pretopology = satisfy all the classical axioms of
open sets of a topological space. By virtue of Theorem 5.2, the neighhorhood
system generated by the open sets of = determines a topology. This top-
ology is denoted by Iz and called the fopologization (or theutopology) of
7 (I31)). It follows from the definitions that the map T is descending and
idempotent and that 7 is a topology if and only if v € fix . Consequently
the topc_)logy of w is the finest topology which is less than ». More g‘enem]ly’
topologies .eonstitute a coilology in the lattice of all convergences; thé
corresponding projection is the extension of the topologization té) all
convergences and is also denoted by I.

THEOREM 5.3 ([2], [9], [10], [11], [12]). For each pretopology m there

is the least ordinal number () such that, for a > #(r),

(5.1) I = 7°.

defe;?hsf ordiljzll nm;nberl #(r) in the above theorem iy called the topological
n. retopolo i i i i
Qefout f . - pretopology is a topology if and only if the topological

As a corollary of Theorem 5.3 one hag th rli
cath pestomion at for each ordinal g and

(5.2) T(af) = T,
Let O (n) denote the collection of open sets of a pretopology «. Denote

by Ag the infimum in the coilology of topologies.

PROPOSITION 5.4. Let {m)};r be a set of pretopologies. The topologivation

of its infimum is equal to the infi i2att ? i
o o infimum of the lopologizations in the coilology

(5.3) , T ({E\I @) = Az T

iel

icm®
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Proof. Since Ay =TI A in the lattice of topologies ([4]), we
have the inequality > in (5.3)’. The opposite inequality follows from T(A ;)

el
< Im; for each j e I.

In other words,
(5.4) O(A m) =) Dlow)-
(14 iel
It is interesting that
(5.8) T (om) = To\gZm.

Indeed, in view of (3.8), T(on)< T(wAac), while (3.12) and (5.2) yield
FTmA o) < T(ow). It is now enough to apply Proposition 5.4.

In general the infimum of a family of topologies (in the lattice of
pretopologies) is not a topology.

PROPOSITION 5.5. Let = and o be topologies. The infimum mA o is a top-
ology if and only if
(5.6) TAG = WO = OM.

Proof. We have (cAn)? = omAmc, because of (3.7), (3.9) and The-
orem 5.1. Again by Theorem 5.1, oA is a topology if and only if cAm
= onAmo. By virtue of (3.8), we get (5.6) as a necessary and sufficient
condition.

On the other hand, we have

PROPOSITION 5.6. Let = and o be topologies. They commute if and only
if om, wo and omwAmo are topologies.

Proof. If # and o commute, then (on)? = onon = ¢*n? = on and
the condition follows. Oonversely, applying Proposition 5.5 to on
and zo we have that owAms = omo = mom. On the other hand, omAc
= o and mwoAw = mo. Consequently, oz = ono = no.

COROLLARY B5.7. Let =, ¢ be topologies. If mac is a topology, then
(5.7) 7o = O7.

If (B.7) holds, then the topological defect of o is less or equal to 2.(*)

(The second part of Corollary 5.7 follows from Proposition 5.5 and

the equality (wA ) = omAmo.) .
We shall analyze now some pointwise aspects of topologization. We
say that an @ € X is a topological point of = whenever

(5.8) H (@) = H'za(@).
An g is said to be hypotopological point of m if
(5.9) N o) = N p2(2)-

(*y Added in proof. Let 4, (#) = &, ({—x, x}) for w e R. Topologies ¢ and
» commute and the topological defect of dav is 2. This example is due to Frangois
Laubie of the University of Limoges.
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Every topological point is hypotopological. It follows from the definition
that if all the points are hypotopological points of =, then = is a topology.

PROPOSITION 5.8. If the set of hypotopological points is a neighborhood
of @, then @ is a topological point.

Proof. Let @ be a neighborhood of @ consisting of hypotopological
points. Then intQ is a neighborhood of # (since  is hypotopological) and
we show that it is open. Indeed if =’ € inti@, then, equivalently, @ e 4 (2')
and by (5.9) 2’ eint(int@).

PROPOSITION 5.9. If the topological defect is finite, then each
hypotopological point is topological.

Proof. It is enough fo show that A w(®) = A pnaa(®) implicy
Han(®) = N mia(z). Indeed, N onra(#) = N al W ans1(®)) = N oW (1))
= N 41 (3) = N on(@). ‘

Let o be a pretopology on. X. A hypotopological defect of o at @ is the
least ordinal a for which A e (2) = # «(®); we denote it by &(x, o). The
topological defect of o at @ (i(z, o)) is the least ordinal « for which 4 ()

= N 'z, (#). Comparing these pointwise notions with that of topological
defect one has

(5.10) sup h(w, o) < (o) = supi(w, o).
zeX weX

The inequality in (5.10) may be strict.
Exawrere 5.10. Let o be the following pretopology on Zu {-oo}:
H(fn =1, n}) it neZ,

(3811)  Ho(m) = ‘kuz H({s: sZ B0 {+oo}) H  n= oo,

Then we have (o) = w1, while

1 i n=
hn, o) = if n= oo,
o  otherwise,
Hn, o) = {w—]«l it m=-oo
@ otherwise.
Exawprn 5.11. Take the domino § (Example 4.5):
1 if =0 I~ il L =
h(m,é):{ . " e, 8) = o+l i w=0,
o i >0, : ) if @=0.

We observe that in the cat fur ¢ (Example 4.4), Q° xR are topological
points, .the topological defect of the points in Q % Q is 2 while of those in
0 xQ° is 3. Consequently, £¢is the topology of .

e ©
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The hypotopological defect of all the points of the Féron cross
(Example 4.1) is at least w.

6. Topologically maximal pretopologies. Consider the inverse image
T~!(7) of a topology v by the topologization. Under what condition does
g (7) reduce to {t}?

More generally, we write n <0 whenever #<<60 and Iz = IO
and say that = is fopologically maximal whenever n <0 implies = = 0.

Clearly if T7*(7) reduces to {r}, then v is topologically maximal.

A pretopology = is called topologically mazima lat 2, if for each pretop-
ology 0 such that =<y 0, 4 ,(5,) = Ay(m,). Obviously, a pretopology
is topologically maximal if and only if it is topologieally maximal at each
point.

THEOREM 6.1. 4 pretopology is topologically maximal af x, if and only
if .

(6.1) for each set A such that my € clA°NA, there is a set Q2 such that {x,}
= el 2NQ and x, ¢ cl(2N A).

Proof. Suppose that the condition does not hold for a pretopology
7 there is a set 4, such that x, € A N ecl"4° and for every Q,

(6.2) {} = cI"ONQ = x; € cI*(2NA).
Define the following pretopology o:
(6.3) No(my) = N (B)VA and A (z) =Afe) if =z #z.

Clearly o is finer than n. Since x, € cl®4°, A ¢ 47, (%) s0 fhaﬁ N5 (@) 18
strictly finer than 47, (2,). One has, for an arbitrary set 2,

(6.4) el = " (An Q)u el (AN 2)\ {wy}].

In order to prove that T = Im, it is enough to show that if c1°Q
= 0, then cl*Q = Q. Suppose that cl°Q2 = £ and that cI" QN1 is nob
empty. In view of (6.4), cI"Q\ Q= {z,}, thus by (6.2) and (6.4), x, € cl" L2:
a contradiction. )

We have proved that every topologically maximal pretopology satis-
fies (6.1).

Suppose that = is not topologically maximal at #,; there are 6 such
that Tm == T0 and A € A (@y) NN x(w). Consequently A°e 4, (x,)¥ and,
on the other hand, A e 4", (z,)*. Define a pretopology o by (6.3). Clearly,
0> o3 m; hénee To = Im.

Let £ be such that {&,} = I” 2\ Q. In particular, £ is not n-closed,
hence not o-closed and gince e¢l”QN\cl’Q < {iw,}, 4, € cl° 2. By virtue of
(6.4), z, € 1™ (2N A), so that (6.2) is proved.

8 — S{udia Mathematica 77.3
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‘We recall that a pretopology = iy said to be Fréchet at oo if itis neigh-
borhood filter at , is an intersection of elementary filters (convergent o a,);
equivalently, if for every set 4 such that #, e ¢1” 4, there exists a sequence
{&,}nen Of elements of A such that the elementary filter generated by
{{m: & > n}}new converges to .

COROLLARY 6.2. Every pretopology, which is Fréchel at @, and such that
Jor each sequence {&,}, v convergent to x, the set {w,: n e N}U{m} is closed,
is maximal at x,.

Proof. Let x, € AnclA’. Then there is a sequence {w,},v conver-
gent to @, and such that {,: # e N} « A° Consequently cl({z,: n € N}n
NA4) is empty. Since x, is the only point of cl{n,: n e N}\{z,: n e N},
we have that condition (6.1) is satisfied.

In particular, it follows that every Fréchet pretopology with the
unicity of limits for elementary filters is maximal. Consequently the Féron,
cross (Example 4.1) and the cat fur (Example 4.4) are maximal.

There are Fréchet pretopologies which are not maximal (for instance,
the chaotic pretopology) so that the latter condition of Corollary 6.2 must
not be dropped. On the other hand, there are maximal Fréchet pretopologies
that do not satisfy that condition.

Examere 6.3. Let = be the following pretopology on {1,2,...,n}:
._/V,,(k) =N {k k+1} it k # n and #,(n) = 4, {n, 1}. This pretopology
is Fréchet and maximal but does not fulfil the conditions of Coi'ollary
6.2. Indeed, Iw = o and if 6 > =, then there is % such that (k) = {3},
hence {k} is open and T6 # o.

We give here a criterion for a pretopology to be not only topological-
Iy maximal but also “topologically greatest”.

THEOREM .6.4. Let 7 be a Fréchet pretopology with the unicity of limits
of elementary filters. Then o is the finest pretopology in T (Tm).

Proof. Let x satisfy the assumptions and let T = Tz We ghall
show ‘that 6 < 7. Otherwise there is o, and 4 e N g(o) such that x, e c1"4°
and scmee = is a Fréchet pretopology, there is a sequence {2, }nenv 0F clements
of A® m-convergent to @, By the unicity of limits [{w,: ne NYU{r}] is
open. The? set AU[{z,: ne N}U{z})° = {w,: n e N} is thus open in
6 but not in =; a contradiction.

_ Ig'there for every pretopology = a maximal pretopology 0 such that
6 2 2% The answer is negative. We give an example.

" ExavMprE 6.5. Let % be a cofinite topology on. N, that is, the topology
‘which open sets are the empty set and all cofinite sets. One sees that

A if. Ais finite,
N otherwise.

cl"4 =

icm

©
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Tf 6 is a topologically maximal pretopology such that 6>ga then, by
Theorem 6.1, for every subset 4 of N and every » in N

(6.5) ned®(4°\{n}) implies n ¢cl®(AN{n}).

Indeed, the only set ©Q for which {n} = cl’Q\Q is N {n}. It is because
such  is infinite and Qu {n} is closed. :

Consequently, for each n the free filber %, = A p(n)v {n}° is an ultra-
filter. Since the space SN\ N (with the topology induced by the Stone-Cech
compactification of the diserete space N) is not separable, there exists
an infinite subset B of N such that

Bé¢u, for every melN.

This set is closed in 6 but not in =, in contradiction with Tf = Tr. We
have proved that there is no maximal pretopology in T .

A pretopology = is said to be topologically irreducible if for every pre-
topology 6 distinet from = and each ordinal a, = # 6°.

Clearly, . every topologically maximal pretopology is topologically
irreducible (in view of (5.2)). Is the converse true? ’

The answer is negative. Moreover, we shall give an example of a pre-
topology which is not topologically maximal at any point and which is
irreducible.

ExAMPIE 6.6. The pretopology = is defined on R® as follows:
7 = (vx )&, where & is the Féron cross (BExample 4.1), while » X ; is the
product of the wusual topology (of R) and the discrete topology (of R).

One observes that for each e R*: / z(x) = A ,(8) = A ¢(x) and
N (@) # N (@) # 4 {x); so that Tw = Té and = is not topologically
maximal at z for every .

In view of Theorem 6.4 we coneclude that if 6 >4 =, then 6 < &, thus
6° < & < 7 for every a > 1. Therefore = is topologically irreducible.

7. Application to elementary topologies. Given a convergence 6 and
a family of filters ¥, one defines the restriction 6v & (of 6 to F) by
' i Fe§,

(7.1) Lim®V87 = )
- |9 otherwise. s

Let £X be the family of all elementary filters on X. Then a pretopology
7 is Fréchet if and only if

(7.2) . n = P(nveX).
A topology v is called elementary if it satisfies
(7.3) T = I(rveX).
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Such topologies are traditionally called “gsequential” ([1]y; [7]). Indeed,
a topology is elementary if and only if all sequentially closed sets are
closed.

Tt is well known that every Fréchet topology (that is, a topology
which is a Fréchet pretopology) is elementary, because B(vveX) >
% (vveX) = v for every topology 7. There is an example of an elementary non
Fréchet topology ([51, [7]). In [4], Thm. 15.4, we give a general scheme

of costructing such topologies. Here we show how the results on topologi-

cally maximal pretopologies may be used to the same end. }

THEOREM 7.1. Let = be a Tréchet pretopology such that m is Hausdor]f,
If ¥ (@) # N en(®), then T is elementary but not Tréchet al .

Proof. If Ix is Fréchet at x, then, by Corollary 6.2, Tw is maxinal
at » in contradiction with the assumptions.

Since # is a Fréchet pretopology, Im = T(wv eX) and since T(nv eX)
> T(ITav eX) = Tw, we have that Tw = T(Twv eX).

ExAMPLE 7.9, The Féron topology T (see Bxample 4.1) is clementary
but is nowhere Fréchet. Indeed, since &> yx» (v the usual topology
of R), also T& = » X, hence is Hausdorff. On the other hand, £ is a Fréchet
pretopology and for each z, A (2) #£ N gel).

To prove this fact we may also use [4], II. Thm. 7.7. A sequential
convergence 0 is said to be fopologically induced if there is a topology
T such that 0 = wveX.

The Féron cross £ has the property that £v X is topologically induced
(by [4], II, Corollary 7.5), because é&veX is an Urysohn convergence
and ¢ is Hausdorff). On the other hand, ¢ is Fréchet. The cited theorem
claims that then T& (£ &) is elementary but not Fréchet.

Exanerr 7.3. The cat fur topology T& (Bxample 4.4) is elementary
and is not Fréchet at the points at which it is different from the cat fur

(pretopology) & namely on Q x R. This may be checked directly or inferred
from Theorem 7.1.
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