

244

References

- [1] E. Atencia and A. de la Torre, A dominated ergodic estimate for L_p spaces with weights, Studia Math. 74 (1982), 35-47.
- [2] E. Atencia and F. J. Martin-Reyes, The maximal ergodic Hilbert transform with weights, Pacific J. Math. 108 (2) (1983), 257-263.
- [3] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 1 (1971), 107-
- [4] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- [5] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press. 1970.

DEPARTAMENTO DE ANALISIS MATEMATICO, FACULTAD DE CIENCIAS, UNIVERSIDAD DE MALAGA, SPAIN

Received May 4, 1982 (1756)

STUDIA MATHEMATICA, T. LXXVIII. (1984)

On a generalized Carleson inequality

by

D. G. DENG (Peking)

Abstract. In this note we prove a generalized Carleson inequality

$$\left| \iint\limits_{\mathbb{R}^2} F(x,t) v(x,t) dx dt \right| \leqslant C \iint\limits_{\mathbb{R}} A_p(F)(x) v_{\circ p'}(x) dx,$$

where 1/p + 1/p' = 1, $1 \le p \le \infty$,

$$A_{p}(F)(x) = \left(\iint_{I(x)} |F(y, t)|^{p} \frac{dy \, dt}{t} \right)^{1/p}, \quad v_{*p'}(x) = \sup_{x \in I} \left(\frac{1}{|I|} \iint_{\overline{I}} |v(y, t)|^{p'} \, dy \, dt \right)^{1/p'}.$$

Moreover, $v_{*n'}$ belongs to the Muckenhoupt class A_1 for p' > 1.

1. Introduction. The inequality

(1)
$$\left| \iint\limits_{\mathbb{R}^2_+} F(x, t) v(x, t) dx dt \right| \leqslant C \iint\limits_{\mathbb{R}} F^*(x) dx \ (*)$$

is known as the Carleson inequality ([4], [5], p. 236), where $F^*(x)$ is the non-tangential maximal function of F(x, t), i.e.,

$$F^*(x) = \sup_{|y-x| < t} |F(y, t)|,$$

and v(x, t) dx dt is a Carleson measure on \mathbb{R}^2_+ , i.e., $v(x, t) \ge 0$ and

$$\frac{1}{|I|} \int_{I \times [0,|I|]} v(x, t) dx dt \leq C$$

for any interval I on R. The purpose of this note is to give a more general form of inequality (1). To prove this we need to prove that a new kind of a maximal function gives rise to weights in A_1 . This is of independent interest. Our inequality incorporates various inequalities proved by C. Fefferman and E. M. Stein and easily extends to R^n or, more generally, to the spaces of homogeneous type.

^(*) As usual, throughout this note C will denote a constant not necessarily the same at each occurrence.

Let $O = UI_j$ be an open set on R, where I_j are disjoint intervals. Let $\hat{O} = U\hat{I}_j$ be the open set on R_+^2 , defined by

$$\hat{I}_j = \{(x, t) \in \mathbb{R}^2_+ : t > 0, x \in I_j \text{ s.t. } (x - t, x + t) \subset I_j \}.$$

For any measurable function v(x, t) defined on \mathbb{R}^2_+ and satisfying $v(x, t) \ge 0$ with $v \in \mathbb{E}_{loc}(\mathbb{R}^2_+)$, we introduce

(2)
$$v_{*p}(x) = \sup_{x \in I} \left(\frac{1}{|I|} \iint_{I} |v(y, t)|^{p} dy dt \right)^{1/p}.$$

Let F(x, t) be given on \mathbb{R}^2_+ ; we define a p-area function as follows:

(3)
$$A_p(F)(x) = \left(\iint_{F(x)} |F(y, t)|^p \, dy \, dt/t \right)^{1/p},$$

where $\Gamma(x)$ is a cone with vertex at x:

$$\Gamma(x) = \{(y, t) \in \mathbb{R}^2_+ : |y - x| < t\},\$$

and

$$A_{\infty}(F)(x) = F^*(x) = \sup_{\Gamma(x)} |F(y, t)|.$$

We have

Theorem 1. If 1/p+1/p'=1, $1 \le p \le \infty$, then

$$\left| \iint\limits_{\mathbf{p}^2} F(x,t) v(x,t) \, dx \, dt \right| \leqslant C \int\limits_{\mathbf{R}} A_p(F)(x) v_{\star,p'}(x) \, dx,$$

where $A_p(F)(x)$ and $v_{*p'}(x)$ are defined by (2), (3), respectively. In particular, if $v_{*p'}(x) \leq C$, then

$$\left| \iint\limits_{\mathbf{R}^2} F(x, t) v(x, t) dx dt \right| \leqslant C \iint\limits_{\mathbf{R}} A_p(F)(x) dx.$$

In the case p'=1, the condition $v_{*p'}(x) \le C$ means that $v(x,t) \, dx \, dt$ is a Carleson measure, and the area function becomes the non-tangential maximal function $A_{\infty}(F)(x) = F^*(x)$, this reduces to the Carleson inequality.

To prove Theorem 1, we need

THEOREM 2. For p > 1, $v_{*p}(x)$ is always in the class A_1 [1], i.e.,

$$\frac{1}{|I|} \int_I \nu_{*p}(x) dx \leqslant C \inf_{x \in I} \nu_{*p}(x).$$

For examples of applications of these results, let $\psi(x)$ be a C^1 function defined on R satisfying

$$|\psi(x)| \leqslant \frac{C}{1+x^2}, \ \int_{\mathbf{R}} \psi(x) \, dx = 0.$$

We introduce an area function of f

$$\bar{A}(f)(x) = \left(\iint_{\Gamma(x)} |(\psi_t * f)(y)|^2 \, dy \, dt/t^2 \right)^{1/2},$$

where $\psi_t(\cdot) = t^{-1} \psi(\cdot/t)$. From [2], [5] we know that $|\psi_t * a|^q dx dt/t$ is a Carleson measure if $a \in BMO$ and $q \ge 2$ and $||\bar{A}(f)||_p \le C||f||_p$ if 1 . Thus by using Theorem 1, for <math>1 we have

$$\iint\limits_{\mathbb{R}^2_+} |\psi_t * f|^p |\psi_t * a|^\alpha \, dx \, dt/t \leqslant C \iint\limits_{\mathbb{R}} \bar{A}(f)^p \, dx \leqslant C \iint\limits_{\mathbb{R}} |f|^p \, dx,$$

provided $2\alpha/(2-p) \ge 2$, i.e., $\alpha \ge 2-p$ (clearly, (5) is valid for $p \ge 2$, $\alpha \ge 0$). In particular, pick $\alpha = 1$, we have

$$\iint\limits_{\mathbb{R}^2} |\psi_t * f|^p |\psi_t * a| \, dx \, dt/t \leqslant C \iint\limits_{\mathbb{R}} |f|^p \, dx.$$

This is not a consequence of Carleson's inequality since $|\psi_i * a| dx dt/t$ may not be a Carleson measure.

Another easy consequence of Theorem 1 is the Fefferman-Stein inequality [3]

$$\iint\limits_{\mathbb{R}^2_+} |\psi_t * f| \, |\psi_t * a| \, dx \, dt/t \leqslant C \, \iint\limits_{\mathbb{R}} \bar{A}(f) \, dx, \quad a \in BMO.$$

Finally, I would like to thank Professor R. R. Coifman for his effective suggestions in this work.

2. Proof of Theorem 1. First of all, assume $1 \le p < \infty$. Consider

$$\Omega_k = \{x: A_p(F)(x) > 2^k\} = \bigcup_i J_j^{(k)},$$

where $J_i^{(k)}$ are disjoint open intervals, and

$$\Omega_k^* = \{x: \ \chi_{\Omega_k}^*(x) > \frac{1}{2}\} = \bigcup_j I_j^{(k)},$$

where χ_{Ω_k} is the characteristic function of Ω_k , $\chi_{\Omega_k}^*$ is the Hardy-Littlewood maximal function of χ_{Ω_k} , and $I_j^{(k)}$ are disjoint open intervals.

By Theorem 2 we know that

$$v_{*p'}(\Omega_k^*) \leqslant C v_{*p'}(\Omega_k).$$

In fact, since $v_{*n'} \in (A_1)$, we have [1]

$$\int\limits_{\mathbb{R}} \chi_{\Omega_k}^{*2}(x) \, \nu_{*p'}(x) \, dx \leqslant C \int\limits_{\mathbb{R}} \chi_{\Omega_k}^2(x) \nu_{*p'}(x) \, dx$$

thus

$$\begin{split} \nu_{*p'}(\Omega_k^*) &= \int\limits_{\Omega_k^*} \nu_{*p'}(x) \, dx \leqslant 4 \int\limits_{R} \chi_{\Omega_k}^{*2}(x) \, \nu_{*p'}(x) \, dx \\ &\leqslant C \int\limits_{R} \chi_{\Omega_k}^{2}(x) \, \nu_{*p'}(x) \, dx = C \int\limits_{\Omega_k} \nu_{*p'}(x) \, dx = C \nu_{*p'}(\Omega_k). \end{split}$$

By the Hölder inequality we have

$$\begin{split} & \left| \iint_{\mathbb{R}^{2}_{+}} F(x,t) \, v(x,t) \, dx \, dt \right| \\ & \leq \left| \sum_{k=-\infty}^{+\infty} \iint_{\tilde{R}^{k}_{k} - \tilde{\Omega}^{k}_{k+1}} F(x,t) \, v(x,t) \, dx \, dt \right| \\ & \leq \left| \sum_{k=-\infty}^{\infty} \sum_{j} \iint_{\tilde{I}^{(k)}_{j} - \bigcup_{j} \tilde{I}^{(k+1)}_{j}} F(x,t) \, v(x,t) \, dx \, dt \right| \\ & \leq \sum_{k=-\infty}^{+\infty} \sum_{j} \left(\iint_{\tilde{I}^{(k)}_{j} - \bigcup_{j} \tilde{I}^{(k+1)}_{j}} |F(x,t)|^{p} \, dx \, dt \right)^{1/p} \left(\iint_{\tilde{I}^{(k)}_{j} - \bigcup_{j} \tilde{I}^{(k+1)}_{j}} |v(x,t)|^{p'} \, dx \, dt \right)^{1/p'}. \end{split}$$

Now we need an inequality

(6)
$$\iint\limits_{f_{p}^{(k)} - \bigcup f_{p}^{(k+1)}} |F(x, t)|^{p} dx dt \leq C \iint\limits_{I_{p}^{(k)} - \bigcup I_{p}^{(k+1)}} (A_{p}(F)(x))^{p} dx.$$

If (6) is true and we observe

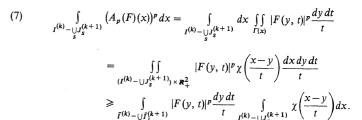
$$\int\limits_{I_j^{(k)}} v_{*p'}(x) \, dx \geq \left(\frac{1}{|I_j^{(k)}|} \, \int\limits_{I_j^{(k)}} |v(y,\,t)|^{p'} \, dy \, dt \right)^{1/p'} |I_j^{(k)}|,$$

then

$$\begin{split} & \left| \iint\limits_{\mathbf{R}_{+}^{2}} F\left(x,\,t\right) v\left(x,\,t\right) dx \, dt \right| \\ & \leq C \sum_{k=-\infty}^{+\infty} \sum_{j} \Big(\int\limits_{I_{j}^{(k)} - \bigcup_{j} J_{s}^{(k+1)}} \left(A_{p}(F)(x) \right)^{p} dx \Big)^{1/p} \Big(\iint\limits_{I_{j}^{(k)}} |v\left(x,\,t\right)|^{p'} dx \, dt \Big)^{1/p'}, \\ & \leq C \sum_{k=-\infty}^{+\infty} \sum_{j} 2^{k+1} \left| I_{j}^{(k)} \right| \left(\frac{1}{|I_{j}^{(k)}|} \iint\limits_{I_{j}^{(k)}} |v\left(x,\,t\right)|^{p'} dx \, dt \right)^{1/p'} \\ & \leq C \sum_{k=-\infty}^{+\infty} 2^{k} \sum_{j} \iint\limits_{I_{j}^{(k)}} v_{*p'}(x) \, dx \\ & = C \sum_{k=-\infty}^{+\infty} 2^{k} v_{*p'} \left(\Omega_{k}^{*} \right) \leq C \sum_{k=-\infty}^{\infty} 2^{k} v_{*p'} \left(\Omega_{k} \right) \\ & \leq C \int\limits_{R} A_{p}(F)(x) v_{*p'}(x) \, dx. \end{split}$$

This is the desired inequality.

Now let us go back to the proof of (6). We introduce a characteristic function $\chi(s) = \chi_{[-1,1]}(s)$. We start from the right-hand side of (6),



For any fixed $(y, t) \in \hat{I}^{(k)} - \bigcup \hat{I}^{(k+1)}$ we clearly know that

$$I \cap \Omega_{k+1}^{*C} \neq \emptyset$$

where $I=(y-t,\,y+t),\,\Omega_{k+1}^{*C}$ is the complement of Ω_{k+1}^{*} . It means that there exists a point $x_0\in I$ such that

$$\chi_{0,+}^*$$
, $(x_0) \leq \frac{1}{2}$,

which implies

$$\frac{1}{|I|} \int_{I} \chi_{\Omega_{k+1}}(x) \, dx \leqslant \frac{1}{2}.$$

Thus

$$\frac{1}{|I|} \int_{I^{(k)} - \bigcup J_s^{(k+1)}} \chi\left(\frac{x - y}{t}\right) dx = \frac{1}{|I|} \int_{I - \bigcup J_s^{(k+1)}} \chi\left(\frac{x - y}{t}\right) dx$$
$$= \frac{1}{|I|} \int_{I} \left\{ 1 - \chi_{\Omega_{k+1} \cap I}(x) \right\} dx \ge \frac{1}{2},$$

i.e.,

$$\int_{I^{(k)}-1|J_{r}^{(k+1)}} \chi\left(\frac{x-y}{t}\right) dx \geqslant t.$$

Substituting this into (7), we prove (6).

When $p = \infty$, the proof is easy. In fact,

$$\begin{split} \left| \iint\limits_{\mathbf{R}_{+}^{2}} F(x, t) \, v(x, t) \, dx \, dt \right| &\leq \sum_{k = -\infty}^{\infty} \iint\limits_{\Omega_{k} - \Omega_{k+1}} |F(x, t) \, v(x, t)| \, dx \, dt \\ &\leq \sum_{k = -\infty}^{\infty} \int\limits_{J} 2^{k+1} \int\limits_{J_{j}^{(k)}} v(x, t) \, dx \, dt \leq C \sum_{k = -\infty}^{+\infty} 2^{k} \sum_{J_{j}^{(k)}} \int\limits_{J_{j}^{(k)}} v_{*1}(x) \, dx \\ &\leq C \sum_{k = -\infty}^{+\infty} 2^{k} v_{*1}(\Omega_{k}) \leq C \int A_{\times}(F)(x) v_{*1}(x) \, dx. \end{split}$$

Modulo Theorem 2, the proof of Theorem 1 is complete.

3. Proof of Theorem 2. At first we prove that the operator

T:
$$u(y, t) = |v(y, t)|^p \to u^*(x) = \sup_{x \in I} \frac{1}{|I|} \int_I u(y, t) \, dy \, dt$$

is of weak type (1.1). In fact, let $\Omega = \{x: u^*(x) > \lambda\}$. Thus, for every $x \in \Omega$, there exists $I_x \supset x$ such that

$$\frac{1}{|I_x|} \int_{I_x} u(y, t) \, dy \, dt > \lambda.$$

Then all $\{I_x: x \in \Omega\}$ constitute a cover of Ω . By a cover lemma ([5], p. 9) there exist $\{I_k\}$, $I_i \cap I_j = \emptyset$ $(i \neq j)$, such that

$$|\Omega| \leqslant C \sum |I_k|$$
.

Then

$$|\Omega| \leq (C/\lambda) \sum_k \int_{\hat{I}_k} u(y,t) \, dy \, dt \leq (C/\lambda) \int_{R^2_+} u(y,t) \, dy \, dt.$$

Secondly, we prove that

$$v_{*p}(x) = u^*(x)^{1/p} = u^*(x)^{\delta} \in (A_1) \quad (\delta = 1/p < 1).$$

For any I, decompose

$$u(y, t) = u_1(y, t) + u_2(y, t),$$

where

$$u_1(y, t) = u(y, t) \chi_{\widehat{3}\widehat{I}}(y, t).$$

Since T is of weak type (1, 1), by the Kolmogorov inequality we have

$$\int_{I} u_1^{*\delta} \leqslant C |I|^{1-\delta} \Big(\int_{\mathbf{R}^2} u_1(y, t) dt \Big)^{\delta},$$

i.e.,

$$\frac{1}{|I|} \int\limits_I u_1^{*\delta} \leqslant C \left(\frac{1}{|I|} \int\limits_{R_+^2} u_1(y, t) \, dy \, dt \right)^{\delta} \leqslant C \left(\frac{1}{|3I|} \int\limits_{3I} u(y, t) \, dy \, dt \right)^{\delta} \leqslant C u^*(y)^{\delta}$$

for any $y \in I$. Thus

$$\frac{1}{|I|} \int_{I} u_1^{*\delta} \leqslant C \inf_{y \in I} u^*(y)^{\delta}.$$

On the other hand, for any $x, z \in I$ we have

$$u_2^*(x) \leqslant Cu_2^*(z).$$

In fact, suppose that

$$u_2^*(x) = \frac{1}{|J|} \iint_{\hat{I}} u_2(y, t) dy dt.$$

If $u_2^*(x) \neq 0$, then clearly $z \in 3J$. So

$$u_2^*(x) \leq \frac{1}{|J|} \iint_{\widehat{\Omega}} u_2(y, t) \, dy \, dt \leq C u_2^*(z).$$

Thus

$$\frac{1}{|I|} \int_{I} u_2^{*\delta} \leqslant C \inf_{z \in I} u_2^*(z)^{\delta} \leqslant C \inf_{z \in I} u^*(z)^{\delta}.$$

Since

$$u^*(x)^{\delta} \leqslant C\left(u_1^*(x)^{\delta} + u_2^*(x)^{\delta}\right),\,$$

we obtain

$$\frac{1}{|I|}\int_{I}u^{*\delta} \leqslant C\left(\frac{1}{|I|}\int_{I}u_{1}^{*\delta} + \frac{1}{|I|}\int_{I}u_{2}^{*\delta}\right) \leqslant C \inf_{y \in I}u^{*}(y)^{\delta},$$

and thus we end the proof of Theorem 2.

References

- [1] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
- [2] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57, Société Mathématique de France, 1978.
- [3] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [4] L. Hörmander, E estimates for (pluri) subharmonic functions, Math. Scand. 20 (1967), 65–78.
- [5] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton 1970.

PEKING UNIVERSITY