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Choosing ¢ =1 gives
4 a a’dx
[ @ = | Toga

On the other hand, for any §, e > 0 we have

a*/3.

]{ P~ (5/x) TPxdx = o0,
)

The characterization of A, given by Kerman and Torchinsky [4] shows that
Ay = A,; in this case wed, for all p>2 but w is not in 4,.
Let us now apply (4.1) with this choice of &. Take Y(f) = t*—1fort> 1

and 0 otherwise. Then L* consists of the functions whose restriction to every set
of finite measure is in I2. Since

i (25) (e/s)*(1 +logt/s)* ds = (2/3)¢*(1 +logt)®,
1

we see that the Hardy-Littlewood maximal function is bounded from °
I*(logL)*(wdx) to Li.(wdx) for all weB,,.

For the case w{x) = |x| on E', slightly better weighted bounds for M can be
obtained by using the fact that w is in the weight class A(2, 1) of Chung, Hunt,
and Kurtz [2]. However, if we modify w by redefining w(x) = |x|/(log2/x)* for
[xt <1, then w¢ A(2,1) for e >0 but weB, for ¢ > 1.
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H” spaces over open subsets of R"
by
AKIHIKO MIYACHI (Tokyo)

Abstruct, Part of the theory ol H? spaces ovet R", originated by C. Fellerman and E. M. Stein
{47, is generalized to the case of arbitrary open subsets of R”. The lollowing subjects are treated: (1)

“Definition of H*(53), where £ is an open subset of R", by means of maximal functions; (2) Atomic

decomposition for H*(Q); (3) Identification of the duals of H#(£2) with certain functicu.l spaces over
£ (4) The complex method of interpolation for HP(Q) and LP(); (5) Ex‘tenslon of a distribution in
HP(6) to a distribution in H"(R"). All the results are given in the situation that R* has a parabolic
metric.

1. ¥ntroduction. In this paper, we introduce H* spaces over arbitrary open
subsets of R* by means of certain maximal functions and show that they have
some properties similar to the H” spaces over R” (for the H” spaces over R", see
Calderon-Torchinsky [1], [2] or Torchinsky’s book [10; Chapt. XIV]).

We briefly review our results. _ ]

Let ¢ be a function in C§ (R") such that suppg < {xeR"||x| <1} (f xeR",
then Ix| denotes the usual Euclidean norm of x) anfl ) cp(?c) dx = 1 For t > 0, wc’j
define (), by (@),(x) = t™"o(t™'x) (we shall_ modify this definition afterwards;

see the next to the last paragraph in this section). Let Q be an open subset of R".
For f € @'(Q), we define the radial maximal function fiax), xef2, by

FEax) = sup{l(f (@) (x—WHI0 <1 < dislx, @)},

where O° denotes the complement of £2 (throughout this paper, &' (£2) denotes
the set of distributions on @ and {f, >, where f e.."Z’(Q)_and. e C_f," (), means
f(y); we use the same notation {f, Yy if fis a dis.tubutlon with com;}act
support and ¥ is a smooth function on R"). For p with 0 <pp <1, we de‘:ine
HP(R) as the set of those f € 2'(€) for which f 7.0 belongs to I (). Wep consi I:e:r
H?(®) 2 quasinormed linear space by defining the quasinorm of f € H _(Q_) to be
equal to the IF(Q)}norm of f4.a- (By a quasinorm we mean a_fupchon o 01;
a linear space X which has the following properties: (i) &(x) > 0 if x#0 an

o(0) = 0; (it) o(Ax) = |Alo(x) for all scalars A and all xeX; (iii) there extllsts
a positive constant k such that o(x+ E k(a(x)+a(y)) for all x, ye X)) T en
the maximal inequality given by the anthor [8] shows that the above dgﬁmtmn

i i fication: Primar : Secondary 46F05.
1980 Mathematics Subject Classification: Primary 42B30,. A _ .
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BMO, complex method of interpolation, parabolic metric.
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of HP(£2) does not depend on the choice of ¢ {up to equivalence of quasinorms)
and that certain grand maximal functions associated with f e H?(£2) belong to
IP(£2). These results will be given in Section 2.

Let Q be a proper open subset of R”. Using the characterization of H?(Q) in
terms of the grand maximal function, we can prove that elements of H?(Q),
0 < p< 1, admit a certain atomic decomposition. We define p-atoms in the
usual way (see [6] or [7] or Section 3.1 of the present paper). We call fa (p, Q)-
atom, where 0 < p < 1, if f e L*(Q) and if there exists a ball I = I', such that
21 = Q, 51N # @, suppf < and || f |, <{I|7'" (where sI denotes the ball
with the same center as I and with radius s times as large, and [I| denoies the
Lebesgue measure of I). Then every element of H?(€2), 0 < p < 1, can be written
as a certain linear combination of p-atoms and {p, Q)-atoms. This result,
together with a similar result for I7(£2), { < p < op, will be given in Section 3.

- Using the atomic decomposition, we obtain the following results, First, the
dual of H?(Q), 0 < p < 1, can be identified with a Lipschitz space (when
0 < p < 1) or the BMO space (when p = 1) if the latter spaces are appropriately
defined over Q. Secondly, the complex method of interpolation can be applied
to HP(Q) 0 < p<1)and IP(Q) (I < p < o0) in the same way as in the case
2 = R™. Thirdly, we can prove that if Q satisfies a certain condition then every
element of H7(Q), 0 < p < 1, can be extended to an element of H?(R"} and,
moreover, there exists a bounded linear extension cperator from HP{Q) to
HP(R"). The result on the dual of HF(£2) will be given in Section 4, the complex
method of interpolation in Section 5, and the extemsion in Section 6.

In the sections to follow, we shall give all our results in the situation that R"
is endowed with a group, {A(f)|t > 0}, of linear transformations. The transfor-
mation A(t) is a generalization of the scalar multiplication x~~:x. The group
{4(1)} and the associated metric on R” were given by A, P. Calderdn and A.
Torchinsky [1; Section 17; their results will be summarized at the beginning of
the next section. Except for the definition of (¢),, the assertions in the above
paragraphs hold true in the case of general {A(f)} if one regards dis(-, ) and
ball as those with respect to the metric associated with the group {A(t)}. The
definition of (¢), in the general case will be given in the next section.

Notation. We use the letter C to denote a positive constant which need
not be the same at different occurrences. For the use of C, see also the
paragraph marked N.B. in the next section. If £ is a measurable subset of R",

0<p=<oo and if fis a measurable function on E, then | f],, denotes the
LF{E}norm of f, ie., ’

1f sz =(§1f(xN?Pdx)"" when 0 <p < o

and || fi|l oz = ess sup {|f(x)] | xe E}. If E = R", then we shall abbreviate 1 pe
to [ fli,. If M is a positive number, & is a family of subsets of R" and if
> keaXg(x) < M for all x e R", where y; denotes the characteristic function of E,
then we say that the overlap of f does not exceed M.
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2. Maximal functions and H?(Q). First, we recall some preliminary results
about the parabolic metric on R" For details, see Calderén-Torchinsky [1;
Section 17. Let {A4(2)|t > 0} be a set of linear transformations for R” with the
following properties: t—A(£)x is continuous for every xeR", A(t}A(s) = A(ts),
A(l) = the identity operator, and |A{(f)x| 2 t|x} if ¢ 2 1. Then it follows that
there exist real numbers « and f such that 1 Sa<p,

lxl 1A € Pl ife> 1,
Plx] < |ADx] < *x] i t< 1.

Let y be the positive number for which det A(t) = ¢* for all ¢t > 0. We denote by
o the unique function on R" such that g(x) = ! if and only if [x| = 1, and that
o{A(t)x) = te(x) for all ¢ >0 and all xeR" It has the following properties:

2(0)=0,
e(x+y) < glx)+o(y),

e(x) < |x| < glx)*

e(x)=>0 if x#0,

o(—x) = g(x),
1,

if jx] or o(x) <
if |[xj or g(x) = 1.

o(x)* < x| < g(x)f

For x and y in R", we set dis(x, y) = g¢(x—y). This is in fact a distance function
on R*, and it determines the same uniform topology as the usual Euclidean
distance. For xeR" and E < R", we define dis(x, E) = inf{dis(x, y)| y E} if
E # @ and dis{x, E) = oo if E = @. For a function f on R” and for £ > 0, we
define the function (f), by

(M) =t (Al Hx).
For xeR" and t > 0, we define the ball B(x, t) by
B(x, 1) = {y e R"| dis(x, y) < t}.

If I = B(x, £) is a ball, we call x the center of I and ¢ the radius of I, and we
write x = x, and ¢ = r,. For a hall I and for s > 0, we denote by sI the ball with
the came center as I and with radius sr,. We have |B(x, ) = |B(0, 1)I¢".

N.B. Hereafter we fix the Euclidean space R* and the group {A(t)}. Every
constant denoted by the letter C depends only on the dimension #, the group
{A(2)} and other explicitly indicated parameters. - .

Next, we recall the definitions of the Lipschitz classes. For details, see [8;
Section III]. For a nonnegative integer m, we denote by 2, the set of .
polynomial functions on R of degree not exceeding m. For s >0 and for
feLi (R, we set

[ s = IS_l:IL [inf{r'[’"sﬁf(x)—}’(x)] dleE'?[s]}]’
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where [s] denotes the integer part of 5. Let s > 0, 2 a proper open subset of R"
and f a function on £. We define f by f(x) =f(x) if xe@ and f(x)=0 if
xeR\Q. If feLi.(R"), then we set

IS b asmy = 1F | ag + sup {1 Gol(dis(x, 29)~*}

We denote by A(s; 2) the set of those functions f on £ such that f'e LL(R") and
|/ l sy < 0. (In the Remark in Section 4, we shall give a characterization of
functions fin A(s; @) which does not use f'and which refers exclusively to the
behavior of fin Q)

Let @ be a function defined on R"x R*x(0, cc). We shall say that ¢ is
a good kernel if it satisfies the conditions (i}-(viii) below with some function
K: {0, o0)as—K_£(0, ).

(i) P(x., )eCT(B(x, 1)) for all xeR" and all > 0.

@) 1P(x, ", i < K,t777° for all xeR", all t >0 and all s> 0.

(iii) ¥C, y, )e'(R") and [&(x, y, t)dx =1 for all yeR" and all t> 0.

(iv} For ge*{R") with compact support and for ¢ >0, we define the
function g # () by

(9 # S = [g(x)D(x, y, ) dx;
then

lg # POl a0 < K,llgllay for all s> 0.

(v) If t > 0, ge L* (R") and g has compact support, then g # &(t) belongs.
to CF(R".
(vi) For every feZ'(RY) and for
x—={f, P(x, -, 1)) is locally integrable on R"
(vii) If feZ'(R"), t> 0, ge L*(R") and g has compact support, then

o g # 2@ = [g(x)<f, Plx, -, 1)) dx.

{viii) For every open subset 2 of R* and for every fe2'(Q), the radial
maximal function M3 o(f)(x), xe £, which is defined by

Mg o(f}(x) = sup{|{f, S(x, -, D110 < t < dis(x, QI},
is measurable.

every t>0, the function

The following are typical examples of good kernels. Take ¢ € CF(B(0, 1))
such that jo(x)dx = 1. Set &,(x, ¥, 1) = (¢),(x—)) and

D,(x, y, ) = (Q)pelx—y) if *<r <28 keZ.

Then s?l -'fmd @, are good kernels. The radial maximal function associated with
&, coincides with f; o of Section 1.
We shali use the following notation:

1S a0 = 1M3.o( 0.
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where 2 is an open subset of R", fe2'(Q), O<p<ow and @ is a
good kernel.

Let @ be an open subset of R", fe %' () and s > Q. We define the grand
maximal function f*; by

Fialx) = sngf, ¥, xeR",

where the supremum is taken over all those v for which there exists
a t =1, >0 such that Y eCP(Bx, )nQ) and Y| spranm S L7775
The following theorem is given in [8].

TreoREM A. If @ is a good kernel, s> 0 and y/(y+35) < p € w0, then

, K ¥al, < Copollf a0
for all open subsets Q of R* and for all fe Z'(€D).

COROLLARY. If & and &' are good kernels and 0 < p < co, then

1flpe.e < CrowlSlpea
for all open subsets Q of R" and for all fe2'(Q).

In fact, Theorem A is not given verbatim in [8]. It is, however, very similar
to Corollary 1 of [8] and can be proved in the same way. The Corollary readily
follows from Theorem A since M3 o(f)(x) < C, o f¥a(x) for all xef2

“The Corollary implies that some kind of statement containing an inequality
for || ||, (for example, the statement of the form “Uflpon <Cpoiff...7)
holds for all good kernels & if it holds for one such kernel. In such statements,
we shall omit “for all & or “for some @”.

Recall also the following fact: If 1 < p < co, then

Cotlflipe S [ ffalpa < Coplflng

(see e.g. {1; Section 1.6]).
Now we shall introduce the H? spaces over open subsets of R".

DEFINITION. Let €2 be an open subset of R” and 0 < p < 1. Take a good
kernel @. Then we denote by H7(Q) the set of those fe%'(£2) such that
[ £ 00 < 0. We consider H(2) a quasinormed linear space with the
quasinorm || |,.o.q-

The Corollary shows that the set HP{f2) does not depend on the choice of
the good kernel & and that the quasinorms |- ,.e.0 for various @ are mutually
equivalent. If Q = R", then H"(Q) defined above coincides with HP(R" given by
Calderén and Torchinsky [2).

The following lemma will be used in the mext section.
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LEMMA 1. Suppose £2 is an open subset of R*, f € Z'(£2), I is a ball with 3] < Q,
peCF(3), t >0 and s >0, Then
KA Colll Y sup|dip(x + Alr)y)| inf fEo(x),
l«]<ls1+1 ¥ el
where o denotes a multi-index and |x| its order,

Proof. Suppose x e¢I. Then 31 < B(x, (t-+3)r;)n&. Set J = B(x, (¢ +3)r,).
From the definition of f*,(x), it follows that

(L W31 < (E+ 30 I Lussoa 2l
On the other hand, we have
|||/’||A(s;Jnn) < Wl aan € € ”'J’ﬂ/i(s) = Csrf—s”‘ﬁ(xr'i‘f‘(W)‘)”A(s)
<Corrs Y sup lajw(x;-i-A(rr)y)l
le]<s1+1 ¥

(for the second and the last inequalitigs, see [8; Section III, 307 and 306.1]).
Combining the above inequalities, we obtain the desired result.

3. Atomic decomposition

3.1. Atomic decomposition for H*(Q). Let 0 < p < 1 and let £2 be a proper
open subsgt of R

A function f e L*(R"} is called a p-atom if there exists a ball 7 = [ | satisfying
suppf < and || f|i, < |I|7Y7 and if {f, P) =0 for all Pe},,_, We call
fap, &)-atom if fe I®(2) and if there exists a ball I = I ¢ such that 2/ = Q,
SImn@* £ @, supp f < I and || f|q,0 < {|7H2. If f and I satisfy the above
conditions, we shall say f is a p-atom or (p, Q)-atom supported on I.

If fis a p-atom, then

1120p0.0 < 1/ lho.r < Cpen

where [|Q denotes the restriction of f to @ (cf. e.g. Latter [6]). If fisa
(p, Q)-atom, then

I lp0.0 < Cpo.

{This can be proved as follows. Suppose fis a (p, Q)-atom supported on I. Take
a good kernel @ such that supp®(x, ', 1) < B{x, #/2) for all xeR" and
all £> 0. Then Mg o(f)(x) < Coll|™1 and MG o(f)(x) =0 il x¢7/. Hence
I f1pe.0 < C,e By the Corollary in Section 2, the conclusion holds for every
good kernel ¢.) Hence, if { f;} is a sequence of p-atoms and {g ;) is a sequence of
(p, £)-atoms, and if {4,} and {i;} are sequences of nonnegative numbers such
that )47 < o and ) u? < o, then the series 2ahif1@2 and ¥ u.g, both
commutatively converge in H”({) and

“ Z}“ifiig“l“zﬂjgj”p.m,n SCoa LA+ Y s,
{ j : 7

The following theorem means that the converse also holds.
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TueoreM 1. Let 2 be a proper open subset of R", 0 < p <1 and f e HP(Q).

" Then there exist sequences of nonnegative numbers {J;} and {u;}, a sequence of
- p-atoms (£} and a sequence of (p, Q)-atoms {g;} such that each f, is supported on

a ball 1, satisfying 21, <  and

(ZA+ 2" < Coglf o
i j
f=Yirfle+ };M;gj-
i

We shall prove this theoremn in Sections 3.2-3.4 (Section 3.2 will be devoted
to a preliminary argument). There, in fact, we shall give a more detailed result;
we give an explicit way to obtain the decomposition, which contains much
information on the p-atoms and (p, @)-atoms arising in the decomposition, and
moreover we show that a similar decomposition also holds for functions in
(@) if 1 < p< oo, In Sections 4-6, we need the detailed results of Sections
3.2-34

Remark. The basic idea of our proof of Theorem 1 is the same as that of
Latter [6] or Latter-Uchiyama [7] (this idea goes back to Herz [5] or
Coifman [3]). The point peculiar to our sitiation (general Q < R”) is the claim
(3.27) in Section 3.3,

3.2. Whitney decomposition. In this section, we give a certain decompositon
of proper open subsets of R" and the associated partition of unity. The resglt o
be given below is a modification of the similar result known as the Whitney
decomposition in the case of R* with the usual metric (for the Whitney
decomposition, see e.g. Stein’s book [9; Chapt. VI, § 1] or Torchinsky’s book
[10; Chapt. XIII, § 4.6]).

Let %, be the set of balls with radius 1 and with center of the form
{m, /\/ﬁ 3 e m,,/\/H) with m;e Z. For each ke Z, let &, be the set of balls of the
form A(29() with Te%,. Let % = | Jiez - -

Then the following hold. If I&%,, then r, = 2* For each ke Z, the balls in
4, cover R". For each f > 0, there exists C, > 0 such that for every keZ th.e
overlap of the set {tI|/&%,} does not exceed C,. If keZ t>0and E is
a compact subset of R", then there are only a finite number of balls I such that
le¥, and Ik # 3.

If U is a proper open subset of R', then we set

W(U) = (19|20, < dis(x;, U%) < 43r;}.

If U and € are proper open subsets of R” such that U = and if b > 0, then we
set

WU, Q) = {Iew (U)|dis(x, Q\U) > bry}.

2 ~ Studin Mathematice 95,3
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LemMa 2. Let U be a proper open subset of R".

(i) For every compact set E = U, there exist only a finite number of balls
I such that Iew (U) and 191~ E + @.

(ii) UreW(U)I =U.
(i) The overlap of {191|Ic# (U)} does not exceed C.

If in addition V' is a proper open subset of R* and U = V, then:

() If Iew (U), Je W' (V) and 21n2J # @, then r, < 2r,.
(v) For each fixed I W (U), the number of balls J satisfying Je W (V) and
2Un2J # @ does not exceed C,

Proof. We prove (ii). Set ¢ = 1/42, Suppose xeU. Take I % such that
tdis(x, U®) < r; € 2tdis(x, U and F=2x. Then

dis(x;, U?) < dis(xy, x)+dis(x, U%) < (1+1/0)r; = 43r,,
dis(x;, U®) = dis(x, US)—dis(x,, x) > (1/2t— 1)r, = 20r,,

and, hence, I # (U). This proves (ii). Proofs of the other claims are done by
the well known argument concerning the Whitney decomposition (cf. [9;
Chapt. VI, § 1]); they are left to the reader.

LeMMA 3. Let U and Q be proper open subsets of R" such that U = Q.
() If b> 43, then
WU, Q) = {Ie#(Q)|dis(x,, A\U) > br,}

and, in particular, #*(U, Q) = # (Q).

wgﬁ-)?'(% g)> 6, Iew™*(U,Q), Jew(U) and A2 #8, then Je

(ifi) If b> 92 and 1e WU, Q), then
JeW (U 2Un2T # B} = (Jew ()| 2l 2] # @),

(iv) If V is a proper open subset of R* such that U = V = Q and if b>43,
then WU, Q) < w(V, Q).

Proof. (i} Since U® = (Q\l)uQ°, the equality
3.1 dis(x, U%) = min{dis(x, Q\U), dis(x, (o)

holds fOI; every xeR". Hence if dis(x;, Q\U) » br, with b > 43 and if Te %~ ()
or Ie % (£2), then dis(x,, U%) = dis{x,, Q°. From this (i) follows easily.

(if) If b, I and J satisfy the assumptions of (i), then r, > r,/2 (Lemma 2(iv))
and, hence,

disxz, O\U) 2 dis(xy, \U)—dis(x,, x,) > bry~2r,— 21, = (/2 3)r,.

(iiiz 2I:e$t b>92 and Tew¥(U, Q). If Je# ' (U) and 2In2J # @, then
JeWP2 33U, Q) () (by (1) and (i)). Conversely, suppose Je %" () and
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22 # @ Since e w'($) (by (i), we obtain r; > r;/2 (Lemma 2(ﬁf)). Hence,

in the same way as in the proof of (i), we have dis{x;, Q\U) > (b/2—3)r,.
Hence, by (i), Je #**3(U, @) < # (U). This proves (ii).

(iv) This follows from () since dis(x, 2\U) < dis(x, &\V) for all x. This
completes the proof of Lemma 3.

LemMa 4. Ler U, V'and Q be proper open subsets of R” such that U < Ve Q.

(i) Ifb > 43, 1% (U) und if there exists a J such that Je 9 (VI\#(U, Q)
and 212 # D, then dis(x,, N\U} <(2b+06)r,.
(i) If b >0 and Je# (V\#* (U, Q), then dis(x;, Q\U) < max{21, b}r;.

Proof (i) Suppose b, I and J satisfy the assumptions of (i). If dis(x;,
) < dis(x,, 29, then, using (3.1) with x = x;, we see that dis{x;, Q\U)
= dis(x;, U°) < 43r; < (2b+6)r,. Thus assume dis(x;, Q\U) > dis(x;, 2°).
Using (3.1) again, we see that Je#7(€2). Hence, by Lemma 2(iv), we have
r; < 2r;. On the other hand, using (3.1) with x = x; and with U replaced by ¥,
we see that either of the following holds:

(3.2) 20r, < dis(x,, Q\¥V) < 437,
(3.3) 20r; < dis(x;, 9°) < 437,.
If (3.2) holds, then
dis(x;, Q\U) < dis(x,, Q\U}+-dis(x,, x;)
< dis(xy, Q\V)+dis(x;, x;) < 43r,42r; + 21,
< 92r, < (2b+6)7;.
Suppose (3.3) holds. Then Je % (). From this and the assumption that
Jgw?P(U, Q), it follows that dis(x,, Q\U) < br, (Lemma 2(i)). Hence

dis(x,, Q\U) < dis(x;, O\U)+dis(x,, x;) < br;+2r,+2r; < (2b+6)ry.

Thus (1) has been proved. ' _
{ii) Suppose b and J satisfy the assumptions of (ii). Since J € #7(V), we have

(3.4) 20r, < dis(x,, V°) < 43r;.
Since J¢#* (U, ©), one of the following four inequalities holds:

(3.5) dis(x;, Q\U) < bry,

(3.6) dis(x,, U®) > 437,
(3.7) dis(x,, QA\U) < 201,
(3.8) dis(x;, &) < 20r,.

If (3.5 or (3.7) holds, then the conclusion of (ii) holds. The inequalities
(3.6) or (3.8) cannot hold simultaneously with (3.4) since dis(x;, U
< dis(x;, V°) < dis(x,, 2%). This proves (i) and completes the proof of
Lemma 4.
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Now we shall give a partition of unity on a proper open subset of R", Take
a function fe CS"(B(O, 2)) such that 0 < 8(x) < 1 for all xeR", and 0(x) = ! for
xeB(0, 1). For each Ie¥, set

0r(x) = O(A(ry V{x—x;).
Then 8,eCF(2I), 0< O, {x)<1 for all x, and 0;(x) =1 for xel. For each

proper open subset U of R” and for each I €%, we define the function ¢f on R”
as follows:

0,x)/ ¥ 0,(x) if Iew(U)and xeU,
o7 (x) ={ :

Jew (L)
otherwise.

Lemma 5. Let U be a proper open subset of R".

() e¥eCFQ@2D for all 1e9.
(i) 0< oV (x) <1 for all Ie¥ and all xeR™

(iii) ZIefi pf(x)=1if xeU.

(iv) If Ie¥ and 0 <t << 10r;, then

2507 (A1) x)| < Coult/r)!
for all xeR" and all multi-indices .

(v) If Qis a proper open subset of R", @ > U, b > 92 and I e W (U, Q), then
of = of.

Proof. The claims {i)-(iii} follow easily from Lemma 2 and the definition of
@f. The claim (iv) can be proved by the use of Lemma 2 and the fact that the
operator norm of the linear transformation A(t) does not exceed Ct if
0 <1< 10. The claim (v) can be proved by the use of Lemma 3(i), (iii).

33. Proof of Theorem 1. We shall prove Theorem 1 and, at the same
time; prove that a similar decomposition also holds for functions in I?(€) if
I <p < oo0. Throughout Sections 3.3 and 3.4, we asume that Q is a proper open
subset of R" and either fe H*(Q) and 0 < p< 1, or fel?(Q) and 1 < p<co.

Take a nonnegative integer m such that m = [y/p—7], and take s > 0 such
that p/(y+s) < p. For each keZ, sct

Ulk) = {xeQ| f*a(x) > 2"}.

This is an open subset of @ since f*, is lower-semicontinuous. We have
U(k) = Ulk—1). For each ke Z and each I, Je %, we define P%, and PP, as
follows. If Ie W' (U(k)), Jew (U(k—1)) and 21 ~2J # @, then P% ; is the unique
element of #,, such that ‘

fpf W oF* D ~Ph s xarzas, @3 =0  for all Qe?,;
for other (k, I, J), we set P} ; = 0. If I, Je #'(2) and 21 2J # &, then P, is
the unique element of &, such that

{fof ¢F —Pfsxsrxes Q) =0

for other (I, J), we set P®, =0.

for all Qe2,,;
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Then for every e C& (€} and every keZ,
(3.9) Y K fpf R i, ¥ < o,
I,J

(3.10) ¥ IKPY xainars YOI < o0,
nJ

where the sums are taken over all &% and all Je% (this convention will be
used hereafter; a sum over balls should be taken over all balls in % if no
restriction is indicated). This will be proved in Section 3.4. Hence the series
Y fo?® % and Y ;P gerXes both commutatively converge in 9’(9}
and the iterated series formula ¥, = Y,(¥,) = ¥.,(3)) holds. By Lemma 2(i),
the same holds for the series ¥y, PF,xarxss- Since {¢§* 1}, is a partition of
unity on U{k—1) and suppef® is a compact subset of U(k) = Uk—1), we
have

@11 Y fol®eft = fof®.
J

For each ke Z, we set
gk = f— thpf(k)-l- EP,;JXBIXBJ'
1 IJ

In Section 3.4, we shall prove the following:

(3.12) =), Plitartss in Z'(Q) as k— — o0,
IJ

(3.13) gf in Z(Q) as k> + 0,

(3.14) If =¥ fol®| o0 < C,2*  for every keZ.
- .

(By (3.14) we mean, in particular, that f-- Z{ fo¥® belongs to L*(Q)) For the
moment we assume these results and continue tl"xc proof.
Using (3.11), we see that g*—g*~' can be written as

(3.15) g—g = ;k’}

with
b= =3, Jopi® o F&—1 ¢ ZP;IC,JXSIXSJ +fepF* Y =3 PER xes Xk
T T K

We set

(3.16) hf =% PP ixsrss-
7

Combining (3.12), (3.13), (3.15) and (3.16), we obtain

M
T T H+Y A
k=-M

(3.17) [ o= lim
M~ 7 I
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We shall prove the following:

(3.18) =0 i Jé¢w(Uk—1),

(3.19) Kiel*(@) and |Hi]|,.0 < Coms2t,
(3.20) supph < (the closure of 8J) < 9J,
321) 0> =0 for all Qe

(3.22) W=0 if I¢%(Q)

(323) R el*(Q) and [hf|ae < Cﬂ.m.sj:;i Saalx),
(3.24) supphf < (the closure of 81) = 91.

' Bef'ore we prove the above claims, we shall see some of their consequences.
Flr.st, if 0 < p =<1, then Theorem 1 follows from the above claims and (3,17).
This can be seen from the following observations: If we set A% = |h4l|, o[0J]*7,
then ()~ Y(h%)" is a p-atom and ‘

LS Comap 2, 3 2OV Copnp 2, 27U G—1)
K,

keZ Jew (Ulk— 1)) heZ

$ C&.m,s,p J. f::ﬂ(x)pdx < Cﬂ,m,s,p,dﬁ H.f”f),dﬁ,ﬂ
2

(the sec;ond inequality follows from Lemma 2 (ii) and (iii)); if we set
#y = 1A %.[9117, then u; 'AY is a (p, Q)-atom and
;'Llf ‘{2 Cﬂ.m.s,p Z (]nff;':ﬂ(x))plll s- Cﬂ,m,s.p Z jf:ﬁﬂ(x)pdx

Tew(@y ¥&I Ie# (NI
< Cﬂ,m,s,p sfzn(x)p dx = Ce.m,s,p.(b “f”g,tfl.ﬂ
o

(the third inequality follows from Lemma 2 (ii) and (iii)). Secondl i
A ! . y, the claims
(3.18)~(3.24) imply the following inequalities:

%‘hg{x)l s Z ( Z CO,m.sszQJ(x))

keZ Jew (Ulk— 1))

. ,
K Coms 2. 2% 1y(x) € Cops fE0(x),
keZ

;Ih?(X)I < Coms S (x)-

Finally, frgm the above results, we see that the series Yok commutatively
converges in .@ (@), to say the least. Hence, the formula (3.17) can be rewritten
without ambiguity, as ,

(3.17) f=Yh+3h,
kd T

where the sum in k is taken over Z.
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Now we shall prove (3.18)~(3.24). The claims (3.18), (3.20), (3.22) and (3.24)
are clear. (3.21) follows from the definition of P ; and (3.11). In order to prove
the other claims, we need some more observations.

The following estimates hold for all ¢ > O

(3.25) HP’f‘JXB}XSJ”w < Comsa inf; FEa();
XEt
(3'26) “PSI?,J’ XSIXSJH o s Ca,m.s,t lnni; f-tﬂ(x)’

We can prove these estimates by using Lemma 1 and Lemma 5 (iv) and arguing
in the same way as in Latter-Uchiyama [7; pp. 393-394].

(3.23) follows from (3.26) and Lemma 2 (iii) (or {v)).

In order to prove (3.19), we use the following fact:

(3.27) We—0 if Jew?2OUk), Q).
This can be seen as follows. Let J & #°2°°(U(k), ). Then, by Lemma 3(i) and
(iv), we also have
JeW (Q)n WU k—1), QW 2O(UKk—2), Q).
Hence, by Lemma 3(iii), it follows that
(3.28) Hew (UW)i21n2] # B} = {Ie W (@)|20n2J # B},
(329) {Kew (U(k—2)12Jn2K # @} = {(Ke# (@12 n2K # 5},

By Lemma 3 (ii), we see that e # 97(U(k), Q) for every I in the set of (3.28) and
that K e w*7(U(k—2), Q) for every K in the set of (3.29). Hence, by Lemma
5(v), we see that pJ*™ 0 = of, f® = ©? for all I in the set of (3.28), and
@U*=2 = o2 for all K in the set of (3.29). Using these results, we compare the
definitions of P4, and P43} with those of P; and P to find that P}, = P,
for all Te® and that P43} =P for all Ke%. Hence

(3.30) ZP]‘S,JXaJXSJ_EP'fr._IchBJXSK = ZP?.J’XBIXBJ_§P¥.KXBJZSK =0
I K I
(since P?, = P%,). On the other hand, since {@¥®}, is a partition of unity on
Uk) and suppoy®~ 1 < 2J < Uk), we have
331 S fil O g5 = 0.
I

Now (3.27) follows from (3.30) and (3.31).
We now prove (3.19). By (3.18) and (3.27), we may and shall assume

Jew (Ulk— O\ (U(K), @) We write
W= (f— Zf(o?(k))qﬂf'](kml)"'zP?,JXB:XBJ_ ZPJ},?XSJXBK
T T K

= a’j+b’}—c’j, say.
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For a%, we use (3.14) to see that afe L™(£2) and ||ld}||. o < C,2% Using (3.25)
with ¢t = 406 and Lemma 4(i) with U = U(k), V= U(k—1) and b = 200, we see
that

1P% s xsr 2eil o < Coms2*  for all [

(recail that P} ; # 0 only if Ie w(U(k)} and 21 n2J 5 @). This, together with
Lemma 2(iii), implies that b5 e L*(2) and ||bY], o < Cp 2" Similarly, using
(3.25) with =200 and with k, I, J replaced by k—1, J, K respectively and
Lemma 4(ii) with U, ¥ and b as above, we see that ctel*(Q) and
5l w0 € Coms2®. Combining these results, we obtain (3.19).

We have now proved (3.18)+(3.24).

34. Proof of Theorem I (continued). We now prove (3.9), (3.10), (3.12),
(3.13) and (3.14)

Proof of (3.9). Fix ke Z and e CF(Q). The term in the sum of (3.9) does
not vanish only if Ie # (U(k)), Je w'(U(k—1)) and 21 n2J nsuppys # &, For
such I and J, we have r, € 2r (Lemma 2(iv)) and

20r, < dis{x,;, U(k)") < dis(x;, 2°) < 2r,+ max dis(x, ()

Xesuppy

and, hence, r; < C, o. Hence, using Lemma 1 and Lemma 5(iv), we have

KfoiMei D, ¥l < C

sapnll] 6l fro(x).
x50
Since for each I e #°(U(k)) the number of balls J satisfying J e %" (U(k—1)) and
21n2J # & does not exceed C (Lemma 2(v)), we sum up the above inequalities
over J to obtain

(3.32) ZI(I@?""GD?”‘."”, Vo < Coppalll inf fFax).

To sum up th1s over I, we consider the two cases Je# 5°(U(k), Q) and
I W (URN\?3(U(k), ) separately. There are only a finite number of balls

I such that Te #*°(U(k), Q) and 2 nsuppy # @ (this can be seen from
Lemma 3(i) and Lemma 2(i)). Hence the sum of the left-hand side of (3.32) over
Te#™°(U(k), Q) is finite. If e W (U(\#°(U(k), Q), then inf{f*,{x)]
xe30I} <2* Hence the sum of the lefi-hand side of (3.32) over
Iew (U(k))\”l/f"”(U(k), Q} does not exceed

Z Cso.p.0lll % < oo,
Tew (Uiky)
Zinsupp g

This proves (3.9),

Proof of (3.10). The term in the sum of (3.10) does not vanish only if
Tew (U(k)), Jew (U(k—1)), 2In2J # & and 8] nsuppy # 3. Usmg (3.25)
and Lemma 2(iii} (or (v)), we obtain

ZKPIJ’XBIXESJW Yyl < Cams 1nf f Q(X)H‘I’HLBI-

Thus we can prove (3.10) in the same way as (3.9).
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Proof of (3.12). This is trivial if f = 0. Assurne f # 0. Then f¥,(x) > 0 for
all x and, hence, U{k)?Q2 as kl——oo. Thus the convergence

f__ Z ff Utk _,

is obvious, We shall prove the convergence

in Q) as k—-—co

Z P?.JXBIX&J‘*EP?JJCBIXBJ in @'(Q) as k——co.
ILJ IJ

For each x, we have dis{x, U(k)")1dis(x, Q°) as k] —co. This implies that
for each Ie%¥, there exists an integer k, such that

(3.33) M w Uk ={Dow® ifk<k.
Fix a s e CF{€2), There exists an integer k, such that U(k,) > suppy. We set
o = {Tew (@u |) #(U®)|8I nsuppy # B}.

<k

If ITesf, then

206, < dls{x,, Q) < 8r,+ max dis(x, 2%,
XESUPD Y

(k,)*) > min dis(x, U(k,))—8r;.

xesuppy

43r, = dis(x,, U

Since the r; are integral powers of 2, the above inequalit@es imply th_at
{rjiles#} is a finite set. This fact and the fact that each &, contains only a finite
number of balls I for which 87 intersects a given compact set imply that o is
a finite set. Hence | Jreu27 is a relatively compact subset of Q. Thus, by the
same argument as above, there exists an integer k, for which the set
B={Jew(@o ) wUK)2In )2 =0}
kSky Test

is finite. We set € = .o w #. This is also a finite set. Hence we use (3.33) to see
that there exists an integer k, such that

(3.34) GAW(UK)=Cnw(Q) i k<k,.

Set k, = min{k, k,, ky}. We shall prove that

Z P orsidas ¥ = ), (PP Xardee ¥
I ri
for k < k,. Tt is sufficient to prove that the following equalities hold for k <

(3.35)  {Iew (U(k)|8Insuppy # B} = {(Te # (2 |81 ~suppif % @,
(3.36) {Jew (Uk—1))|8J nsuppy # B} = {J e #'(Q)|8J nsuppy # T},
(3.37) Pk, =P$, if Icthe set of (3.35) and Jethe set of (3.36).
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The claims (3.35) and (3.36) easily follow from (3.34). The claim (3.37) is proved
as follows. Suppose k < k,, I belongs to the set of (3.35) and J belongs to the
set of (3.36). Using (3.34), we see that

(Few (U®)|2I' 21 # B} = {I'ew(Q)|2I' 2] # D},
{Few (Uk—1){20'n2J # B} = {J e W (Q)|2] " 2J 5 B}.

Hence, from the definition of ¢f it follows that pf™ = @f and @¥*~ 1 = %
Now comparing the definitions of P§ ; and Pf,, we see that P§; = P?,. This
proves (3.37) and completes the proof of (3.12).

Proof of (3.13). I p = oo, then Uk) = @ for all sufliciently large k and
(3.13) is trivial. So assume 0 < p < o0. Fix a e C§ (€2). What we have to show
is that ‘

(3.38) 2, CSfof© iV —Phy xartes, W) =0
I.J .

as k— 4 oo (recall (3.11)). Set

fio= 1o/ oFf* D — Pl ryartss
Notice that {f*%,, ¥> # 0 only if
Tew (Uk)), 8Insuppy # O,
Jew (Uk—1)), 20n2J#d.

Let Q; be the polynomial in ,, which is the sum of the terms of degree < m

in Taylor's series of y(x) at x;. Then {f%,, ¥> = {f%,;, ¥ —0Q,>. Using this
equality, Lemma 1, Lemma 5 (iv) and (3.25), we obtain

(340) IS VI < Copulll 10l f30(x) 2. sup | —0y) (x Al

|l €[s]+ 1 yeB(0,8)

(3.39)

Since |U(k]|<2““"\|f§jglig_9 (Chebyshev’s inequality), we have sup{r,}[e
W (U(k)}—0 as k— oo,

From now on we assume k is sufficiently large. Suppose I satisfies the first
and second conditions of {3.39). Then

dis(x;, 2°) > min dis(x, Q%—8r; > 43,
XESUPP I

{the latter inequality holds because r, is small) and, hence, dis (x;, Q\U (k)
< 43r; (we have used (3.1)). Thus

inf{f¥a(x)| xe50I} < 2.

Moreover, the operator norm of A(r,) is majorized by r; and
| 4{r) ¥l < re(y) < 8r; for all ye B(0, 8). Thus

Y. sup [ —Q)(x,+Alr)y) € CymarP

la| €[s]+1 y=B(0,8)

H" spaces over open sets 221

Combining these estimates with (3.40), we obtain

IS5 5 WD) S Gy gy ZE T 1087,

Summing up this over J (it is sufficient to consider those J which satisfy the
third and fourth conditions of (3.39)), we obtain

}:,Kf’;.h ol < Cs,o.w.mzk|f|(y+m+lw
7

(we have used Lemma 2 (v)). Summing up this over I, we obtain
2 |<f':51> t[/>| < C.v.ﬂ,t,'f.mzk( Z |I|)(T+m+ 1)y < Cs‘mw,mzk'U(kam' 1y
] Tew (Utk)
“'<~ Cs.a,w,mzklU(anP ‘-S C.v,o,w,m( ! f::ﬂ(x)p dx)lfl?

Ulk)
(the second inequality follows from Lemma 2 (i) and (iii); the third holds
because |U (k)| is small and (y +m-+1)/y > 1/p). Since f¥oe [P{Q) and (U (k) -0
as k- co, the last expression in the above series of inequalities tends to zero as
k-»o0. This proves (3.38) and completes the proof of (3.13).
Proof of (3.14). Let ke Z. Take a function # such that ne C§(B(0, 1)) and
[n(x)dx = 1. For &> 0, set .

Q, = {xeQ|dis(x, Q°) > ¢}
and define f,(x), xeQ,, by
L === L lx—)> i ).

Inrp>g

It is easy to see that f, is a smooth function on @, We shall prove that
(3.41) [f.(x)] < C,,2¢  if 456 <&’ and xeQ,

and that, for each fixed ey (Q),

(3.42) J 100 () de> {f= X fol, 07 as e-0.

The assertion (3.14) readily follows from these results.

We now prove (3.41). Suppose 45¢ < & and xeQ,.. First, we consider the
case dis(x, U(k)) > 45¢. Then obviously xeU(k). Moreover, for each
lew (Uk)) with 2I3x,

43r, 2 dis(x,. Uk)F) > dis{x, UK))—dis(x;, x) > 45e—2ry
and, hence, r, > Hence, f(x) =0 in this case. Nexi, consider the case
dis(x, U(k)°) < 45z. Then dis(x, O\U (k) < 45¢ (we have u§ed (3.1) and the
assumption dis(x, Q%) > ¢ > 45s). Hence, using Lemma 1 with ¥ = (n),(x—"),
I = B(x, ¢) and t = 46, we have

o DI < oy i [ < Cog®

yeB(x,46¢}
Henee, | f,{x)| < CMZ" in this case. This proves (3.41).
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Next we prove (3.42). Fix a ye CF(Q). Take & > 0 such that supp ¥ = Q,..
Suppose ¢ < ¢, Ie W (U(k)) and r; > &. Then the function (i),*(pf®y), where
n({x) = n{—x) and = denotes the convolution, belongs to C§ (3I) and

§ L =1 @¥ Py () dx = {f, (), #(@F ).

Using Lemma 1 and Lemma 5 (iv) and arguing in the same way as in the proof
of {3.9), we see that the absolute value of the right-hand side of the above
equality is majorized by

(3.43) Cs,,,,e,.;,,nifl inf f¥a(x).

xe507
(Notice that the above constant C does not depend on &) By the same
argument as in the proof of (3.9), the sum of (3.43) over the balls I in # (U (k)
satisfying 2I nsuppy # @ is finite. Hence we can change the order of lim,._,,
and Y, below:

lim ¥ [<f, )0e— >0 f®(x)¢(x) dx

e~+Q irpee
I 20 ) X = ,:U k

We also have
HIT;J(f, (M= Dy (x)dx = {f, ).

Combining the above two resuits, we obtain (3.42). This completes the proof of
(3.14).

We have thus proved Theorem 1 as well as all the assertions in Section 3.3.

4. Dual of H?(Q). Let Q be a proper open subset of R". We denote by
BMO(€) the set of those functions f in L, (Q) such that

1/ | smoen = sup [ in{f{lfl"1 [LfG)—cldx}T+sup {77 [if{x)|dx} < oo,
ceC I J J

where the first sup is taken over those balls I such that 21 < £ and the second
over those balls J such that 207 < @ and 5JnQ° % @. We consider BMO(Q)
a Banach space with the above norm. If fe BMO((), then f'is integrable over
every bounded measurable subset of @ (we can prove this by covering the
bounded set with 91, I'e % (). We denote by X (Q) the set of those [ ¢ L* (1¢))
which vanish outside some bounded subset of Q. l

Before we give the theorem about the dual of H?(), we give two lemmas.

LeMMA 6. Let Q be a proper open subset of R" and E a bounded closed subset
of Q. Suppose feZ' (), suppf < E and 0 <p < g < oo. Then

“f“p.cb,ﬂ < Cp.q.E,ﬂ,qi “f”q.d),s?-
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Proofl Ii is sufficient to prove the inequality for one good kernel &. We
take a good kernel @ such that supp®(x, -, t) = B(x, #/2) for all xeR"* and all
¢ 0. Then we easily see that Mg o(f) vanishes outside E, where

E = {xeQ|dis(x, E) < sup dis(y, Q°}.

yekE

Hence Holder’s inequality gives
. U f o0 < |EMP~ 1) £ 0.0
Since £ is also a bounded set, we have |£| < oo. This proves the lemma.

Lemma 7. Let @ be « proper open subset of R" and 0 < p < 1. Then both
CF(R) and X(Q) are dense subsets of H?()

Proof. The inclusion CF(R)=X(Q) is obvions. The inclusion
X (@) = H?(Q) follows from Lemma 6. Hence, in order to complete the proof, it
is sufficient to prove that CZ(Q) is dense in H?(Q). If fis a p-atom supported on
a ball T satisfying 2I < Q or if fis a (p, ©Q)-atom, then f can be approximated by
functions in CF(Q) with respect to the quasinorm in H?(). In fact, if # is the
same function as in the proof of (3.14) (Section 3.4), then f+(n), belongs to
C(@) for sufficiently small ¢ > 0 and converges to f in H?(Q) as ¢—~0 (this
latter conclusion is seen with the aid of Lemma 6). This fact and Theorem
1 imply that C& () is dense in H"(£2). This completes the proof.

We denote by (H#(€)) the dual of H?((2), ie., the space of all bounded linear
functionals on H?(£).

Turorem 2. Let @ be a proper open subset of R".
(i) For every ge BMO(Q), there exists a unique Te(H HQ)Y such that

4.1) T(f)= [gx)f(x)dx for all feX ().
n

Conversely, for every Te(H'(Q), there exists a unique geBMO(Q) which
satisfies (4.1). The correspondence T»g determined through (4.1} is a Banach
space isomorphism between (H*(£)Y and BMO(Q).

(i) Let 0 < p< 1. Then (4.1) determines a one-t0-one correspondence be-
tween Te(H?()) and geA(y/p—y; ), and this correspondence is a Banach
space isomorphism.

Proof. We prove (ii). Suppose geA(y/p—y;£) and feX (). Set
m = [y/p—y] and § = m-+1 (thus y/(y-+5) < p). With these m and s, decompose
fas in Section 3.3; let (3.17") be the decomposition. Then there exists a bounded
set which depends only on supp f and £ and which includes all the supports of
h: and kY. Moreover, '
sup { 3 ()l LI} < o0

k[ I :

x
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(see Section 3.3). Hence
fo(0f (x)dx = Y. fg(x}rs(x)dx+ 3 fg (e (x) dx
ko T

(we can change the order of | and ). Using the estimates (3.18)~(3.24), we
easily sec that the absolute value of the right-hand side of the above equality is
majorized by

Cﬂ.p “gﬂA(y/p—'y;.Q) ”f:ﬂ”p.!.!'
Hence, by Theorem A, we have

[fg(x)f(x) dx| < C

(we can take the function 8 depending only on the dimension n and the group
{A(0)}). The above inequality, combined with Lemma 7, shows that the linear
functional X ()5 fi—[g(x) f(x)dx can be uniquely extended to a bounded
linear functional on H¥(Q). .

Conversely, suppose Te(H?(Q2)). Let E be a bounded subset of Q. Then
Lemma 6 implies that [*(E) < H?() and, hence, that the restriction of T to
I2(E)is a bounded linear functional on I*(E). Hence there exists g, e I*{E) such
that T(f) = {ggp{x) f (x)dx for all fe Z(E). If E and E' are bounded subsets of
@ and E < E', then ¢,(x} = g (x) for ae. xeE. Hence, it is easy to see that
there exists a measurable function g on £2 which is square integrable over every
bounded measurable subset of @ and satisfies (4.1). Such a g is obviously
unique. We shall show that g belongs to A{y/p—7y; Q).

Let | Ty be the norm of Tin (H?(Q), ie.,

1T = sup {T WIS 1p.a0| [ HAQ), £ # 0.

Taking supremum of | fog{x) f (x) dx| =
(p, Q)atoms [, we find that

(4.2) 191 agusp - +sup {1777 [lg(x)l dx} <
J J

PX4 lgll Alyp—= 1S LA D82

|T{f|Q)| over all p-atoms f and over all

CoalTl,
where the sup is taken over those balls J such that 2J = Q and 5JnQ° = &
Take a function ne C§(B{0, 1)) such that
1 fa=0
dx = *
e dx {0 it 0.< g < [y/p—71,
and set G(x, 1) = (g={n),)(x). Then
10,G{x, O < CylFllayp-nt"" 7771 K Copo | TP 7 71

{for the first inequality, see [8: Section ITI, 305.17). If xe @ and u = dis(x, %),
then from (4.2) we can easily deduce the estimate |G (x, u/2)| < C, p.o | T]|#777.
Hence,

lg ()|

Cn.p,dl ” T‘i uw,p—v'

= G (x, u/2)— /jz 2,G(x, ndt <
0
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This and (4.2) imply |9 app-ve < CpolT| (e can take n depending only on
n, {A(t)} and p). This completes the proof of (ii).
The assertion (i) can be proved in a similar way; it is left to the reader.

Remark. Modifying the above argument, we can prove the following
results.

(i) If g e BMO(Q), then | §llamomn <
by

Cllg lsmocs: Where |- [lgmogrn is defined

I / lzmo (= SUP [mf{III 1j|f(x)“*cl dx}]

hall e

(ii) A function g on Q belongs to A(s; @), s > 0, if and only if g & L, () and

sup [ inf {r/7” “jlg(x) P(x)|dx}]+ sup {ry? ‘j'lg(x}| dx} <,
I Pedq)
where the first sup is taken over those balls I such that 2I Q and the second
over those balls J such that 2J < @ and SJnQ° = @,

5. Complex interpolation. In this section, we use the following notations:
§={zeC|0 < Rez< 1}, §= the closure of § in C and £, = the same as in
Section 3.4 (proof of (3.14)).

The following theorem shows the complex method of interpolation as
applied to H®(Q) and IF(Q).

THEOREM 3. Let Q be a proper open subset of R" and let 0 < p < g <r < 0,
0<t<1 and 1/g =(1~1t)/p+t/r.

(i) Let K, and K, be nonnegative numbers. Suppose { fAzeS‘} is a family of
distributions on wkzch satisfies the conditions (A.1}-{A4) below.

(A1) For each yreC2(Q), the funciion zr>{ f,, ¥} is analytic in S.

(A2) For each ¢ >0 and for each e CF(B(0, £)), the function (z, x)+>
Sy (<)) is continuous in §x Q. ‘

(A.3) For each ¢ > O, each feC§ ( (0, €)) and each compact subset E of 2,
the function (z, xp—{ f., ¥x—")) is bounded on §x E.

A4 I filpos < Ko if Rez=0, and [ £l 00 < K, if Rez=1.

Then

| £l go.0 S CparaKa™ Ky

in particular, f,e HY() (when 0 < g < 1) or f,e L}€2) (when 1 < q < oo)
(ii) Conversely, suppose fe 2'(Q) and | [l 00 < oo or, equivalerly, suppose

FeHID) (when 0 < g < 1) or felf(R) (when 1 < g < o). Then there exists

a family {f.|ze 8} c &' () which satisfies the equation f, f and the conditions
(A )-(A4) with

K, = Cp.q.r.d:(”f Hq.m.ﬂ)qm’ K, = Cp,wﬂ’(“fllq,"-‘?)qlr‘



226 ‘ A. Miyachi

Proof. (i) can be proved in the same way as in Calderén—Torchinsky [2;
Theorem 3.1]. (ii) is proved as follows. Take a nonnegative integer m such that
m < [y/p—7], and take s> 0 such that y/(y+s) <p. With these m and s,
decompose [ as in Section 3.3 and obtain (3.17). Set ¢= g(1/p—1/¥),
a, = inf{ f¥a(x)|xel} (e #(Q)) and

fa’:szu(t—-z)h‘A;_{_ Z a‘cr(th)h?‘
k.J

e ()

Then {f,|ze8} satisfies all the required conditions. Details are left to the
reader.

6. Extension operator. We begin with the following lemma.

LemMMmA 8. Let Q be a proper open subset of R® and 0 < g <1. Then
HAQ) c HU+IP(Q ifg<p< ], and IP(Q) c H(Q+ L) f l <p< 0.

Proof. Suppose that g <p<1 and fe H?(Q) or that 1 <p < oo and

feIP(Q). Set m = [y/g—y] and s = m+1 (thus y/(y+5) < g). With these m and’

s, decompose f as in Section 3.3 and obtain (3.17). For Ie¥ (Q), set
a, = inf{ f¥*o(x}|xeI}. Set

o= % M+ Y M, fi=

k=>0,J Far>1

Yo+ Y AL

k20,J Yay€1l
Then f = fy+f, foeHY) and f, e L*(Q). This proves the lemma.

THEOREM 4, Let Q be a proper open subset of R" and A > 1. Suppose that for
every xe£2, there exists an x'eQ° such that dis(x, x') < Adis(x, Q°) and
dis{x’, Q) > A~ dis(x, Q%) Then for each q with O < q < 1 there exists a linear
mapping T, from HY(Q)+L°(Q) to Z'(R") such that (i) T,(f)|2 = f for every
feHYQ)+ LP(Q) and (ii) if g < p € o, then

[T (Nlponn € Cagpol e Sfor all feH{Q)+L2(Q).

In particular, if € satisfies the assumption of this theorem with some 4 > 1

and if 0 < p < 1, then every element of H?(Q) can be extended to an element of
HP(R".

Proof of Theorem 4. Let 0 <g <1 We define a map S from
Ui<ps o F(Q) to Z'(R" as follows. Let fe I2(2) and 1 < p £ . Decompose
f as in Section 3.3 with m =[y/g—y] and s =m-+1 {thus p/(y+s) < g) and
obtain (3.17). For each Ie#'(Q), take xjeQ® satisfying dis(x;, xJ} <
A dis(x,, 2°) and dis(x}, Q) > A" dis(x,, ), set I' = B(x}, 104~ 'r}), and let
@, be the unique element of &, such that

hE—Quxps Py =0 for all Ped,.
We set

(6.1) SNy=F- % Q-

TeW ()
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It is easy to see that 81 < C4F, I' = C,I, 2I'nQ = & and that the overlap of
(I'{Ie# ()} does not exceed C,. Moreover,

(6.2) 102l < Coa B .2 € Cya,pinf f¥o(x).

xal

From these facts, we easily see that

(63} HS(f)“p “<~ Cq.A‘ﬂ,p”f”p,ﬂ

1t is also easy to see that S(f)|Q = ffor all fin the domain of § and that
S|IP(©), | < p < co, is Linear. Using (3.17), we can rewrite (6.1) as

S() =73 (hy" +;(h?)',

ked

ifl<p<oo.

(6.4)

where (h#Y = (h#)" —Qyxp- :
Suppose ¢ < r < 1. Then the above (#%)" and (k) are scalar multiples of
r-atoms, Hence, using (6.4), (3.18)-(3.24) and (6.2), we see that -

(6.5) 1SN 0,00 < Copraol S lren

for all fin the domain of S, in particular, for all f € C2(£2). Hence, since C§ (Q) is
dense in H'(Q) (Lemma 7), the linear operator § |Cg(Q) can be uniquely
extended to a bounded linear operator from H™(€2) to H'(R"). We denote this
extended operator by S,. So 5,(f)|2 = f for alt fe H'(Q).

If g <r r <1, then 8,.(f) = S.(f) for all fin H"(Q)nH"(£2). This can be
seen from the fact that if fe H'(Q) n H" (2) then there exists a sequence in C§(€)
which converges to f both in H(£) and in H7'(Q) (see the proof of Lemma 7).
Similarly, if ¢ <r <1< p < 0, then 5,(f) = S5(f) for all fin H () LP(£).
(This can be proved by the same argument as above if p < oo; the case p = <o
can be reduced to the case p < oo since H'(€2) L*(Q) = LA(L) for all p with
l<p<aocl)

We define the map T, from H'(£2)+ L) to Z'(R" as follows: If f = f, + i
with f, € H4(2) and f, & L° (), then T,( 1y =8,(fo)+S(f,). The above paragraph
shows that T, is a well-defined linear mapping. If ¢ < p < 1 and f e H*(Q), then

f can be written as f = fy+/f; with foe H(Q)HYQ) and f; e L™ Q) H (L)

(see the proof of Lemma 8). From this, we see that the restriction of T, to H ()}
q < p <1, coincides with §,. Similarty, the restrictions of T, and S to L7{€2),
1 < p € w0, coincide. Hence, using (6.3) and (6.5), we sec‘t-hat T, has the
property (ii) of the theorem (notice that we can take 0 degendngg only on » and
{A(D)}). It is also easy to see that T, has the property (i} This completes the

- proof of Theorem 4.

Remark. From Theorems 3 and 4 and their proofs, we can deduce the
following result: If Q and A satisfy the assumption of Theorem 4, then

€14 voen < 9lmo@ < C 14 sMown
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and

Il 4 < ”g”A(.s;m 5 C.'s',A ||9'~“A(s)

for all functions g on © with je L{ (R") and for all s> 0.
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Weighted inequalities for
the Hilbert transform and the adjoint operator
in the continuous case

by
MARISELA DOMINGUEZ (Caracas)

Abstract. We prove two-weight norm inequal.ities in I? for the Hilbert transform in R, of the
Helson, Szegd and Sarason type. _

L Introduction. Arocena, Cotlar and Sadosky (see [3]} proved that the
theory of generalized Toeplitz kernels can be used to obtain the theorems of
Helson, Szegd and Sarason type (see {9, 10, 13]), with refinements.

Nevertheless in the case of two measures they do not obtain the Helson,
Szeg6 and Sarason formula and in the case of R they consider, as Adams does
(see [1]), functions with vanishicg moments. In this paper, we consider two
tempered measures, functions with vanishing Fourier transform in an interval,
and use the theory of generalized Toeplitz kernels to give a -constructive
exponential characterization of Helson, Szegd and Sarason type for the Hilbert
transform; and we do the same for finite measures, but with the adjoint
operator.

The problems considered here arose in a natural way when we studied the
following prediction theory problem proposed by Professor Ibragimov (private
communication): characterize the continuous parameter weakly stationary
completely linearly regular process such that the maximal correlation coef-
ficient g, 15 O(e~*) (see also [11]). In the previous papers (cf. [6-8]) this theory
and an analogue of Theorem 1 were considered to obtain results about the rate
of convergence of the maximal correlation coefficient in the continuous case
including a solution to the problem stated by Professor Ibragimov.

An extension, to matrix-valued measures, of the results presented here is
given in [5].

IL. Basic problems

DEFINITION. A measure y is tempered of order < 2 if u/(x*+1) is a finite
measure.
Set

M({(R) == the positive finite Borel measures in R,
M?*(R) = the positive Borel tempered measures of order <2 in R.



