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Boundedness of classical operators on classical Lerentz spaces

by
E. SAWYER* (Hamilton, Ont.)
Abstract. The classical Lorentz space A ,(v) consists of those measurable functions f on R”

such that ([ /*(x)ye(x) dx)? < co. We characterize when a variety of classical operators, including
Hilbert and Riesz transforms, fractional integrals and maximal functions, are bounded from one

" Lorentz space, A ,{v), to another, A _{w). In addition, we give a simple and explicit description of the

dual of A,(v) and determine when A,(v) is a Banach space.

§ 1. Intreduction. For 1 <p < oo and v{x) a nonnegative function on
(0, co), the classical Lorentz spaces A ,(v) on R", introduced and studied by G.
Lorentz in [7] for the intervals (0, ), 0 <1< oo, are given by
A, (v) = {f measurable on R™ ([ /*{x)"v(x)dx)'” < co},

0

where f*(x) = inf{A: |[{teR": |f ()] > 4}| < x} is the nonincreasing rearrange-
ment of f on (0, oo) with respect to Lebesgue measure on R” (|E| denotes the
Lebesgue measure of a set E). M. Arifio and B. Muckenhoupt observed in [2]
that the Hardy-Littlewood maximal operator M, defined by

Mf(x) == sup{|Q17* [1f(»)dy: Q is a cube in R" containing x},
2

is bounded from A4,(v) to A (w) il and only if

(1.13 (j (x~*frf@ dt)"w(x)dx)”‘f < C(f f (=) v(x)dx)'?

0 0 0

for all nonnegative and nomincreasing functions f on (0, o). Indeed, this

follows immediately from the rearrangement inequality for the maximal

function ([6], [12] and [15])

Cyx~1 [f*(0) dr < C,(Mf)*(x),
0

(L2) {MfP(x) < x>0,
coupled with the fact that every nonincreasing functibn f* on (0, oo) occurs as
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146 E. Sawyer

the rearrangement of some function fon R", e.q () = fF*(A|yI") where A4 is the
volume of §"~1. Moreover, Ariic and Muckenhoupt showed that in the case
{<p=g<o and wx)=1v(x), (1.1) holds for all nonnegative and non-
increasing f if and only if

(1.3) {f x"wi(x)dx)'? < -?(I v(x)dx)'?, for all r> 0.
r Q

In this paper, we characterize when a variety of clagsical operators,
including the Hardy-Littlewood maximal function, fractional integrals and
Hilbert and Riesz transforms, are bounded from A,(v) to A,(w), for arbitrary
weights w, v and indices p, g. We begin by outlining our approach. Without the
restriction to nonincreasing f, inequality (1.1) has been studied extensively and
in the case 1< p < g < o, holds for all nonnegative f if and only if ([1], [31,
[51, [11], [13] and [14])
{1.4) (] x 79w (x) dx)ta (fo(x)" dx}'"" < B,
4 0

for all » > 0,

where 1/p-+1/p’ = 1. In the case | < g < p < ou, (1.1) holds for all nonnegative
fif and only if ({10]; p. 47)

o0

(1.5) {I[(Tt"qw(r)dt)ilq(}ul-‘p’)l!?’]ru(x)l—p’dx}lfr < 00,

where 1/r = L/g—1/p.
A key step in obtaining these characterizations of (1.1} for nonnegative f'is
Holder’s inequality and its converse in the form:

£ (x)glx)dx w
(1.6) sup w_ﬁ__W = (J’ g v(x) dx)”"',

fnonnegalive(j‘f(x)pv{x) dx)l,’p o
0

for all v, g 2 0. A basic result of this paper is the analogue of (1.6) when the
supremum is restricted to nonnegative and nonincreasing functions f —a char-
acterization of (1.1) for nonincreasing f then follows by duality. In the setiing of
[8], the following theorem provides a simple and explicit equivalent norm for
the dual space of A,(v), improving on the necessarily more complicated
expression for the dual norm itself, found by 1. Halperin ([8]; Theorem 3.6.5);

the case p = 1 is Theorem 6 of [7]. As usual, we adhere to the convention that
0-00 = 0/0 = cofoo = 0.

THEOREM 1. Suppose 1 <p< oo and that v(x) and g(x) are nonnegative
measurable functions on [0, oo} with v locally integrable. Then
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o

(1.7 sup 0

[+4]
an novneressing ( | S ()P 0(x) dx)*?
0

I

[ Fg(x)dx (m
i

Ty 8

"

. 1’
gr—(—t—)dt)p v{x) dx) i
[v
o

gy H(j o) P glx)dx)
Q

(

%

(=L

{

O

w X nix 1 (Tg)
<(Fqors )+
o (G

where the symbol = in (1.7} means that the ratio of left and Fight hand sides is
bounded between two positive constants depending only on p (and not on v or g).

Remark. Let I' (v) be defined in the same way as A,(v), but with the
nonincreasing rearrangement f* of f replaced by the average nomincreasing
rearrangement, f**(x) = x~* {§/*(1}dt:

I,(v) = { f measurable on R*: ([ f**(x)}’v(x) dx)'’? < oo}
0
If {¢v = co, so that the second summand on the right side of (1.7) is zero, then
Theorem 1 together with the inequality |jp./fg| < [§/*g* shows that the dual of
A,(v) can be identified with I',(8), where #(x) = (x~* fv) " v(x), under the
pairing (f, @) = fuf (V9N dy, fe A (v), geT (@)

Theorem 1 provides a duality principle which permits,a weighted
inequality for nonnegative and nonincreasing functions to be replaced by an
equivalent inequality for nonnegative - f{unctions. For example, if
Tf(x) = {& K(x, y} f(y)dy, where K(x, y} = 0, then (1.6) and (1.7) show that

-}

(L8) (7 77w dx) e < C(J £ (oroid e
0

0

for all nonnegative and nonincreasing functions f if and only if

' & x U(X) . 1/p (j T*g) o
(1.9) ( [(§ T gy dx) -2 < C(f gl wix)t ~ dx)t
(O (L S

for ajl nonnegative functions g. Here T* denotes the adjoint of 7 given by
T*g(y) = [ K(x, y)g(x)dx. In the case Tf (x) = x"" 5/ () dy.
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(j) T*g(y)dy = | [+ g(e)dedy = [gtydt+x [ 7 glr) de
0y 4] x

=Pg(x)+xP*{t"" g(0))(x),

wl}ere Pf(x) = |5f(t}dt is the Hardy operator, and (1.9) can be characterized
using the kn‘own §haracterizations of weighted inequalities for the Hardy ope-
rator P and its adjoint P* (p. 47 of [10]; [11]). This leads to the following result.

' THEOREM 2. Suppose that w(x) and v(x) are nonnegaiive medsurable
Junctions on (0, o0} If' 1 < p < g < oo, then M is bounded from A (1) to A (w), or
equivalently (1.1) holds for all ronnegative and nonincredsing )’m};ctions /fi if and
only if both of the following conditions hold: - o

r r

([ wixydx)'n < A(] v(x)dx)t2,

0 0

(1.10} Jor all r > 0;

(111 (§ x"fw(x)dx)”‘l(i (x"lfv)'"”'u(x) dx)”"’ < B, foralr>0.
r ¢ o]

Moreover, if C is the best constant in (1.1), then C= A+B. If 1 <
: b ~ Rt g <p <,
then M is bounded from A, (v) to A (w), or equivalently (1.1) holds for all

nonnegative and nonincreasing functions f, if and only if both of the following
conditions hold: “ ' . ‘

(1.12) ( g [ gw(r)dr)lff’(f o) dt) " wixdx) = 4 < co;
4]
(1.13) (£ [(£ t“lw(t)dt)”f’(g (t"lgv)_”u(r) a7 Y (e ;fu)-v’u(x)dx)”"

= B < o0,

where 1/r = 1/g—1/p. i is i
’CmA+/B. /a—1/p. Moreover, if C is the best constant in (1.1), then

Remarks. (i) For 1<p<g<ow, A cA {w) i i
< , if and only if (1.10
hxold:,. Indexed, (1.8) holds for the identity opeI.Jra.tor if g.nd only if (1.9) t};olds( with>
{)On ’II; gf = [§g = Pyg(x). By [11] and Holder's inequality, this latter kolds if and
i : :

o X

(]'(E|;v)"l"v(x)dx)””'(iw)”‘fSA, r50, and (T < (] o)e
r o 0 0 ’

gf}}[iqlll )togethir are equivalent to (1.10) (see the proof of Theorem 2 in & 3 for
ctails). For 1 < g < p < oo, similar reasoning using {[10 47 [
Ap(v)(f? A,(w) if and only if (1.12) holds. € {LI0L p. 47) shows that
ii) Neither (1.10) nor (1.11) alone is sufficient fo
. . L. r (1.1) to h
nonincreasing f. For example, if w(x} = x4~ and v(x) = x"““l( th)en C(>] .1(?)1?10{32

but not (1.11), while if w(x) = x%(x+1)"9"* , _ ‘
holds but not (1.10). D and ol = o) then (L11)
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(i) Conditions (1.3) and (1.10) together are not in general sufficient for
(1.1} to hold for nonincreasing f. Let v(x} = x?~ L If x"%w(x) is respectively
integrable, bounded by x~*, and not identically zero, then respectively {1.3)
holds, (1.10) holds and (1.11) fails.

(iv) In the case 1 < p =g < cc and wix}= v(x) considered in [2], con-
dition (1.10) becomes vacuous while (1.11) follows easily from (1.3) using
Lemma 2.1 of [2]

(v) There are analogues of Theorem 2, as well as the other results in this
paper, for Lorentz spaces on the circle T where rearrangements are taken with
respect to Haar measure. Integrals on (0, o) are replaced by integrals on (0, 1)
in (1.7), (1.8) and (1.9), with corresponding changes elsewhere.

In Theorem 2, we used Theorem 1 to characterize when the maximal
function is bounded from A,(v) to A,(w). Similar results can be cbtained from
Theorem 1 for any operator § on R” for which a pair of rearrangement
inequalities of the following form hold for some positive linear operator T:

(1.14) (8)*(x) < C, T{f ")),

for all £ with T(f*) finite on (0, co), and conversely, for f* nonnegative and
nonincreasing on [0, co) and say, bounded with compact support, there is
a function f on R? with f* <f* and

T(f*)(x) < Co(S7)*(),

Such sharp rearrangement inequalities are known for many classical operators,
including Riesz transforms and fractional integrals (see below —a notable
exception seems to be the Fourier transform for which none of the known
inequalities of the form (1.14) are sharp), where the operator T is sufficiently
simple that (1.9) can be characterized. We illustrate the idea with the Hilbert
transform H, given by the principle value integral

x>0,

x>0,

Hfg=fim | L5y
nz::g)e-c}qu ¥y

which satisfies the rearrangement inequality
(115)  (HfP() < Co[x 0 {0 de+ {770 de] < Co(Hf ().
a X
The first inequality in (1.15) is proved in [4] while the second follows upon

considering Hf *(y) for y < 0. From (1.15), we deduce that H is bounded from
Av) to A, w) il and only if (1.8) holds for all nonincreasing f with

Tf () = .fl?f(z) dt—i—? =L F () dt.
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By Theorem 1, this holds if .and only if (1.9} holds for all nonnegative g with

x x ¥y o
{1.16) ngg(y)dy: [y~ fgtyde+ [t~ tg(pyde]dy, since T* = T,
0 o ¥

= gln(x/r)g(t) dt+fg(z) dt -+ x T ™ g(t) dt
] x

= T,g(x)+ Pg(x)+xP*{t™" g(t))(x),

Wherel ng(x)=:|"5cp(r/x)g(t)dz and @(t) = In.(1/1). Using the weighted in-
equality for T, in [9] together with Theorem 2, we obtain

THEOREM 3,.Suppose 1 < p<q< oo and that w(x) and v(x) are nomegative
measurablle Sunctions on (0, co}. Then the Hilbert transform is bounded from A _(v)
to A, (w) if and only if {§ v(x)dx = co, (1.10) and (1.11) hold, and the ﬁ)l!uwjgng
two conditions hold: .

r

(1.17) (ftnrmywx) d) < A(fu(x) dx)'?,  for all r> 0,
o}

0

(1.18) (f wix) dx)”“(j (lll(x/r))”'(}c v) P n{x} dx)l”" < B, foral r>0.
o

[} r

Not‘e that, unlike the maximal function, the Hilbert transform is not
necessarily bounded on A,(v) if (1.3) holds with p = ¢ and w = v. Indeed, when
r= ?g and w = v, (1.3) can hold with {§v < o, for example v(x) = ¥, 1,(x).

ince the Riesz transforms R;, 1 €j < n, and even more general sin’gular

integrals, satisfy essentially the same rear i i
‘ s _ rangement inequalit
Hilbert transform: : 1 Y us doss the

(1.19) (Rpf 0 < C T*x) < Co(R, fiF(x), x>0,

where T'is as above, (1) = * (A7)0, o i i
ve, w0.o(¥;) and A is the volume of 5”1, it

f(:ollows that the Riesz transforms are bounde:i from A, (v) to A,{(w) if and only 1if

& v = oo and (1.10), {1.11),(1.17), and (1.18) hold. The first inequality in (1.19) is

in Theo 16.12 i ideri
, 2o rem 16.12 of {4] while the second follows upon considering R_,.f for

b Similarly one can characterize when the Riesz potentials 1, 0 <o < n, are
cunded from A,(v) to A,w) using the rearrangement inequality !

(120)  (LYG) < Cy[x™™" [f*(ede+ ] et pr( ar]

<C,(LM*x), x>0,

where f{y} = £*(A|yI". The first inequality i '
; v in {1.20) is Coroll
the second inequality is an casy exercise. ) prefaryin3 of (41 and
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Finally, Theorem 1 together with the result of Arifio and Muckenhoupt in
[2] can be used to determine when A,(v) is a Banach space, ie. when there
exists 2 norm || || on A,(v) and positive constants C, and C, such that

(121 Gllfl = (Df FEEPoix)dn)? < C,ffl,  for all fin A, ().
: .

In Theorem 1 of [7], G. Lorentz showed that the middle expression in (1.21)
satisfies the triangle inequality if and only if v is nonincreasing, but the next
theorem shows that 4 ,(v) is a Banach space for a much wider class of weights v,
namely those satisfying (1.3) with p = g and w(x) = v(x). We remark that I, (v),
defined following Theorem 1, is a Banach space since (f+g)** < [FE+g%*

TrEOREM 4. Suppose 1 < p< co and v(X) is a nonnegative meastrable
function on [0, o). Then the following four conditions are equivalent:

{1.22) A) is a Buanach space,

[se]

(123) A,(6) = T,(z) and (121) holds with |f| = {[£**(xv(x)dx)"",
a

(1.24 (]' v{x) dx)”l’(i(x‘l }1:)1‘1" dx)\" < Cr, for all r> 0,
2 0 o
(1.25) (T xPplx)dx)P < }E(j o(x)dx)'7,  for all r>0.
r 0

Theorem 1 is proved in § 2, Theorems 2 and 3 are proved n§ 3 and
Theorem 4 is proved in § 4. The letter C will be used to denote a positive
constant that may change from line to line but will remain independent of the
appropriate quantities. ‘

§ 2. Proof of Theorem 1. By virtue of the monotone convergence theorem,
we may assume that g is supported in a compact subset of (0, o) with
[0 glx)dx =1, and then by considering v+ 0.5 in place of v for small 4, that
0 < [fu(r)dt < oo for all x> 0. Set

Tgl
p{x) =( ~—di

p'—1
) , D<x<oo.
xJ‘v
a

Then ¢ is bounded and nonincreasing on (0, oo) and an integration by parts
shows that

T ppoea dx = o(x? ol - | P0G~ @03
0 0

o]

v) dx

O Gy

— 7' | 0()g6x) dx.
0 .



152 E. Sawyer

Thus the supremum on the left side of (1.7) is at least

2.1 _17(‘]? p(xPo{x)dx)¥ = %(T(wg?@df)ﬂ v(x) dx)upl
Do Pi\o\x _fv
L]
1/p o 1/p /0 /fm —1 )’
- (1) (] otagtadxpir - (—l_) (I ( Qfm“)dr)p o(3) dx)”’-
P 0 b 0 \x Il?
i
Conversely, for f(x) nonnegative and nonincreasing,
@22 JFgbddx= [ £6Z T oo drax
0 0 fo®
0
= ]"O(T f("?g(x) dx)v(t)dt
0\t IU
0

o o X
<{f (t)( gx( )dx)v(t)dz, since /" nonincreasing,
[ t j'v
[}

= Grarsoaye(i(42ec) woa) "

0Nt
v
£

by Hélder’s inequality. The first equivalence in (1.7) follows from (2.1) and {2.2).

Now let x; satisfy [§g(x)dx =2/, —c0 <j < 0. Then

= o -1 0 xj o0 -

2.3 j(j@m) gix= 3 j(j'gT@dt)p g dx
1] xgv Jj= e xpag xJ‘U .

0

-1 Xjat "

> 3 (L (To(§ o

j=e xj ET

Xi+z Xip 1 Xja2

sc ¥ (T (T (g, since | g = 2.

Jj=—w 0 o X1
z2CJ(far (o) g dx.
0o

On the other hand, if 5 vx)dx = 2/ for all j with 2 < {8 v(x)dx (and
Xy =00 if N is the largest integer with 2¥-! < [§ v(x)dx), then
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oo S t r Xi+1 X+ 1 XK _ ,
(2.4) j’( gTth> o) dx <Y | o@dx(X (| 9] ) S
(4] o=y kEj  xx 4]

Xe+1

<CY 2y 27% | g7

i [ES] Xk

xji1

SCR2ET | g
i X

oy o (et dx
i (4 X xj

< CZT(}Q)’”@ o) T g(x) dx
J o x; 0 [}

=T (fap (o 7 at9a,

where we have used the inequality
2 P=N 2 A= RHpP Ik~ DER') g NP
ST ar =SUL )

i k2 j
< Z 21'( Z Z(j—k)!p’)p' -1 ( E 2k —iMp ag)
J

k3 kZj
< CZZJ‘(Z 2&-1‘]!1:“’!:’)
i k=i
= czgkmaﬁ' Z 28 < CZ?J‘aL",
X jsk k
with g, = 27%{¥*g. The second equivalence in (1.7) foliows from (2.1), (2.3)
and (2.4).
Finally, integration by parts yields

e TGorGorraeias=Slor (i<, [ar (oo

where the second summand above is zero if j{;” v = oo (recall that {§g =1 for
farge x). This proves the third equivalence in (1.7) and completes the proof of
Theorem 1.

§ 3. Classical Lorentz space inequalities. We begin by proving Theor_em 2.
As mentioned in §1, (1.2) shows that M is bounded from A,{r) to A,(w) if and
only if (1.8) holds for nonincreasing f with Tf{x) = x"[5f (O dt; and by

¢ — Swudia Mathematica
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Theorem 1, if and only if (1.9) holds for nonnegative ¢ with
[3T*g = Pg(x)+3cP*(t_lg(t))(J’c). Suppose 1 <p <g < o. From [11], P is
bounded from I3 (w! %) to I¥(([§v) " v(x)) if and only if

[

(T (5 0) 7 0x) dx) 7' ([ wiee) dx)s < A,

0

{3.1) for all r >0,

and (with g{t) replaced by rg(t) P* is bounded from If'(x¥w(x)! ") to
e (x” (fsv)? (x)) if and only if

62 ([
0

O ey K

B)" v (x) dx)l""”(j x4 w(x) dx)'" < B, for all r> 0,

Also,
[T*g = fg<C(f n)r( [ g7 wi e
[¢] 4] o 0

for all nonnegative g if and only if

(3.3) (7w < ([ o).
0

O— 5

Performing the integration in the first factor on the left side of (3.1) vields

(3.4) @~ ()" o(x)dx = (iv(x) dx)l“f”m(of v(x)dx}' ¥,
r 0 0

and it follows that (3.1) and (3.3) together are equivalent to (1.10). Since (3.2) is
(1.11), we conclude that (1.9) is equivalent to {(1.10) and (1.11), as required.
_ Inthecase | < g <p < oo, Pis bounded from I¢ (w! %) to Lf“'(( J51})‘*”'1}(3@)
if and only if ([10]; p. 47)

(IUIW’””(E@ D)ol d) T wi dx)" = 4 < oo,

where 1/74 = l/g—1/p. Ag-air}, from- (3.4), it follows thﬁt {3.5) and (3.3) together
are eqt_uvalent to (1.12) — indeed, the left side of (1.12) is, by (3.4), at most
a multiple of the left side of (3.5) plus - |

(3.5)

o0

Gudmorrwesany= Go-or( L fores)

0

o

R

0

where i/p+1fr=1/g. Since P* is bounded F (xT -
here  1/p+- 1/g. _ rom  IF{(xTw(x)' ") to

I (x (F59)7#'2(x)) if and only if (1.13) holds ([ 107, p. 47), we co(nc}ude that)(1.9)

1s equivalent to (1.12) and (1.13) and this completes the proof of Theorem 2.

=¢f

or— 5
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We now turn to the proof of Theorem 3. As mentioned in § 1, (1.15) shows
that H is bounded from A,(») to A,(w) if and only if (1.8) holds for
nonincreasing f with Tf(x) = x ' [§f (®) dt+ [ t7* f (t}dt; and by Theorem 1, if
and only if (1.9) holds for nomnegative g with |5 T*g = T,9(x)-+Pg(x)
+xP*(i " 'g(0)(x), where o(f) =In,(l/t) and T, g(x}= Jot/x)g(t)dz. Since
o satisfies the inequality ((1.6) of [9]} @(ab) < D(p(@)+ (D) for 0 <a,b <1
(with D = 1), the theorem in [9] shows that T, is bounded from I¥'(w'~%) to
I((f50)"7'v(x)} if and only if both of the following conditions hold:

(3.6) (nf(f u)-ﬂ'utx)dx)lfp‘(] o(x/rPw(x)dx) < A, for all r >0,
r 0 0

(3.1 (uj? gb(r/x)”'(]fv)_"’ u(x)dx)”"'(jw(x)dx)”‘f < B, foral r>0.
r ¢

(¢}
Moreover,
oo = [ T*g'< C(f o)ie(f gt wl e
Q 0 ’ 0

for all nonnegative g if and only if [¥v = vo. Now the proof of Theorem
2 shows that if [§ v = oo, then the map sending g(x) to Py(x)+xP*(t" g(t))(x)

is bounded from I# (w!~%) to E’(( ’Su)””'u(x)) if and only if (1.10) and (1.11)

hold. Also, if we perform the integration in the first factor of (3.6) using

[#v = o0, we obtain (1.17). Since (3.7) is (1.18), we conclude from all of the

above that {1.9) is equivalent to ]3“ v = 50, {1.10), (1.11), (1.17) and (1.18). This

completes the proof of Theorem 3.

§ 4. Proof of Theorem 4. We prove (1.22)=(1.24)=(1.25)={1.23)=>(1.22).
Suppose first that (1.22) holds, ie. there is a norm | || on A,(y) and positive
constants C, and C, such that (1.21) holds. Let f{x) be nonincreasing on
[0, o) and such that ([§fP0)? < oo, Let g(x) = yon(x) and set f()
=f(Alyl") and §(y) = g(A{y") so that /* =/ and §* = g. Then

Jeddy) = CIf0dx, for ] < (A™1AH,
[4]

ie. for y in a set of measure r. We thus obtain

»

N7 < (] (Frarou < Co1 Txgl, by (12D),

8] [4]
< C, [ g1l dt, where fi(x) = f(x—1), since || || is a norm,
'

< CTIC,r(f fro)th,
0

by (1.21) again and since {f;)* =f* =f and [g.§(z)dt = r. Thus
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. §fx)g(x)dx
@1 (JopPm————=<Cr, for all fz0 and nonincreasing.
0 ([ f (xyolx)dx)'?
o

Taking the supremum over f nonnegative and nonincreasing in (4.1) yields
(1.24) by Theorem 1 since

[= S . X o 1,;,1 ¥ - X s i
(TGar ({7 glapdx) ™ ={f{x™" Jo) 7" dc)”
[ ¢ 4] 0 0
Now suppose (1.24) holds. We use the argument of M. Arific and B.
Mouckenhoupt in the proof of Lemma 2.1 of [2]. Let 4, = {27 [3“#)t % for
k in Z. Then

i m—1 om
@2 Y A T A= A=
k= o k=—0oo o
A S
>CT [ ([0, by (1.24) with 7 =27,
¢ 0 -
id 2% x nt
=c ol Es ot o4,
k= 2F1 o X = m
Thus Y72, A < BYJ- - A, where f=1-C™" Tterating this inequality

and using (4.2) again yields

m

2 Ak = Cﬁm—jAm’

k= oo

J
43 A< 3 A4, <p

k==—a0

for —o<j€sm<oo,

where C and f are positive constants with 8 < 1. We now have
o 00 m o0
x Pp(x)dx £ C 27me < L
[x7"o9 Y 2 [ e<C § AL

m=j+ 1 2m-1 me g
(24} .
1) -
< C Z ﬁ(P )m J)A;' p, by (43)5
m=j+1
< CA}?,

24

= C27P fp,
0

since 0 < P! < 1,

and 0this is (1.25) for r = 2/, j in Z. Inequality (1.25) now follows easily for all
r>0.

Now suppose (}.25) holds. The result of Arifio and Mﬁckenhoupt in [2]
shows that‘ (1.1), with p =g and w(x) = v(x), holds for f nonnegative and
nonincreasing, Thus (1.21) holds with | f|| = ([@ /**(x)"v(x)dx)'” where
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F¥*(x) = x"! [§/*(1)dt (note that f* < f** since * is nonincreasing) and this
proves (1.23).

Finally, (1.23) implies (1.22) since the inequality (f+g)** g fHF 4 gt
implies that || [ defines a norm on I",(v). This completes the proof of Theorem 4.

Added in proof (January 1990). In his paper The Hilbert transform on
rearrangement-invariant spaces (Canad. J. Math. 19 {1967), 599-616), David
Boyd included a nice characterization of when the Hilbert transform is
bounded on A,(v), 1 <p <o, in the case v is nonincreasing. His techniques
work just as well for general v and show that in the case w=v and p =g of
Theorem 3, conditions (1.10), {1.11), (1.17) and (1.18) can be replaced by the
simpler conditions

,
fv
sup 2- < Cs 7%,
r>=0 J‘
v
0

(4.4) for all 0 <s=<1 and some 0 <y <1,

ey

v

(4.5) supe—< Cs77%, forall 1<s< oo and some 0 <y <L
r>0

= lo
]

Moreover, the same techniques show that the maximal operator is bounded on
A, (v)if and only if (4.4) holds, yielding andther proof of the result of Arifio and
Muckenhoupt in [2]. However, in the case A, (0) # Aw), these techniques
break down. For example, if w(x)=x"! and v{x)=x*"'{—logx)® for
0 < x < % and vanish otherwise, then the maximal operator is bounded from
Ay (v) to A, (w) by Theorem 2, yet the integral

(e
his; A,v), A,(w))ds = [sup

oo (f e
[¢]

in Theorem 3.1 of Boyd’s paper fails to be finite.

ds

O oy
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A density theorem for F-spaces

by
W. ZELAZK O (Warszawa)

Abstract. The main result of this paper expressed in tetms of representation theory states that
any algebraically irreducible representation T of an algebra A4 in the algebra of 4ll continuous
endomorphisms of an F-space is Lotally irreducible provided the oaly intertwining operators for
Tare the scalar multiples of the identity operator. We apply this rosult for characterizing strongly
generating sets for the algebra of all continuous endomorphisms of a By-space.

§ 1. Definitions and potation. An F-space, or a space of type F, is
a completely metrizable topological linear space. The topology of an F-space
X can be given by means of an F-norm, ie. a functional |-| satisfying the
following conditions (sec [1] or [S]) '

@ |x| =0 and [|x|| =0 if and only if x=0,

i) fx-+yil < lxl+ 18

(iii) lim|x,] = O implies lim |4x,[| = 0 for all 4,

(iv) lim|4,| = 0 implies lim|4,x| =0 for all x.

Here x, x,, y denote arbitrary elements of X and A, A, arbitrary (real or
complex) scalars. The distance in X is given by fix—y| and the space X is
complete in this metric. For F-spaces the closed graph theorem holds true; If
T is a linear map of one F-space into another and its graph is closed in the
product of these spaces, then T'is continucus (see [17). A locally convex space
of type F is called a By-space, For an F-space X denote by L(X) the algebra of
all its continvous endomorphisms. While for By-spaces this algebra always has
a rich structure, for some F-spaces it can be very poor. There are (infinite-
dimensional) so-called rigid spaces of type F in which the only continuous
endomorphisms are the scalar multiples of the identity operator (sec [4], [8], or
[5], p. 210). In particular, a rigid space cannot have a nontrivial continuous
jinear functional, while for By-spaces there always exists a separating family of
such functionals.

The present paper is a by-product of our efforts at characterizing strongly
generating sets for L{X). Tt turned out (many thanks to Pavla Vrbova for
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