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Reiteration and a Wolff theorem for interpolation
methods defined by means of polygons

by

FERNANDO COBOS (Madrid) and
PEDRO FERNANDEZ-MARTINEZ (Murcia)

Abstract. We prove a reiteration theorem for interpolation methods defined by
means of polygons, and a Wolff theorem for the case when the polygon has 3 or 4 vertices.
In particular, we establish a Wolff theorem for Fernandez' spaces, which settles a problem
left over in [5].

0. Introduction. Interpolation methods defined by means of polygons
were introduced by Peetre and one of the present authors in [6]. These
methods are close to the classical real interpolation method bui work on
N-tuples instead of couples and require two parameters instead of only one.
The N spaces should be thought of as sitting on the vertices of a convex
polygon IT in the plane R>. :

Previously Sparr [12], Fernandez (8] and some other authors (see the
monograph [3], 4.7.1, for precise references) have studied generalizations of
the classical real method to N-tuples of Banach spaces. In fact, the first
example of interpolation of more than two spaces was given by Foiag and
Lions [10] already in 1961. It turned out that several important results
of the classical theory fail for N-tuples. Nevertheless, these generalizations
have found interesting applications in Functional Analysis.

The methods defined by means of polygons include (the first nontrivial
case of) spaces introduced by Sparr [12] and by Fernandez [8]. The former
correspond to the case when IT is equal to the simplex, while the latter ap-
pear for IT equal to the unit square. Using this new geometrical approach,
Cobos and Peetre described, among other results, the relationship between
Sparr and Fernandez spaces and obtained new estimates for the norms of in-
terpolated operators in the case of Fernandez spaces. This investigation was
continued by Cobos, Kiihn and Schonbek in [4] where, among other things,
they studied the behaviour of operators acting from a J-space into a K-space.
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In the present paper we give a reiteration theorem for the methods de-
fined by means of polygons, and a Wolfl theorem for the case when the
polygon has 3 or 4 vertices.

As is well known, Wolff’s theorem [13] can be considered as a kind of
converse of the reiteration theorem and has many interesting applications
in Interpolation Theory. Wolff’s theorem has been extended to Sparr spaces
by Clobos and Peetre in [5], where they left as an open problem the question
of extending Wolff’s theorem to Fernandez’ case. We shall see later that our
Wolff theorem settles this question.

The reiteration theorem is given in Section 2, while Section 3 contains the
Wolff theorem. Our approach highlights the geometrical aspects of these two
classical results. When specializing our theorems to the case of the simplex
we recover a stability result of Sparr [12] and the extended version of Wolff
theorem established by Cobos and Peetre [5] (we always refer to the case of
three spaces). Writing down our theorems for the case of the unit square
we get new information on Fernandez spaces: a reiteration theorem which
improves the one known before {see [8] and [9]}, and a Wollf theorem.

1. Preliminaries. Let A= {41,..., Ay} be a Banach N-tuple, that is
to say, N Banach spaces A; which are continuously embedded in a common
HausdorfT topological vector space.

A Banach space A is said to be an intermediate space with respect to A if
A(A) = AN, .NAy — A= Ay +.. .+ Ay = Z(4) (continuous inclusions).
Given any other N-tuple B = {By,...,Bx}, we write T € L(A, B) to mean
that T is. a linear operator from %(A4) into X(B) whose restriction to each
A; gives a bounded operator from A; to B; (j = 1,...,N). We put

TN 4,5 = max{||Tla,,Bes o 1Tl An,Bx }-

In what follows, IT = Py ... Py stands for a convex polygon in the affine
plane R?, with vertices P; = (z;,y;). We imagine each space A; from our
N-tuple A as sitting on the vertex Py (j =1,...,N),

Given any two positive numbers £, s, we define the K- and the J-function-
als (with respect to the polygon IT) by

N - N
K(t,s;a) =inf{2tmfs”j\|aj||Aj ra = er,j, a; € Aj},
i=1

J=1

Tt 5i0) = max {15 Jal o}

Observe that {K(t,s;-) : ,8 > 0} [resp. {J(t,s; -} : £, > 0}] is a family
of norms on X(A) [resp. A(4)], any two of them being equivalent.
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Let now {6, s£) be an interior point of IT [(8,p) €Intl],andlet 1 < ¢ =
oo. The space A(g,.),q;x consists of all ¢ € 5}(A) for which the norm

1/q
lalouax ={ 3 (@K@, 2%0)))
(m,n)e2?
is finite.
The space X(g’ u),;7 18 defined as the set of all a € X (A) which can be
represented as

o = E Umn
(m.n)eZ?

(convergence in £(A)) with (umn) C A(A) and

1/q
S @RI, 2 )] < 00
{m,n)€Z? )

The norm on A(g ) ¢ 18

. —m— m 1/q
liall(g,),g57 = 1nf {( Z (27T (2 =2n§um,n))q) }
(rn,n)EZ2
where the infimum is taken over all representations (1) of @ as above.

Tt will also be convenient to give a meaning to A ) g5 and A ) g7 in
the case when (6, ) is a vertex P; of IT. We then define for all 1 < g € oo

Ap; i = Ap; g1 = Aj.
Next we show some examples,

Examprs 1.1. Let H be the collection of all 3-tuples § = (61,82, 63) of
numbers in the interval (0,1) such that Ef.':l f; = 1. If we take II equal
to the simplex {(0,0),(1,0),(0,1}}, then, for any d € M, Ag, 69),q:x and
A9, ,64),:7 coincide with 3parr’s spaces Afel,az PR and Afehaz’ga)’qﬂ, Te-
spectively (see [12]).

ExAMPLE 1.2, Write D for the set of all (6,4) € R® such that 0 <
g, < 1. If IT is the unit square {(0,0), (1,0),(0,1),(1,1)} and (8,p) €D
then we recover Fernandez’ spaces X{é,“)’ g 204 Agy oy (see [8] and [9]).
Observe that the role of the polygon justifies the restriction on parameters
in Fernandez’ case.

In the case of the classical real method, the K- and the J-spaces coincide,
with equivalent norms (see [2]). But in our multidimensional context, they
do not agree in general. Counterexamples can be found in [12], {7] and [6].
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‘We only have now the continuous inclusion

Z(Esﬂ'))(ﬁ‘] — E(G:F’):Q;K
(see [6], Thm. 1.3.).
Take now a sequence of Banach spaces (J”—'m,n)(m?n)ezz. Forj=1,...,N,
put
Fg;q’n = (-’Fm,n: 2*77@3‘“'”14:;‘ “ ”Fm,n)

and let £,(73, ) be the vector-valued {-space, that is to say,
Eq(fg-»,n) = {(@mmn) : Bmn € Fm,n  and ”(mmm«)”eq(fgm) < 00}

where

1/q

lemmlllayms, .y = (2@ o allz,.,.))
™y

When all Fp,, are equal to the scalar field K, the resulting £,-space
is denoted by £,(27™®i ™). Note that £,(27™%~"5) is just the scalar
sequence space £, with weight 27™% "% on the (m,n)th coordinate.

The following interpolation formulae were established in [6], Thm. 3.1,
and will: be useful in our later considerations.

LemMa 1.3, Let (6, p) € It IT and let 1 < qu,...,qn, ¢ < 00. Then we
have with equivalence of norms ‘

(Eq;' (Tgﬂ.,n))(ﬂ,m,q;K = (qu (F:r?;n,n))(9=#),q;J = eq(g"memnufm,ﬂ) ’

Next we consider a class of affine transformations associated with the
polygon II. A mapping R defined by

R(Z) = Q+U(:), (u,v) € B2,

where Q € R? and U is an isomorphism of R?, is said to be of type (IT} if for
each j = 1,..., N either RP; € Int IT or RP; = Py for some k=1,...,N.

Notice that if R is of type (I7) then R transforms IT into another con-
vex polygon R(II} = RP,... EPy contained in II. Moreover, R{IntII) =
Int R(IT).

The following lemma shows the relationship between this kind of map-
pings and interpolation methods. When the K- or the J-spaces are defined
by means of a polygon other than IT, we write the polygon as a superscript.

LEMMA 1.4. Let W e Intll, 1 < g < oo and let R be o mappi :

<gq< . pping of type
(H), Thgn the K- and the J-spaces defined by means of II and W coincide
(wzth equivalence of norms) with those defined by means of R(IT) and RW,
1. £.

= —R(IT) - -
Awgk = Apwax ond Awg = Aggg«)m'

The proof is an easy change of variables (see [4], Remark 4.1).
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2. Reiteration. The reiteration theorem for the classical real method
says that '

(*) (Zﬂo.qna Zﬂuql)n,q = ZE’,Q
where 0 < fp £ 6; <1,0<n <1, 8= (1—n)fo+nband 1 <qo,q1,9 S 0
(see [2]).
Equality (*) can be reformulated as
(¥%) (XRO,qo’ le,qx)n,q = ZRvm'

where we denote by R the mapping in R given by Rt = 8o + (61 — bo)t.
Clearly R is an affine mapping in R of type ([0, 1]).

Next we show that formula () extends to the K- and the J-methods
defined by means of polygons.

TugoReM 2.1. Let T = P.... Py be o convex polygon with vertices
P; = (zj,y;), let (0, p) € Int IT and let R be a mapping of type (IT). Put

RP = a8y G=1oN), B()) = (5):

Let A = {A1,...,An} be an N-tuple and assume that X ={Xy,....,Xn}
Y = {%,....Yn} are N-tuples formed by intermediate spaces with respect
to A. If

(l) Xj L""E(czj,,@_,-),ocuK7 Jj= L..,N
(2) [resp. f_l(aj.,ﬁj)‘lij —Y;, j=1,...,N]
then

X (g .0:K < Ao gy g [resp. Ko pyai7 =Y (8,037
where 1 < g £ co.
Proof. For (m,n} € Z? let

| Fron = (S(A), K™, 2% )

and for j =1,..., N write .
Fiyp = (D(A), 27 MK (27,27 )

By (1), the operator

v:X; — Em(}",j;,,n) ,
is bounded for j = 1,...,N. Interpolating by the K-method, we see that

a—va={(.,00a...),

v XW(G,#),Q;K - (ew(an,n))(ﬂ,#),q;K
is also bounded. Let us identify the last space. Lemma 1.4 shows that

(eoo(j:rln,n)r fer ’£°° (‘Fg’n)) (). K
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coincides with the K-space defined by means of the polygon R{IT} and the
point (@, ) = R(8, u),
R(IT
(oo (FE ), s Loo FHLNED ke

and this space, according to Lemma 1.3, is equal to 2,1(2“7"““”'6,7?,“’7!),
Hence there is a constant M > 0 such that for all @ € X (g ) 0.5

—m— J 1/q
( Z (2 ™ nﬁK(zm, 2ﬂ;a))‘i‘) = ﬂ’f”a”}?(ﬁmm;ff '
(m,nycZ2

This establishes the inclugion ,—X'ﬁ(@' whaik < .Zf(a'ﬁ),q; K-
To check the case of the Jmethod, we shall work with the Banach spaces

Gmn = (A(A),J(2™,2% ), Gl .= (A(A), 27"~ (2™, 27 ),
Combining (2) with the definition of the J-method shows that the operator

E Um,m

(mm)EZ2

T El(G

m, n) - YJ H (u'm,ﬂ) - W(u’m,‘ﬂ') =

is bounded for j = 1,..., N. By interpolation,

T (fl(G";’;q,n))(ﬁyu).q;J - ?(M),q;i
is bounded as well. The first space can be identified using again Lemmata
1.4 and 1.3. We have
(£1 (ng,n))(ﬁau)r’}i-f = (El( m n)) {o,3) ,q,,]’ = Eq (2_ma_nﬁam,n)-

'fEhus T o qu—ma—nﬂGm‘n) — Y(s,,u),q,-,] is bounded, and the inclusion
Al gy,ar Y (g,0),q,7 ollows. m

As we pointed out in the preliminaries, we always have A(a o
A(a’m,q .x but in general A (,8),q: K T A(a,g),q'

A sufficient condition for equality between K- and J-spaces can be for-
mulated in terms of the N-tuple 4 and the polygon II:

CoNDITION E(A,IT). There is a constant
on IT) such that for every a € Z(4) for which

®) > mip AT TIHEK(™, 2a) < oo
(mn)ez2 -

~ (depending only on 4 and

there exists a representation
a= U,
(mn)ez?
(convergence in £(A)) with (2 ) C A(A) and

J(zmr2n§ um,n) <yK(2™, 2, a) ; (ma Tb) € z?.
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(Compaze with the fundamental lemma of interpolation theory (2], Lemma.
3.3.2. Notice also that if II is the simplex, then £(4,II) is the condition
F(A) of Sparr [12].)

Let (@, 8) € IntIT and 1 < ¢ < co. One can check that (3) holds for
gvery a € A(a,g) g% Hence, if E(A, IT) is satisfied, we have

Aouyas = Ak (equivalent norms).

‘When the K- and J-spaces coincide, we write simply ﬁ(ﬂ,ﬁ)'q to denote
either of them.
The following reiteration result is a direct consequence of Theorem 2.1.

THEOREM 2.2. Let IT = P;... Py be a convez polygon with vertices
= (2;,1;), let (8, 1) € Int IT and let R be a mapping of type (IT). Put

RP, = (a5,8;) (i=1...,N), R(i):(g>

Let1<q,....qn,q9 < 0o, and let A be an N-tuple such that

z(“:ﬁ)ﬁ.’i):?.‘i;‘l = Z(Qj!ﬁj)zqﬁK ! j = 1’ e N ?

and
Afap)ais = Aen) g
(in particular, these inequalities hold if £ (A, IT) is satisfied). Then

(Al 8,000 Alaw p)an Yomra = Al
(with equivalence of norms).
The figure below illustrates the theorem, Here we have written X; =

Z(Oﬂj Bi)iie

Aji1

P=Xwuma = Aebra

Fig. 2.1

As an application of Theorem 2.2, we next derive a stability result due
to Sparr [12]; H is as defined in Example 1.1.
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COROLLARY 2.3. Let 1 < q1, g2, g5, ¢ < 00, let A= (A, Ao, A3) € H and
let 8; = (6;1,052,0;3) € H forj = 1,2,3. Assume that R® is spanned by
{8; Yi_1 and write f = }333_ 6;. If A is o 3-tuple such thai A =

s — —g quJ!K
AEj,qJ-;J’ j=1,2,3, and A@,Q;K = Ag’ J then
A5 A8 A8 V8 = A2
91,(]1’ BQ:QZ,AHE:QS)AJ Aaiq !

Proof. Recall that ﬁgq = Ap, py),¢ (Example 1.1) where II is the
simplex {(03 0), (11 0)1 (Oa 1)}

Let
7 912) (922 — 012 f32— 912) (u)
R = + .
(v) (913 a3 — O3 33 — O1a) \v
Since R? is spanned by {8;}3_; and {9;}_; C M, it follows that
B O Oy

=|01g O O32|#0.
f1a O23 Oa

2(o)= (o) ®(o)=(on) R(‘:) = (52
y

22 (ZE9)
=({1—Ap— A
( 2~ Xa) ( s (923) s (933)
=) (o) ~2algn) = ()
Bz 03

Consequently, Theorem 2.2 implies that

45 A5 A S
(Aﬂl 31 ? AGz,Qz’ Aﬁa,qa))\ ,a (A(812»9L3)1Q'l ? azzﬂza)»qz’ A(Gszsﬂaa)nfm)()\z.)\u)aq

P20 — 012 B33 — b2

fag — Bz a3 — thia

Moreover,

and

= A(92:63J1q = Aﬁ,q' »
Our next result refers to Fernandez spaces; D is as in Example 1.2,

COROLLARY 2.4. Let 1 < gu,...,94,9 < o0, let 6; = (8;1,0;2) € D
(1 <J < 3) such that R? is spanned | by {6; - 8,,8; — 91} and assume that
84 =10,+8; — 0, belongs to D. Let A = (M, A2) € D and put

0 =01+ M (P2 — B1) + Ao (B3 -_51)~

If A is a 4-tuple such that AF = AF
_F @ AF AF _Fﬂd,qa,KF ;jm; o
8.q;J e ( b2, QZ A93;q3 A'é' ) = A_ .

4, a,nd.’AF oK =
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Proof. As pointed out in Example 1.2, qu = Ag  for II egual to the
square {(0,0),(1,0),(0,1),(1,1)}. Put

R(“) _ (911) + (921 — i1 b3 — 911) (u)
v f12 8oz — 012 B33 — 012/ \W
One can easily check that R is a mapping of type IT and that RP; = —G_j for
j=1,...,4. In addition,
RX 251 + )\1(?2 -*-9-1) + /\2(53 —-—0-1) =7.
Hence, applying Theorem 2.2 we obtain the result. w

Corollary 2.4 improves the reiteration theorem known before for Fernan-
dez spaces (see [8], Thm. 4.5, and [9], Prop. 3.3).

3. Wolff theorem. Let us start by analyzing the Wolf theorem for the
classical real method (see [13], [11], and [3], 4.5/C).

Assume that Ag, A;, Xg, X1 are four Banach spaces continuously em-
bedded in a common Hausdorff topological vector space. Let 1 < p, g < oo,
D<B<np<land0< ) u<1withé=Xand n=(1— )+ u Wolff
proved that if

Xo = {40, X1)xp and Xy = (Xo, A1)y
then
Xo == (Ag,Al)g’p and Xl = (Ao,Al)mq .
The figure helow illustrates the result:
0 2 7 1
Ao Xo X3 Ay

Fig. 3.0

Wolff’s theorem can also be formulated in terms of mappings of type
([0,1]). Indeed, let us associate with Xq = (Ao, X1)»p the mapping Rt = nt
which satisfies

RO=0, Rlzn, RA=40,
while with X; = (Xo, A1), We associate the transformation St = 6+(1—6)t
satisfying '
S0=6, Sl=1,
Then the conclusion of the theorem reads _
Xo = (AO,AI)RA,;D and X]_ = (Ao,A]_)s“,q .

Next we extend this result to the methods. defined by means of polygons.
In what follows, we take N equal to 3 or 4, and Iy, Iy stand for two sets
of positive integers such that 1 ULz = {1,...,N}Yand 1NI; = (b Moreover,

Sp=mn.
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if Z is an N-tuple and X,..., X~ are intermediate spaces with respect to
A, we write A-s-X for the N-tuple {Z;} where
7. = A; ifjel,,
4 X; otherwise.
The assumption we shall require on mappings Ry, Ry will explain the re-
striction N = 3,4.

THEOREM 3.1. Let Il = Py ... Py be a convez polygon with Py = (a;,y;).
Assume that {Q; 1, and {W;}IL, are two sets of N interior points of II,
such that there are two mappings Ry and Ry of type (IT) satisfying

_ Pj fO’I‘j & L,,
RoFj = {Qj otherwise,

Q; = BW;

Let A = {A4,...,An) be_an N-tuple, let Xy,..., Xy be N intermedi-
ate spaces with respect to A and assume that £(A,IT), E(A-1-X,IT) and
E(A-2-X, IT) are satisfied. Iffor 1 < qu,...,qn < 00,

(i) A-s-Xpy,q, =X; forjel, (s=1,2)
then Ag, ¢, = X; forj=1,...,N.

forjel, (s=1,2).

Proof. Suppose j € I,. In order to prove that Ag, 4, = X; we take the

equality A-s-Xyw, o, = X; and apply the reiteration theorem. Indeed, if we
show that for j==1,..., N we have

(4) g1 = X;
and
(5) Xj e EQJ’DQ,

then according to Theorem 2.1 and the fact that £(A-s-X, IT) is satisfied,
we get

Xy = A-5-Xuw 0y = AR, wy.q; = AQy.q; -

To establish (4) and (5), we shall use the techniques developed in [11]

and [5]. In particular, we shall need the Aronszajn-Gagliardo description
[1] of the K- and the J-methods.

Let f; = gzl(z-ms’—“w)};.\;l, let {a, ) € Int IT and 1 € ¢ < vo. Given

any N«tupmlfe B, the space B(, g) ¢ can be characterized as the collection of
all b € ¥(B) such that

-]
b= ZTkmk
k=1
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where Ty € L(Ty, B), x € £,(27™"#) and

Z "Tk“E, B n.’;.,"k,”gq(zwmnc—nﬁ) < 00,
Jo==1

Moreover,
folle = inf { 31Tkl gllonllama-nsy b= 3 Tt ) = blla,d).0
Jomml ke=el

That is t0 say, B(a,p),qs coincides with the space obtained by applying to
B the N-dimensional version of the Aronszajn—Gagliardo minimal functor
defined by the N-tuple £; and the intermediate space £,(2— o),

Gll1; 6,27 ") (B) = Bapye

(see [6}, Thm. 3.3). .
Let us introduce the inner product (-, } in R? and write —mz; — ny;
as ~(Pj, (m, n)). We also put :
Ty = {27 PRI} (s =1,2).
Since Ba,g,1,0 < B(a8),q0» it follows from assumption (i) that
() Glleila (2@ (AsX) = X; forjel (s=1,2).

Next we show that (') implies condition (4), which can be equivalently
written as
#) Gly; ta (27PN (A) — X;

If § € I, we see by Lemmata 1.3 and 1.4 that £1(2‘(QJ”(’“’“))) is obtained
from €, , by applying the J-method with parameters W;, 1. On the other
hand, since &£ !Z-B—X, IT) is satisfied, the K-method with parameters Wj, 1
acting on A-s-X yields

A-5-Xw, ux = A-s-Xwy 1 = A-8-Xwy gy = X;.

ﬂence, according to [4], Thm. 4.3, we deduce that there are two constants
v > 0 and 0 < 77 < 1 {depending only on IT and W;) such that for any
operator T' € Ll 5, A-8-X) we have

y 1 e
(6) “T“ﬂl(z“(a_‘;.(mm)))zx" S :-ij’l'jM Ty
where m = min{§; : j=1,...., N}, M = max{6;:j=1,....,N} and

5 = “THEI(Z'“(Pj‘(mm)))'Aj for j E'Iﬂa
7 ”Tngl(g“(cp(wnn),xj OtherWlse.

forj=1,...,N.
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For j =1,..., N consider the function ®;(&,...,¢n) of N nonnegative
real arguments defined by

mj(fh---,fN) = ’Yj( min {gk})ﬁ'( max {gk})l—fj‘

1SkEN I<kEN

In the terminology of [5], the inequality (6) says that for j &€ I, the
spaces £1(27(@(mn))) and X; are R;-interpolation spaces with respect to
the N-tuples #; , and A-s-X (s = 1,2). The functions ®; satisfy conditions
(a) to (d) of [5]. Moreover, given any positive real number £, if we put

T e ot ij el
ta=(§) where ;= {1 otherwige,
we have
(e") %i_x%ﬂ?j(fs) =0 forjel, (s=1,2),

(compare with condition (e) in [5]). Hence the argument in [5], Lemma 1.3,

is still valid and therefore there exists a constant C' < 0o such that for every
Te E(chl): A(A))7

(7) 1%%)(1\}_{||TH£1{2—(Q_-,-,(m.n)))‘Xj} S CHT“'EI’A .

Now we are ready to establish (4'). We first show that if 7 € £({;, 4)
and z € £ (279 (™m0 then T € X;.

For k a positive integer, let V = V; be the operator agsociating with
each scalar sequence £ = (£m,,) the sequence V¢ = (A, ) where

pp = { Emn i max{ml, |n]} < k,
’ 0 otherwise.

Given z € £,(27(@5:(™2)), choose V such that
= — lelgl(z—mj.cm,n») < %Hwilzl(z—mj,(m.nn) .

tChle:Ily V € L(X(£1),A(t)) and IVllz, 7, = 1. Hence it follows from (7)
a

TVl @i x, S CITNg, 4
Put 2y =V and 2{ =2 — Ve then o = o + z} with
Ilw’lilgl(g—m,,(m.n») < §T|w||e1(g-<‘2jv(w“)>):, and
1Tz1]|x; < CliTl,, allel gy @-t@simmn s

Next we repeat the same procedure with =/ instead of . Proceeding in-

ductively we find a sequence (z;) C A(? h R ) .
31(2-‘(Qj-,(m,n)))) and | ( Iv) ( 1) SI}C that = Ekwl T (1];1

1
T2ellx; < 355 CIT N, zllol, o-t@pmmns
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Thus Tz € X; and

o0
O Tslx < S ITwelx, < 200T ), 2, -y -
k=1
Take now any @ € Gy £(2~(@:(mm))|(A). Given & > 0 arbitrarily,
find a representation

a = }:Tkmk with Ty € L(81,A), = € 121(2—(Qj=(mm)))
k==

and

=)
Z ”Tk;”zl‘ﬂ“mkllel(z-‘(ﬂj‘(*ﬂmﬁ) < “a‘“G +e.
Jo=ml .

By (9) we have a € X; with

llallx, < I1Tsen]x;
Jpemll

o0
< ZGZ HTk“21,,E[”mk“gl(z"(‘?a'»("mn) <20(|lalle +¢) -
ISE
Passing to the limit as £ — 0, we obtain (4).
It remains to prove (5). Let us start by recalling that given any N-tuple
B, the space B(q,g),qx can be described as the set of all elements be X(B)

such that Th € £,(2~™>"4) for all operators T' € L(B, %), where foo =
{£oo (27 (Px(mindhy} - Moreover,

8]z = sup{||Tbllg,@-ma—ney : ITll 57, <1}

coincides with ||bl|¢a,p,quc: I other words, the K-method defined by the

polygon IT and the parameters (o, 8) € Int T, g € [l,.oo] agrees with the
N-dimengional version of the Aronszaj n~Gagliardo maximal fuucu:‘t_c_)ql:b 6deﬁned
by means of the N-tuple fo, and the intermediate space Eq(2m el

ff[fm; fq(zmwmmwnﬂ)](ﬁ) = F(cr,/':i),q;l{ (See [6]3 Thr. 3'3)'

Put
= {foo(2™ P} (s=1,2).

Assumption (i) implies that
() Xy = Hlloo i oo™ @ N (ASX)  forj & Lo (o =1,2).
Our task is to show that (5) follows from (1"). Observe that () written in

[
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terms of maximal functors reads
(5" X o Hlloo; oo (27 (@5 (m 0] (A),

Reasoning as we did before for deriving (6), one can check that if j € I,
then X; and £, (27 (@i (™)) are Ry-interpolation spaces with respect to
the N-tuples A-5-X and £, ;. From this it follows that there is a constant

C < oo such that for any T € L(E(A), A(€x)) we have
(7') 22 AT lx, g 2m @ omen } £ ClIT 4,

Next we establish (5'). Take any b € X; and any T € £(4,1x). We
must show that Tb & £y, (27 (@2 (mm))y, Whlch is equivalent to checking that

SUP{||Vka||gm(2—<Q,-.cm.n)>)} < 00,
kel
where V}, is the operator defined in (8).

Observe that Vi € £(Z({w), A(fw)) and that Vellz, z,. = 1. So it
follows from (7') that

up{VATbl -tasmmry} < YT 7, bl -

Consequently, T'h € £, (2™ {Q5(mn0Y and
bl = sup{[|Tb|l,_ -tasimmny : I Tl 55, S 1} < Cllbllx, -
The proof is complete. n

Writing down Theorem 3.1 for Sparr spaces we recover (the case of three
spaces of) [6], Cor. 3.5. We denote by € the vector in R® with all coordi-
nates zero but the kth which is one.

COROLLARY 3.2. Let Aj = (X;;) and §; = (0;) belong to M for j =
1,2,3, and assume that there is some positive integer k (1 < k < 3) such
that

3
(10} Br=Xjr+ Y Xl (1<j<k, 1<r<h),

s=k+1
3
(1) e = 3 Xjabar (1<j<k k+1<rg3),
s=k+1
k
(12)  Bir =D Ajublar (k+1<j<3, 1<r<k),
s=1

’ k
(13) 8 =Xjr+ 3 Ajsbar

s=1"

(k+1<j<8 k+1<r<3),
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and

(14) R® is spanned by {&1,..., 8, Bxs1,.. ., 03}

and also by {01,...,8%, &r1,-- -, €}

Suppose } Jurther that X1, Xo, Xy are mtermedmte spmaces with respect to the
3-tuple A, and that conditions F(A4), F(A-1-X) and F(A-2-X) are satisfied,
where I m-[l kY and Iy ={k+1,...,3}. If

A-—.%X% o =X forjel, (s =1,2)
= X; forj=1,2,3.
4

where 1 < 1,42, a3 < 00, then A}%,

Proof Suppose k = 2. The situation is illustrated by the following
figure:
Ag

Xy

X
Xy

Ay Ay
Fig. 3.1

Recall that Asq = X9, 05),¢ Where IT is the simplex {(0,0), (1,0), (0, 1)}.
Define mappings Ry and Rg by

1 sy %
B ( ) (0 933) ('v) ’
u) _ f fz fag ~big  —bf12 ) (u)
Ry (U)“(ﬁ‘la)—!—(@zs"ﬁw L-fig ) \ v
Assumption (14) implies that Ay and Ry are of type (II). Clearly

w(0)=() »()-() »@)=(2)

Moreover, by (10) and (11}, we have for j =1,2 .

Aja Ajo2 + Ajablaz ) (sz) _
B (Ma) ( Aj30a3 853
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For the map Ry we get, using (12) and (13),

R Asz\ _ B1a + Aga(faz — f12) — Aazbie )
2\ ha3 B13 + A2 (P23 — Biz) + Asa(l — b13)

_ Aa1f12 + Asaths _ (032 _
Asg + Az1013 + Agafan fas
Moreover,

m(3)-() »()-(2) =()=0)

Hence, applying Theorem 3.1 with @Q; = (6;2,0;3) and W; = (Asz, Aja),
j=1,2,3, we conclude that X; = Ag, 4, = 45 , AS7<3)
. . J97
If k = 1 the proof can be carried out in the same way. Finally, the case
k=3 is trivial. =

We close the paper with another application, this time to Fernandez
spaces. We write 1 = (1,1).

COROLLARY 3.3. Let 8; = (8;,) and Aj = ()j,) belong to D for j = 1,2,
and assume that

(15) f11 b2 # 1,

(16) 21 # f2a,

(17) 81 = A18y + Ma(1-62),
(18) G2 = Mg+ (1= a1 — Ao2)fy .
Put

-§3=T_"§2: “9-4=T_§1: X3=T—X21 X'4-:-]?—'X1-
Assume further that X1,...,X4 are four intermediate spaces with respect
to the 4-tuple A, and that £(A, IT), £({A1, X2, X3, A}, IT) and E({X,, Az,
Az, X4}, ) are satisfied where IT = {(0,0),(1,0), (0, 1), (1, V)}. If

{A17X29X31A4}£_,qj = Xj_ for 5 =14,
{Xl:A21A3:X4}§j,qj = Xj fOT‘j = 2,3

where 1 < ¢y, ...,04 < 00, thenﬁgj & =X;forj=1...,4.

Proof. Consider the mappings
By 1-—-8
R (%) = [0 21 U
(=@ )6
6 1-8 -8
R(¥)Y= ("1 11 11 w
2(”“)' (912)+( ~12 1“912) (v)
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It follows from (15) and (16) that Ry and R are of type (II). Clearly

w(0)=() m()=2 = (D)2 m()=0):

Moreover, (17) implies that R12; = 8; for j = 1,4.
For R, we have

W()n 2()=() #(0)-(0) #()-n

Tn addition, by (18), RoX; = 8; for j = 2,3. Consequently, using Theorem
3.1 with I; = {1,4}, Ir = {2,3}, Q; = 8; and W; = );, we conclude that
A-g' szfOl‘jﬁl,...,‘l.l

719
The following figure illustrates the corollary:
Az Ag
Xy
X3
X1 Xq
Aq Ag
Tig. 3.2

Corollary 3.3 settles a question left open in [5].
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Fréchet spaces of continuous vector-valued functions:
Complementability in dual Fréchet spaces and injectivity

by

P. DOMANSKI and L, DREWNOWSKI (Poznad)

Abstract. Fréchet spaces of strongly, weakly and weak*-continuous Fréchet space
valued functions are considered. Complete solutions are given to the problems of their
injectivity or embeddability as complemented subspaces in dual Fréchet spaces.

1. Introduction. There is a famous conjecture that every injective Ba-
nach (or Fréchet) space is isomorphic to the space of scalar-valued continu-
ous functions over an extremally disconnected topological space [19, p. 269].
It might seem that there is a chance to find some essentially new examples
of injective Fréchet spaces by considering the spaces of vector-valued con-
tinuous functions. Unfortunately, as should be clear from the results of the
present paper, this is not so, at least in the case of spaces of strongly or
weakly continuous functions. (The situation i3 not so clear, however, for
the spaces of weak*-continuous functions.) For Banach spaces of strongly
continuous vector functions this was observed eatlier by Cembranos [6].

We now briefly describe the contents of our paper.

Let X be a Hausdorff topological space that is locally compact and
hemicompact (i.e., has a fundamental sequence of compact sets); we will
call such spaces L(H-spaces for short. Let £ be a Fréchet space or, when

[
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