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Unbounded well-bounded operators, strongly
continuous semigroups and the Laplace transform

by

RALPH DELAUBENFELS (Athens, O.)

Abstract. Suppose A is a (possibly unbounded) linear operator on a Banach space.
We show that the following are equivalent.

(1) 4 is well-bounded on {0, c0).

(2) —A generates a strongly continuons semigroup {e”m}szg suck that

{{1/6%)e™**},50 is the Laplace transform of a Lipschitz continuous family of operators
that vanishes at 0.

(3) —A generates a strongly continuous differentiable semigroup {e“SA} s>0 and M <
oa such that -

Rokak
| Halo)] = H(Zs,j )e—”*
k=0

. (4) —v'A generates a strongly continnous holomorphic semigroup {E—ZA}RE{:)D-O that
is O(|2|) in all haif-planes Ke(z) > a > 0 and

dz
Kt) = IEZte_ZA——
® R 2rizd
144

<M, ¥s>0,neNU{0}

defines a differentiable function of ¢, with Lipschitz continnous derivative, with K'(0) = 0.

We may then construct a decomposition of the identity, F, for A, from K{t) or Hn(s).
Forgoe X* ze X,

(F(t)g)(x) = (d/dt)*(S(K (1)) = Jm @(Hn(n/t)z),

for almogt all ¢.

I. Introduction. Scalar operators (see [5], [6]) with real spectrum are
a generalization, to arbitrary Banach spaces, of self-adjoint operators on a
Hilbert space. An early disappoeintment was the fact that most standard dif-
ferential operators on an LP space are scalar only when p equals 2. However,
if one weakens the definition by requiring uniformly bounded spectral pro-
jections corresponding only to closed intervals, rather than arbitrary closed
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sets, one is led to a more widely occurring class of operators, what are called
well-bounded operators (see [5]).

For example, translation on L?(G), where G is a locally compact abelian
group, is scalar if and only if p equals 2 or the operator has finite order, and
is well-bounded whenever 1 < p < oo (see [5]).

One may characterize both classes of operators purely in terms of func-
tional calculi. A scalar operator is one with a functional calculus defined
for all bounded Borel measurable functions; a well-bounded operator is one
with a functional calculus defined for all absolutely continuous functions.
This is the definition that we will use for an unbounded well-bounded oper-
ator (Definition 2.1).

The concept of an unbounded well-bounded operator appeared in [10],
where they were called “well-boundable”. The concept has also often ap-
peared implicitly (see [2], [L1]}. The definition in [10] applies to the type
B situation, but has no restriction on the spectrum, thus in one sense is
wider and in another sense is more restrictive, than the definition we give
in Section IL QOur results in Sections II and III, and {b) of our application
Theorem 4.1, are not covered by the work in [10], although there are close
connections. We define an unbounded well-bounded operator in Section II
and give some equivalences in Thecrem 2.4.

We characterize well-bounded operators with nonnegative real spectrum
as the generators of strongly continuous semigroups with certain regularity
properties. It is necessary and sufficient that — A4 generate a strongly contin-
uous semigroup {e~**}s50 such that (1/s2)e~*4 is the Laplace transform of
a Lipschitz continuous family of bounded operators. This is also equivalent
to e~** being holomorphic, with certain growth conditions on Akemsd gim-
ilar to growth conditions that characterize e—*# being holomorphic. These
characterizations are in Section IIL

Our characterization also enables us to construct a decomposition of the
identity (these are the spectral projection corresponding to intervals, for 4
—see Definition 2.2), for a well-bounded operator, in terms of the semigroup
generated by A.

These results are in the spirit of the Spectral Theorem, on a Hilbert
space, which states that A being self-adjoint is equivalent to 1A generating
a bounded strongly continuous group. Of interest here are the relationships
between spectral projections, functional caleulus and generation of semni-
groups. _

‘We apply our results to the Laplacian, on LP(R) (1 < p < oo) and Cy(R),
in Section IV,

All operators are linear, on a Banach space, X, with dual space X*. We
will denote by L{X) the space of bounded operators from X intc itself. We
will write D{A) for the domain of the operator A, o(A) for the spectrum,
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o(A) for the resclvent set. Basic material on semigroups of operators may
be found in [7] or [9]; for well-bounded operators, see [5].

We will denote by AC[a,b] the Banach algebra of absolutely continu-
ous functions on [a,b], with norm ||/ ac(ay = |F(B)] + f; 1f/(t)| dt. The
Banach algebra AC[0, co) will consist of absolutely continuous functions on
[0,00) such that [0 |f/(¢)|dt is finite, with norm 1 fll agio,00) = |f(00)] +
fooo |f'(£)] dt; note that f(oo) = lim,—oe f(z) automatically exists.

II. Unbounded well-bounded operators on [0,00). In this section,
we define 2 (possibly unbounded) well-bounded operator on [0, c0) and char-
acterize it in terms of resolvent, semigroup, and decomposition of the iden-
tity (Theorem 2.4). :

We define a well-bounded operator as an operator with a functional
caleulus defined for absolutely continuous functions. For reflexive spaces,
we show that our definition of well-bounded is a weak operator topology
version of the usual direct definition of an unbounded scalar operator (see
[6]), followed by an integration by parts ({e) of Theorem 2.4).

We show that a densely defined operator is well-bounded on [0, 00) if
and only if it generates a strongly continuous semigroup {6“5‘4}320 such
that (1/s)e™** is the Laplace transform of a decomposition of the identity
((d) of Theorem 2.4). Analogous results for scalar operators may be found
in [3], [4] and [12].

‘We begin this section with preliminary material on well-bounded opera-
tors.

DerFiNiTION 2.1. A bounded operator, B, is well-bounded on [a,b] if
there exists a continuous algebra homomorphism, f — f{B), from AC|a, b]
into L{X), such that f3(B) = I and f1(B) = B, where fo{z) =1, filzx) = =

We will say that a (possibly unbounded) operator, 4, is well-bounded
on [0,00) if ¢(A) C [0,cc) and there exists a continucus algebra homo-
morphism, f — f(A4), rom AC[0, c0) into L(X), such that fo(4) = I and
g.(A) = (z+ A)~', whenever 2 is outside (—oc, 0}, where g,(z) = (z+z)~".

Note that this algebra homomorphism, if it exists, is unique, since the
unital algebra generated by {g. | r > 0} is dense in AC{0, c0).

It is shown in [5] that a bounded operator, A, that is well-bounded on
[a,b] has its spectrum contained in [e,b], with (z + A)™* equal to g.(A),
whenever —z is not in [, b}. Thus our definition for unbounded operators is
congistent with the definition for bounded operators.

DErINITION 2.2. A decomposition of the identity for X on [a,b] is a
family {E(t)}er of projections on X™ such that

(1) B(s) =0, Vs < a, and E(s) =1, Ys > b.

(2) E(s)E(?) = EQt)E(s) = E(s), Vs <t
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(3) {||E(s)|| | s € R} is bounded.
(4) The map s — (E(s)¢)(z) is Lebesgue measurable, V¢ € X*,z € X.
(B)lfzeX,peX* a<s<b and if the function

t [ (B(r)¢)(z)dr

is right differentiable at s, then the right derivative at s is {E(s)¢)(x).
(6) Yz € X, the map ¢ — (E(:)¢)(z), from X* into L°°(a,b), both with
their weak™*-topologies, is continuous,

A bounded operator, B, is well-bounded on [a,b] if and only if there
exists a decomposition of the identity, E, for X, on [a, b] such that

b
6(Bz) =bp(z) — [ (E(t)¢)(=)dt,

V¢ € X*, z € X (see [5]). For any ¢ > 0, E(t) is a spectral projection for
B* corresponding to [a, t], that is, B(¢)X* is invariant under B*, and

o(B*|pyx+) € [a,t] Na(B*).

When X is reflexive, then there exists a family of projections {F'(¢)}, on
X, such that E(t) = F(t)*. For each ¢, F(¢) is a spectral projection for B
corresponding to [a,1].

By a decomposition of the identity for X on [0, cc) we will mean a family
{E(t) }iem of projections on X* satisfying (2) through (6) of the definition
above, with b = 00, a = 0, such that

(1) E(s) = 0, ¥s < 0.

A consequence of Theorem 2.4 is that, for every operator, A4, well-
bounded on [0, 0o), there will exist a decomposition of the identity, K, for
X on [0,00), such that F(¢) is a spectral projection for A* corresponding
to [0,t]. When X is reflexive, we will similarly obtain uniformly bounded
spectral projections for A corresponding to [0, ).

When A has countable spectrum and X iz separable, then being scalar
corresponds to the eigenvectors for A forming an unconditional basis for X,
while being well-bounded corresponds to the eigenvectors forming a condi-
tional hasis.

DerFiNiTION 2.3. Suppose 0 < § < /2. We say that the strongly con-
tinuous semigroup {1'(t)}s>a is a bounded strongly continuous holomorphic
semigroup of angle 8 if it extends to a holomorphic family of bounded op-
erators in the sector Sy = {2z | |arg (2)| < 8}, that is bounded and strongly
continuous on subsectors §¢, Vi < 4.
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The (possibly unbounded) operator A generates {T(t)}s>0 if

.1
Az = 111% ;(T(t)x ~u), D(A)={z| limit exists }.

-

We then write T(2) as e*#, the strongly continuous semigroup generated

by A.

THEOREM 2.4. Suppose A is densely defined. Then the following are
equivalent.

(a) A is well-bounded on [0, 00).

(b) (1} € o(A) and (1 + A)™ is well-bounded on [0,1].

(c) (—00,0) € 0(A) and 3 a decomposition of the identity, E, for X, on
0,00), such that

o0

$lr+ A7) = [ (r+0)(EQ) (=) dt,

<

Ve>0,z€eX, o€ X",

(d) —A generates a strongly continuous holomorphic semigroup
{e=*4}Re(e)>0 of angle w/2, and 3 a decomposition of the identity, E, for
X, on [0,00), such that

[e 0]

dle* )= [ ze (E(t)¢)(2) dt,

0
when Re(z) >0,z e X, g € X*.
If X is reflexive, then (a)~{(d) are also equivalent to
(e) 3 projections F(t), on X, such that {F(t)*}:z0 45 a decomposition of

the identity for X, on [0,00), lims e ¢(F(t)z) = ¢(z), Vo € X, ¢ € X*,
and

N
#(Az) = lim [No(z)- [ ¢(Ft))dt], VéeX" zeD(4),
0

with D(A) egual to the set of all x € X for which the limit ezists, V¢ € X,
and defines o vector, Az, in X.

Proof. (a)&(b). This is merely composition of functions, in the ap-
propriate algebra homomorphism. Let g. be as in Deflnition 2.1. If A is
well-bounded on [0, cc), then define a map from AC[0,1] into L(X) by
(14 A1) = (f o g1)(A). This is clearly the desired algebra homomor-
phism for (1 4+ A)~*, Conversely, if (1+ A)~! is well-bounded on [0, 1],
define a map from AC[0, 00} into L(X) by f(4) = (fo g (L + AT,
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where (f 0 g71)(0) = f(co). We must check g,(4), when z ¢ (-0, 0]. Since

1 x

(005700 =03 ~1) = o

it follows that g,(4) = {1+ A"z~ D1+ At + 17 = {2+ A}, as
desired.

(c)=(b). Define hl, on [0,00), by hy(s) =1 - 1/(1+ ).

Let G(s) = (B(h1(5)))110,1)(8) +1[1,00)(8). Then G is a decomposition. of
the identity for X on [0, 1]; (b), of Definition 2.2, requires some computation.

Forany ¢ € X*, 2z € X,

S(1— (1 +A) fh )(z) dt

— [ G619 ds
o]

Thus 1— (1+ A)~!, and hence {1+ A)~!
(d)={c).For¢ e X* z € X, r >0,

, is well-bounded on [0, 1].

p((r+ A)~* fe_”gb e A2} ds
0

(]

(r+8)7*(E(t)g)(x) dt,

&™) ds) (B(t)g) (=) db

OL‘ﬁg DLﬂS

as desired.

(a)=(d). First, we will represent the functional calculus for A as an
integral with respect to a decomposition of the identity.

By (a)(b), 1 — (1+ A)~" is well-bounded on [0, 1]. This implies that 3
a decomposition of the identity, &, for X, on [0,1], such that the functional
calculus for 1 — (1 4 A)~* is given by

1
S(fL— L+ ) z) = F)s(z) — [ F'(s)(G(s)8)(c) ds
0

Vfe AC[D,1], ¢ &€ X*, z € X,

Let 1y be as in (c)=(b) and let E(t) = G(hy(t}), for t > 0, B(¢) = 0, for
t < 0. Then E is a decomposition of the identity on [0, s0); as in (c)=>(b)
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(5), of Definition 2.2, requires some checking. As in the proof of (a)&(b), it

Sn;agrhz: shown that, for any f € AC[0,00), f(A) = (fohl Y1 - (1+A)_1),
¢(f(A)z) = f(RT(1) Ofl (f o BT Y (s)(G(5) ) (x) ds
Of FOUC(0)6)a)
- Off’(t)(E(t)qu)(:c)dt

Vi€ AC[0,00), ¢ € X*, x € X.

For any = > 6 > 0, since {[|29{| ac(,00) | larg (2)] < 0} is bounded and
A s well-bounded on [0, 00), it follows that {[z(z+ A)~|| | |arg (2)] < 8}
is bounded. Since 4 is densely defined, this implies that —A generates a.
bounded strongly continuous holomorphic semigroup of angle 7/2 (see [7
Theorem 5.3] or [9, Theorem 5.2]).

To show that e™*4 is gwen, as one might expect, by the functional
caleulus, e *4 = k,(A), k,(t) = e~**, we must first prove the following
claim, where f)(2) = =:

() (fif)(A) = Af(A), when both f and fi f are in AC[0, c0).

Suppese f(z) = (r+z)7", for some r > 0, n € N. Then Af(4) =
(r+A—r)r+A)™ = (r+A)"0") _plr4 A)" = (f, f}{A). Let F be the
algebra generated by all functions of the form z — (r+xz) ™1, for some r > 0.
For any f asin (x), 3(hn) € F such that h, — f and fih, — f1f, both in
AC[0, 00), as n — oo; this may be seen by choosing (k,} in the span of F
and the constant functions, converging to (1+ f1)f in AC[D, cc), and letting
hoy (%) = k(1) /{1 +2). Since A is closed, this implies that Im(f(A)) C D(A),
with Af(4) = limy, e (fihn)(4) = (fL F)(A), proving (*).

A calculation shows that {1/h)(k,n — k;) converges to —fik, in
AC[O,N), ag h — 0, when Re(z) > 0. Thus (d/dz)k.(A) = (—fik:)(4) =
-~ Ak, (A), which implies that

3

Bl ) = plh( A

Vo &= X*, v e X, as desired.

(b)=-(e). Since X is reflexive, 3 a family of projections {H(f)} >0, on
X, such that {H(#)*}:50 is a decomposition of the identity for X on [0, 1],
H({tMe = lim .+ H(s)z and H(t™ ) = lim,_,,~ H(s)z both exist, Vz ¢ X,
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t € [0,1], and
1
S((L (1 +4)7" - [oH
]

Vo e X, ¢ € X* (see [5, Theorem 17.17]).

Define F, on [0, 00), by F(t) = H(1—1/(141)), analogously to {a)=>(d).
Since (1 + A)~! is injective, H(17)z = #, ¥z € X (see [5, Theorem
17.15(i1)]). Thus limsw o Ft)r =z, V2 € X.

The proofs of the previous equivalences show that

$((1+4)~ f #(F(s)y) 7 )2,

Yye X,0 e X+,
Define an operator B, as in {e}, as follows:

N
¢(Bz) = lim [No(a)— [ 8(F(t)a)dt], véeX", zeD(B),
0

with D{B) equal to the set of all z € X for which the limit exists, V¢ € X*,
and defines a vector, Bz, in X,

We will show that A C B.

Suppose & € D(A). Then 3y € X such that z = (1 + 4)~ !y, so that, for
any N >0,¢ € X*,

N
— [ (F(t)z)dt

= No((1+4)™y) f¢<F (1+4)""y)dt

=] d N oo 8

= [ o) - [ T erorcam T
o ds

=N O‘f ¢(F(s)y) (1+3)2
N oot ds
J{Ef‘b (19) (1+s)2+f¢) ) |
® ds

= N 6[ ¢(F( )(]—1-8)2
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N N N
af 3f¢'(F (8)y) (1+ ks Sf (t)y)m
= [ olF ) s - f(N PN o
- [eren

ds

qs(F(s))(—l;— f SF W) 44

— (N +1) IJ’ ¢(F(s)y)ﬁ_ af $(F(s)y)

ds
(1+s)2’

the convergence of F(s)y to y, as s — oo, implies that the first term con-
verges to ¢(y) as N — oo.

Thus the limit, as N — oo, exists, so that TE D(B) with

6(B2) = 804} — [ S(E(oW) 2y = 6(0) ~ 6((1+ A7) = 8(4e).
Q

Thus 1+ A € 1+ B. We will now show that 1+ B is injective. For any
N, define By € L{X) by

N
$(Bnz) = f P(F
S0

Suppose 0 = (1 -+ B)z. Then ¥¢ € X*, 0 = limy—0 ¢((1 + By)z). It
is well-known that ((1+ 4)71)* commutes with any decomposition of the
identity associated with (1 + A)~Y. Thus, V¢ € X*,

0= Jim (L4 4)7)"6((1+ By)a) = Jim §((1+By)(1+4)7a),

which we have previously shown to be ¢(z).

Thus 1+ B is injective. Since it contains 1+ A4, which is surjective, 14+ 4
must equal 1+ B, so that A = B, as desired. :

(e)=>(b). Define G(s) = I — F((1/s - 1}7), for 0 < s < 1, G(s) = I,
for s > 1, G(s) = 0, for s < 0. Then {G(#)*} is the decomposition of the
identity for a well-bounded operator, R, on X, that is, .

L _
$(Rz) = ¢(x) ~ [ #(G(t)z)dt
: 0
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vz e X, ¢ € X* After a change of variables,

) = f¢(F(S)I)ﬁ“j_ST)2-

The same computations as in (b)=-(e) now show that R maps X into D(A),
(14 ARz = z, Yz € X and R(1 + A):z: =z, ¥z € D(A). This establishes
(b). =

Comments 2.5. Somewhat more than {e) of Theorem 2.4 can be said
when X is reflexive; (1 + A) ! is then a well-bounded operator of type (13)
(see [5, Definition 16.8]). This implies that (1 + A)~', and hence A, has
a functional calculus defined for functions of bounded variation, and this
functional calculus may be represented as a vector-valued Riemann-—-Stieltjes
integral. To go into this in detail would take us too far afield, hence we will
merely refer the interested reader to [5, Chapters 16 and 17).

Note that a consequence of the proof of Theorem 2.4 is that, for any
Banach space X, when A is well-bounded on {0, 0c), the algebra homoinor-
phism for A is given by

P(f(A)z) = f(oo)d(z} — | F(&)(E(D)¢)(e)dt

forge X",z e X.

ITT. Well-bounded operators, semigroups and the Laplace
transform. The relationship hetween the resolvent of an operator and
the semigroup it generates is very similar to the relationship between the
semigroup generated by a well-bounded operator and its decomposition of
the identity. Informally, the resolvent family {{r + A)~'},s is the Laplace
transform of {e7*#},50 and {(1/s)e™%4}sno is the Laplace transform of
{E(t)}i>0, a decomposition of the identity.

Important analytic differences appear when one writes down precisely
what is meant by heing a Laplace transform. When we say that the resolvent
is the Laplace transform of the semigroup, we mean, in the strong operator
topology, the Laplace transform of a continuoung function, that is, for all o
in X, (r+4) 'z is the Laplace transform of the continuous function e~ %4z,
When, as in Theorem 2.4(d), we say that (1/s)e™*4 is the Laplace transform
of E(t), we mean, in the weak operator topology, the Laplace transform of
a measurable function, that is, for all z in X and ¢ in X*, ¢((1/s)e™*42)
is the Laplace transform of the measurable function (E(t)¢)(z).

Recently, some nice results on vector-valued Laplace transforms have
appeared (see [1] and [8] and Lemmas 3.3 and 3.4). Because we are not
concerned with strong continuity of E(t), it is actually easier to apply
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Lemma 3.3 to decompositions of the identity than to strongly continuous
semigroups. One merely takes the Laplace transform of Theorem 2.4(d),
and applies integration by parts, to obtain {(1/5*)e™*4} .- as the Laplace
transform of a Lipschitz continuous family of operators. We may now use
Lemma 3.3 to obtain results in ferms of the operator norm, rather than the
weak operator topology.

Once we have established the semigroup generated by —A as the Laplace
transform of a decomposition of the identity, we may then use results about
inversion of the Laplace transform to construct the decomposition of the
identity from the semigroup generated by —A. Lemma 3.4, from [§], allows
us to obtain results again in terms of the operator norm, rather than the
weak operator topology, as would follow from classical Laplace transform
theory.

THEOREM 3.1. Suppose A is densely defined. Then the following are
equivalent.

(a) A is well-bounded on [0, 00).

(b) —A generates a strongly continuous semigroup {e™*4},>0 such that

{(1/s%)e™*A};50 is the Laplace transform of a Lipschitz continuous func-
tion, from [0, 00) into L(X), that vanishes at 0.

(¢) —A generates a strongly continuous differentiable semigroup
{e7*4Y ;50 and IM < 0o such that

18 ()] = H( Aot

(d) —A generates o strongly continuous holomorphic semigroup
{e"**}Re(z)>0 that is O(|2) in all half-planes Re(z) > a > 0 and

<M, VYs>0, neNU{0}.

p— H z
Gt) = A;Enwa_{N e*e
exists, independently of a, and defines o Lipschifz continuous function of t,
G{0) = 0 and for any a, R > 0, the limil is uniform in t € [0, R].

() —A generates o strongly continuous holomorphic semigroup
{e™*A Y Re(zy >0 that is O((z]) in all half-planes Re(2) > o > 0 and

dz
— 2t ,—zA
Kit) = 1+f'ne ¢ it
%,

is a differentiable function from [0, 00} nto L(X), with K'(t) Lipschitz con-
tinuous and K’'(0) = 0.
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A decomposition of the identity for A is then given by

B = ot = (&) e = m o0 (3)e) o,
forg €X* meX.

Comments 3.2, H, involves boundary values of a Taylor series expan-
sion for ¢4, It may be shown that, under the conclusions of the theorem,
lim, o Hp(8)z =2, V2 € X, 5> 0.

Hy being uniformly bounded is saying that {e~ 4% >0 is nniformly
bounded, while H; being uniformly bounded is equivalent to {e™ "4} ex-
tending to a bounded holomorphic strongly continuous semigroup (see [7]
or [9]).

It is interesting that G(¢) is in L{X)), V¢ > 0, although, in general, there
exists no F(t) € L(X) such that E(t) = F(t}*, where E is any decom-
posmon of the identity for A (see Definition 2.2}; note that ¢(G(t)x) =
fo (E(s)$)(z) ds, V¢ € X*, z € X, for & decomposition of the identity E.

The following 1nd1cates just 11ow ‘close” to being well-bounded a gener-
ator of a bounded strongly continuous holomorphic semigroup of angle /2
is. Compare this Proposition with (c¢) of Theorem 3.1.

PROPOSITION. Suppose —A generates a bounded strongly continuous
holomorphic semigroup of angle /2. Then Vr > 1, 3M, < oo such that

|Hn(s)|| < Myr™, ¥Ynel, s>0.

Proof Fix r > 1. For any 5 > 0, let Iy be the circle, in the complex
plane, of radius s/r, centered at s (on the real line). Some calculation, using
the Cauchy integral formula, shows that

-1
dz
H, —zAfy _ [ £ .
(s) = fe (1 (s»—z) )2m’z

Ie
There exists ¢ < /2 such that I, C Sy, = {z | |arg (z)| < é»}, Vs > 0.
This implies that 3K, < co such that |le™*A|| < K,, Vz € I}, s > 0 (see

Definition 2.3). After the change of variables z = s + (s/r)e®, the integral
above, after some calculation, implies that

[ Ha ()] < Kr(L+r"+) /(r ~1).
Letting M, = 2rK,./(r — 1} now concludes the proof. m

LEMMA 3.3 (Theorem 1.1, from [1]). Suppose that f : (0,00) -+ X and
M < oo. Then the following are equivalent.

(a) f is infinitely differentiable, and
S'n.+1' (n)
o (s)

<M, Vs>0, n+1eN,
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(b) 4G : [0,00) — X such that G(0) = 0,
HG('{J)*‘G(S)“ SMlt—Sl, Vsatzo'i

and
o]

HOET f e"tG(t)dt, V¥s>0.
0
LemMMa 3.4 (Theorem 3.2 from [8]). Suppose (b) of Lemma 3.3 holds.
Then, Vt,a > 0,
a+iN
G(t) = lim_ [ et flz)
a —iN
where the lirnit is uniform int € [0, R], VR > 0.

’)mz

Proof of Theorem 3.1. To consider the Laplace transform, we need
derivatives of the function s — (1/s)e™%4. For any s > 0, using the product
rule (fg)"™ =30, (}:)f(”'k)g(k), when — A generates a strongly continu-
ous differentiable semigroup, it is straightforward to calculate that, ¥s > 0,

(x) S—T;T—l (%) " @e“‘““) = (—1)"H,(s).

(a)=>(b). Theorem 2.4{a)=-(d) implies that f(s) = (1/s)e—*4 satisfies
(a) of Lemma 3.3, thus Lemma 3.3 implies (b).

(b)=>(a). Let G be the Lipschitz continuous family of operators of (b),
with Lipschitz constant M. Since G(0) = 0, {e™*4},0 is bounded, thus
-1 € o(A).

For fixed ¢ € X*, 2 € X, lot Gy(t) = ¢(G(t)z). Note that Gy, Is
differentiable a.e., with |G/, ,.(2)] < M||$]||z||, for almost all ¢ > 0.

For any n € N,

H(L+A)"z) = (n—ll)! fs”_le_aqﬁ(e_SAm) ds
0
1 oa 00 " e s
= o) 6[ (Ofs tlg—se~t ds)qu,z(t)dt

n+42
=n(n + 1) f (T%) Gyu(t) db

( ) G0
WG (w—~l)dw.

O\‘-_ﬁ'_, DL.ﬁS
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This implies that, if p is a polynomial, then
1
$(p((1+ A)™)a) = p(0)g(z) + [ p'(w)
0

1
;5’1(’!_—0— - 1) dw,

1
)| < llellzl ()] + M [ |9/ (w)|dw),

0

so that
[o(p((1+ 4)

which implies that

(1 + A)) < 2M|p]| acio, -

Since the polynomials are dense in AC(0, 1], this implies that (14 4) !
is well-bounded on [0, 1], hence, by Theorem 2.4(b)=>(a), A is well-bounded
on [0, 00).

(b)&(c). By (b)=(a) and Theorem 2.4(a)=(d), (b) implies that —A
generates a strongly continuous holomorphic semigroup. Lemma 3.3 and (*)
now imply that (b) and (c) are equivalent.

(b)={d). Asin (b) ={c}, —A generates a strongly continuous holomor-
phic semigroup. If {(1/s%)e™%4} 450 is the Laplace transform of a Lipschitz
continuous function, G, vanishing at 0, with Lipschitz constant A4, then a
simple calculation shows that

M
~ Re(z)’
whenever Re(z) > 0. This proves the growth condition. The integral repre-
sentation of & follows from Lemima 3.4.

(d)=(b). For 0 < e < s, M > 0, the uniform convergence of the integrals
on t € [0, M] allows us to calculate as follows:

1
Lo-za
z

at+ilN

M
omi [ eTtG() db = A;lm et [ ertemea dz
—r 0 z
a—iN
aliN M ( (i"
= li LESE) ~zA U=
1\}51'10@ f (fc 3 df) 1
a—iN 0
a+ilN
= lim (l__eM(z 8 )(J-*ZA dz
N_iooa,——iN § -z z2
- f 1 (1 . eM(z-—s))esz flf
§—z 22
a+iR

80 that dominated convergence implies that the limit, as M — co, exists,
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with
o) M
[ e G dt= Jim Df et (1) dt

0

- f L e 4 dz 1 e
s—z

Qriz? 52 ’

a+tiR
where the final equality follows from a calculus of residues argument.
(d)=>(e) is clear, by letting K (¢) = fg G(s) ds and using dominated con-
vergence to obtain the integral representation of K.
(e)=>(b). A calculation as in (d)=-(b) implies that (1/s%)e™*4 is the
Laplace transform of K, thus (b) follows after an integration by parts, using
the fact that K'(0) = 0.

The uniqueness of the determining function in the Laplace transform
and Theorem 2.4 imply that

So(cm) = () sxo),

for ¢ € X*, z € X, defines a decomposition of the identity.
The fact that (E(#)¢)(z) = lim,_,o ¢{Hn(n/t)z) a.e. follows from ()}
and complex-valued Laplace inversion theorems (see [14]). =

IV. An application. We will write A for the Laplacian, the generator
of the strongly continuous holomorphic semigroup

(2 f)(a) \/_f ==/ £y dy

on LP(R) (1 < p < o0) or Ch(R).

In [10], and, in effect, in [11], it is shown that —A4, on LP(R}, is well-
bounded if 1 < p < oc. We will use Theorem 3.1 to show that —A, on L' (IR)
or Cy(RR), fails to be well-bounded.

THEOREM 4.1. (a) —A4, on LF(R), is well-bounded on [0,00) if 1 <
p < 0o _
(b) —A, on Co(R) or L(R), is not well-bounded on [0, co).

Proof As we mentioned before stating the theorem, (a) is in [10] and
[11]. We will use Theorem 3.1{a)<(e) to show (b). It is well-known that
|e*4|| < {z/Re (2)|, whenever Re(z) > 0, on any of the indicated spaces.

Define
1 .
Rlx)= — sin(zVt) .
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We will first consider A on Cy(R). As in Theorem 3.1(¢), define
K@) f= [e'e?f)

1R

We claim that, if f has compact support, then Vo € R, (K(£)f){(z) is a
twice differentiable function of ¢, with

(%) (d/dt)* (K@) f) (@) = (P * f)(z).
To prove (), note that, if k,(z) = e~**" then
e Af = (F 7 k) * f,

where F is the Fourler transform, thus,

wwnie = | [ / | [ et B ) 28 g

14iR

2m~3

A calculus of residues argument shows that the innermost integral equals
3t~ )21 _ sz yp(s); explicit calculation of the inverse Fourier transform
now gives us

d . dz | ds
(EZ) [f [ Jet zmza] 2#} FBela),
14iR
proving (). '

Now suppose, for the sake of contradiction, that —4, on Cy(R), is well-
bounded on [0, co). By Theorem 3.1(a)¢>(e), the map t — K'{t), from [0, oc)
into L{X), is Lipschitz continuous. Let. 3 be the Lipschitz constant. By (),
for any compactly supported f,

By« f){)] < M flles,
for all £ > 0, # € R. This implies that || P||y < M, ¥t > 0, which is false; in
fact, ||P;||1 is infinite for all ¢ > 0.

Thus —A, on Cy(R), is not well-bounded on [0, 00), We may show the
same result on LY{IR) with a duality argument, as follows. If ~A, on LY(R),
were well-bounded on [0, co), let K(t) be as in Theorem 3.1(e). Then argu-
ments similar to those above show that 3 a constant M such that, for any
compactly supported g € LY(R), f continuous,

| [ Bexa)e)s@) do| < Mgl fleo
R

which implies that
[P glls < Mgl

for any compactly supported g € LY{R), which implies that ||P:]|; is finite,
a contradiction. m
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