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Total subspaces in dual Banach spaces which are not norming
over any infinite-dimensional subspace

by

M. L OSTROVSKII (Kharkov)

Abstract. The main result: the dual of separable Banach space X contains a total
subspace which is not norming over any infinite-dimensional gubspace of X if and only if
X has a nonquasireflexive quotient space with a strictly singular quotient mapping.

1. Introduction. Let X be a Banach space and X* be its dual space.

Let us recall some basic definitions.

A subspace M of X* is said to be total if for every D # x € X there is
an f € M such that f(z) #0. '

A subspace M of X* is said to be norming over a subspace L C X if for
some ¢ > 0 we have

(Ve e I)( sup |f(z)] 2 cll=f)),
Fes(m)

where S(M) is the unit sphere of M. If L = X then M is called norming.
The following natural questions arise:

1) How far could total subspaces be from norming ones? {Of course, there
are many different concretizations of this question.) _

2) What is the structure of Banach spaces whose duals contain total
“very” nonnorming subspaces?

3) What is the structure of total subspaces?

These questions were studied by many authors: [Al], [B, pp. 208-216],
[BDH], (D3], [DLI, [D], [F, [G], [Ma], [Mc}, [M1], [M2], [O1], {02, [P, (PP},
[S1], [S2]. The results obtained find applications in the theory of Fréchet
spaces [BDH], [DM], [MM1], [MM2], [M2}; in the theory of improperly posed
problems [O3], [PP, pp. 185-196]; and in the theory of universal bases [P,
p- 31].

T]he present paper is devoted to the following natural class of subspaces
which are far from being norming. A subspace M of X* is said to be nowhere

1991 Mathematics Subject Classification: Primary 46B20.
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norming it it is not norming over every infinite-dimensional subspace of X.1f
X is such that X* contains a total nowhere norming subspace then we write
X € TNNS. This class was introduced by W. J. Davis and W. B. Johnson
in [DJ], where the first example of a total nowhere norming subspace was
constructed. In the same paper it was noted that J. C. Daneman proved
that every infinite-dimensional subspace of {; is norming over some infinite-
dimensional subspace of ¢g. In [02] a class of spaces with the TNNS property
was exhibited. A. A. Albanese [Al] proved that the C'(K) spaces are not
in TNNS. The problem of description of Banach spaces with the T'NNS
property arises in a natural way.

Our main result (Theorem 2.1) states that for a separable Banach space
X we have X € TNNS if and only if for some nonquasireflexive Banach
space Y there exists a surjective strictly singular operator 7 : X — V.

Section 3 is devoted to the proof of the auxiliary Theorem 2.4. Using the
same method we are able to prove the following result (Theorem 3.1):

A Banach space M is isomorphic to a total nonnorming subspace of the
dual of some Banach space if and only if M* contains a closed norming
subspace of infinite codimension.

Thus the class of total nonnorming subspaces coincides with the class
of Banach spaces which give a negative golution to J. J. Schiffer’s prohlem
[Sc, p. 358] (see [DJ, p. 366]).

Section 4 provides several remarks concerning general (not necessar-
ily separable) spaces, in particular, we show that Banach spaces with the
Pelczynski property are not TNNS.

Section 5 presents an example of a nonquasireflexive separable Banach
space without the Pelczyriski property and also without T'NNS.

We hope that our notation is standard and self-explanatory. For a subset
A of a Banach space X,lin A, A+ and cl A are, respectively, the linear span
of A, the set {z* € X* : (Vo ¢ A)}(z*(z) = 0}} and the closure of A in
the strong topology. For a subset A of a dual Banach space X*, w*-cl 4 and
AT are, respectively, the closure of A in the weak™ topology and the set
{z e X:(¥z* € A)(z*(z) = 0)}. For an operator T : X — Y the notation
T'|z means the restriction of T' to the subspace Z of X.

I wish to express my gratitude to V. M. Kadets for Lis valuable advice.

2. Main result. Our references for basic concepts and resulfs in Banach
space theory are [DS|, [LT], [W]. The unit ball and the unit sphere of a
Banach space X are dencted by B(X) and S(X) respectively. The term
“operator” means a bounded linear operator, and “subspace” means a closed
linear subspace.

Let us recall some definitions.
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.A Bal?_a.ch space X is called gquasireflezive if its canonical image has
ﬁmtq codimension in X**, The number dim(X**/X) is called the order of
quastreflerivity of X and is denoted by Ord X.

An operator T: X =Y is called strictly singular if the restriction of T
to any infinite-dimensional subspace of X is not an isomorphism.

The main result of this paper is the following.

‘ 2.1. THEQRENI. Let X be a separable Banach space. Then X € TNNS
if alnd 'only if for some nonguasireflevive Banach space Y there exists o
surjective strictly singular operator T: X — Y.

Proof. Suppose that such an operator T' exists. We may assume with-
out loss of generality that T is a quotient map. Then T is an isometric
embedding of ¥* into X*. The subspace M := 7™ (Y*) is nowhere norming
bec.ause T is strictly singular. Moreover, M is not total. Qur aim is to find
an 1somorphism ¢ : X* — X* which is a small perturbation of the identity
operator and is such that under its action M becomes total but remains
nowhere norming.

Smce Y is nonquasireflexive, by [DJ, p. 360] there exist a weak* null
basic sequence {y,} C ¥*, a bounded sequence {gn} CY** and a partition
{1}, of the integers into pairwise disjoint infinite subsets such that

31 fnel,
%@U“{o i n g Iy
. Set uy = T"y,. Since T* is weak™ continuous and isometric, {uf}2.,;
1s a weak” null basic sequence in X* and there exists a bounded sequenge
{vp ¥, in X** such that

wh kY 1 ifnéIk,
%(J_{OEngh.

Let {s}}22, be a normalized sequence spanning a total subspace in X*.
Let the operator @ : X* — X* be given by

Do
Qz") =" + 3 4™ Pvp (a5t o).

k=1
_ Tt is clear that @ is an isomorphism. Let M = Q(M,). We show that M
18 a total nowhere norming subspace. Let 0 s z € X and let k& € N be such
that sf(x) # 0. Since {uy,}32, is weak* null, we can choose n € I, such that
lup (z)] < 47Fst(z)/|[vE¥||. We have

(QUup)) () = up () + 474} () /|Jvp”] # Q.

Hence M is total.
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Recall that if U,V are subspaces of a Banach space, then the number
§(U,V) = inf{|lu~v| :ue SU),veV}

is called the inelination of U to V.

We now prove that A C X* is nowhere norming. Suppose that this is
not the case and let an infinite-dimensional subspace L ¢ X be such that A
is norming over L. By strict singularity of T" there is no infinite-dimensional
subspace of X with nonzero inclination to ker T'. Using a standard reasoning
with basic sequences (see [Gu]) we can find in L a normalized basic sequence
{2;} such that for some sequence {t;} C kerT we have ||z; — &]| < 27*; we
may, moreover, require that

(1) (vn € N)(lim s} (&) = 0).

Let ¢ > 0 be such that
_ (Vo€ D)(3f € S(M))(1f ()] 2 e|[=]))-
In particular,
(vi e N)}(3fi € SIM)([filz)] 2 ¢).
By the definition of M we can find y € Y such that

oG
fo=Trr 4 Y a7R Ty s/ llvit |l
k=1

From this equality we obtain
17l 2 @BIT* -
Hence, for every positive integer i,

e < filz)| < | filz — )| + | fa(ts)]

00
<24 [ S ahp (k)|
E=1 :

oo
<27+ (3/2) )4 skt
k=]
Using (1) and the boundedness of {s*} and {¢;} we arrive at a contradiction.
Hence M is nowhere norming.
Now we begin to prove the converse statement. We need the following
result, which follows easily from the arguments of [DJ, p. 358].

2.2. LeMMA. Let X be a separable Banach space and let N be o subspace
of X™ such that the strong closure of the canonicel image of X tn N* is of
infinite codimension. Then N contains o weak® null basic sequence {u}}22
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such that for some bounded sequence {vi* )32, in X** and some partition
(L 132, of the positive integers into pairwise disjoint infinite subsets we have
N 1 fnel
T — ks
() {o ifn g I.

It turns out that a total nowhere norming subspace need not satisfy the
condition of Lemma 2.2.

2.3. PROPOSITION. There erists a total nowhere norming subspace L of
()" such that the canonical image of 1y 4s dense in L*.

Proof. Let a Banach space X be such that X* is separable, contains
closed norming subspaces of infinite codimension and does not contain sub-
spaces isomorphic to I;. We may take e.g. X = (3. @.J),, where J is James’
space [LT, p. 25].

We need the following definition. Let ¢ > 0, b > 0. We say that a subset
A C X* is (a,b)-norming if the following conditions are satisfied:

(Yz € X)(sup{|z*(z)| : * € A} > aljz])),
sup{|lz*]| : 2* € A} < b.

Let K C X* be a closed norming subspace of infinite codimension. Let
o : i — K be some quotient mapping. Hence a(B(l;)) is (c, 1)-norming
for some ¢ > 0. Let {%}%2, C X* be a sequence whose image under the
quotient map X* — X*/K is minimal. Define the operator 3 : {; — X* by

o0
Bl{ai}2) = (/2 azi/ilzil + e({a:}2y).

i=1
It is clear that 2 is injective and that B(B(l1)) is (¢/2,1 + ¢/2)-norming.
Let {y;}f., € X~ be a (finite or infinite) sequence whose image under the
quotient mapping X* — X*/clf(l;) is minimal and X* = cl{lin({y;}2_, U
B(11))). Represent {; as I @ I¥ (or I; @ |, if k is infinite) and define the
operator v: 5 @ 1f — X* by

.
v({a:}i2y, {(biYimy) = B({ai}2y) + Z bayi /| well -

It is clear that v is injective, its image is dense in X* and v(B({y)) is
(¢/2,1 + ¢/2)}-norming. Moreover, v is strictly singular since X* contains
no subspaces isomorphic to [;.

Let L = 4*(X) C (I1)*. This subspace is total since v is injective. Since
¥(B(l1)) is (¢/2,1+¢/2)-norming, y*|x is an isomorphic embedding. There-
fore the strict singularity of «v implies that L is nowhere norming. On the
other hand, it is easy to check that the canonical image of I; in L* may be
identified with v(I;) and therefore is dense. The proposition is proved. -
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In order to make Lemma 2.2 applicable for our purposes we need the
following result.

2.4. THEOREM. Let X be a Banach space and M be a total nowhere
norming subspace of X*. Then there exists an wsomorphic embedding E
M — X* such that E(M) is also a nowhere norming subspace and the
closure of FE*(X) in the strong topology has infinste codimension in M*.

We postpone the proof until Section 3.

Let X € TNNS and let M ' X* be a total nowhere norming subspace.
Applying Theorem 2.4 we find an embedding F : M — X* such that N =
E(M) is a nowhere norming subspace satisfying the condition of Lemma 2.2,
Let {up}nzy C B(M), {vp*}52, € X** and {I}$2, be sequences obtained
by application of Lemma 2.2 to N' = E(M).

We need the following definition [JR].

A sequence {z3}5%, C X* is called weak* basic provided that there
is a sequence {z}3>; C X so that {z,,2%} is biorthogonal and for each
z* € wr-cl(lin{z} }22 ),

" = %’E}@Zm*(xl)m:
i=1
By [JR, p. 82] (see also [LT, p. 11]) every weak* null sequence hounded away
from 0 in the dual of a separable Banach space has a weak™ basic subse-
quence. Therefore, we may select a weak* basic subsequence {u;,(j)}j";l -
{un}ily Moreover, by arguments of [JR] we may suppose that Iy N
{n(j)}72, is infinite for every k € N.

Let ¥ = X/(({ung}324)") and let T : X — Y be the quotient map.
Then Y* may be naturally identified with w*-cl(lin{u:( ;1 1521). The space
Y is nonquasireflexive because the intersections I, N {n(y 11521 (k € N) are
infinite. By the well-known properties of weak™ basic sequences LT, p. 11]
it follows that for some A < 0o we have

B(Y") C Aw*-cl B(lin{u ; }52,) € Aw*~cl B(E(M)).

Therefore Y* is a nowhere norming subspace of X*. Hence T is strictly
singular. The proof of Theorem 2.1 is complete.

2.5. CoroLLARY. If X 43 o separable Banach space which contains a
complemented subspace Y with Y € TNNS then X € TNNS.

Proof The composition of a strictly singular surjection T: ¥ — Z and
any projection F?: X — Y is a required surjection.

2.6. COROLLARY. For every separable Banach space X we have X & I e
TNNS..
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To prove this we need only recall that thereis a surjective strictly singular
operator T : Iy — ¢ [LT, pp. 75, 108].

2.7. Remark. There exists a space X for which X € TNNS but X
contains no subspaces isomorphic to ;. In fact, by the Jamés—Lindenstrauss
theorem [LT, p. 26] there exists a separable space Z for which Z**/Z is
isomorphic to ey and Z*** is isomorphic to Z* @ l;. Let X = Z**. Then
there exists a quotient map T : X — ¢p. It must be strictly singular because
otherwise X contains a subspace isomorphic to ¢ [LT, p. 53], which contra-
dicts the fact that X is a separable dual [LT, p. 103]. At the same time, X
contains no subspaces isomorphic to I; becanse X* is separable.

3. Total nonnorming subspaces in dual Banach spaces. In this
section we prove Theorem 2.4 and the following characterization of total
nonnorming subspaces.

3.1. THEOREM. A Banach space M is isomorphic to a total RONNOTINANG
subspace of the dual of some Banach space if and only if M* contains a
closed norming subspace of infinite codimension.

We need the following lemmas,

3.2. LEmmaA [B, p. 39]. If U and V are Banach spaces and P: U — V is
an operator with nonclosed tmage then the closure of P(B(U)) in the strong
topology dees not contain interior points.

3.3. LEMMA [LT, p. 9. If P : U — V is an operator with nonclosed
image ond F : U — V is a finile rank operator then P+ F has nonclosed
image.

3.4. LEMMA. Let P : U — V be an operator with nonclosed image and
let € > 0. Then there exist a functional f € V* and an operator Py : U — V
such that f does not vanish on im P, the image of P— Py is one-dimensional,
|P— Pyl <& and im Py C ker £ N cl{im P).

Proof By Lemma 3.2 the closed convex set ¢l P(B(U)) does not have
interior points in the subspace Vy = cl(im P) ¢ V. Therefore there exists a
functional fo € S(V3*) such that

(Yo € P(B(U))(|fo(v)] < £/2).
It is clear that fy does not vanish on im P. Let vy € V; be such that Folvo)
=1 and |lug|| < 2. Define an operator P : U — V by Pi(u) = P(u) —
Jo(P(u))ug. Let f be any continuous extension of fy onto the whole V.

It can be directly verified that P; and f satisfy all the requirements of
Lemma 3.4. '
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Let X be a Banach space and let M be a subspace of its dual. Every
element of X may be considered as a functional on M, so there is a natural
map of X intoc M*. We denote it by H.

3.5, PROPOSITION. Let X be o Banach space and let M be o total non-
norming subspace in X*. Then there exists an isomorphic embedding E :
M — X* such that the closure of E*(X) in the strong topology is of infinite
codimension in M* and E*|x — H is o nuclear operator.

Proof. In our case the map H is injective because M is total, and is not
an isomorphic embedding because M is nonnorming. By the open mapping
theorem the image of H is nonclosed.

Let us apply Lemma 3.4 to P = H and € = 1/4, and denote the obtained
functional by f1 and the obtained operator by Hy. By Lemma 3.3, H; also
has nonclosed image. Applying Lemma 3.4 to P = H; and € = 1/8 we find
a functional f» and an operator Hy. We continue in an obvious way.

We have ||H;_q — H;|| < 27%*. Therefore the sequence {H;}72, is uni-
formly convergent. Denote by R its limit.

The operator R — H is nuclear and satisfies the inequality

(2) R~ H|| <27,

It is clear that H(B(X)) is (1, 1)-norming. Hence (2) shows that B(B(X)) is
(1/2,3/2)-norming. Moreover, cl(im R) C 72 ker f;. The sequence { f;}72,
is linearly independent because by construction fiii does not vanish on
My ket fi. Therefore cl(im R} is of infinite codimension in M*. Define an
operator £ : M — X* by (E(m))(z) = (R(z))(m). It is an isomorphic
embedding because R{B(X)) is (1/2,3/2)-norming,

It is easy to see that the restriction of E* to X coincides with R. There-
fore E*|x — H is nuclear and ¢l E*(X) is of infinite codimension in M™*. The
proof is complete.

Proof of Theorem 2.4. A nowhere norming subspace is of course
nonnorming. So we can apply Proposition 3.5. It should be noted that for
M nowhere norming the operator H is strictly singular.

Let £ : M — X™* bethe operator constructed in Proposition 3.5. We need
only check that F(M) is nowhere norming. But this follows immediately
from the fact that E*|x = R = H + (R — H) is strictly singalar ag the sum
of two strictly singular operators [LT, p. 76].

Proof of Theorem 3.1. The necessity follows immediately from
Proposition 3.5 and the fact that ¢l E*(X) is a norming subspace in AM*.

Suppose that M is a Banach space for which there exists a closed norming
subspace V' C M* of infinite codimension. Let {2;}$2; be a normalized basic
sequence in M*/V and let mf € M* (i € N) be such that |m?]| < 2 and
Q(m}) = z;, where Q : M* — M*/V is the quotient map.
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Let X ==V @ ;. Define an operator H : X — M* by

oo
H(v, (a2) = v+ Y (as/i)m?

HENN

It is cloar that it is injective but is not an isomorphic embedding.
The restriction of H* to M is an isomorphic embedding because V is

a noriing subspace. The subspace H*(M) ¢ X* is total because H is
injective, and is not norming becanse H is not an isomorphic embedding.
This completes the proof of Theorem 3.1.

3.6. COROLLARY, If M is a total subspace of X* and M is quasireflexive
then X iy quosireflezive and Ord(X) = Ord(M).

Proof It is known [CY] that Ord(X*) = Ord(X) and that the order of
quasireflexivity of a subspace is not greater than that of the whole space.

It is well-known and easy to see that the duals of quasireflexive spaces
have no norming subspaces of infinite codimension. Therefore by Theo-
rem 3.1, M ¢ A* is norming. Hence X is isomorphic to a subspace of
M*. Using the above-mentioned result we obtain Ord(X) < Ord{(M™*) =
Ord(M).

Using the above result once more yields Ord(M) < Ord(X*) = Ord(X).
The proof is complete.

3.7. Remark. By [DJ, p. 355] nonquasireflexivity of X does not yield
the exigtence in X" of an infinite-codimensional norming subspace. There-
fore there exist nonguasireflexive spaces which are not isomorphic to total
nonnorming subspaces. C

4. Remarks on the nonseparable case and on spaces with the
Pelezynski property. Theorem 2.1 and Corollaries 2.5 and 2.6 are not
valid in the nonseparable cage. In order to prove this let us show that the
space X = Iy ¢ Ip(I") does not have the TNNS property if card(I") > 2°.

Let M Dbe a total subspace in X*. Then 204M) > card(X) > card ().

Jonsequently, card(M) > ¢ Therefore M contains a set of functionals of
cardinality greater than ¢ whose restrictions to ) coincide. Therefore the
intersection of M with the subspace of X* which vanishes on {1 is an infinite-
dimensional subspace in {0} @ (). If we “transfer” tlis subspace to X
then we obtain a subspace over which M is norming.

ProBueM. Characterize TVNS in the nonseparable setting.
At the moment it is known [Al] that C(K) ¢ TNNS for every compact K.

4.1, ProrosrrioN. Let X be a Banach space such that every strictly
singular operator T : X — Y is weakly compact. Then X § TNNS.
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Proof. Evidently it is sufficient to consider the case when X is nonre-
flexive. Let M be a total nowhere norming subspace in X*. Let Xy be the
completion of X under the norm

|l|ar = sup{[f(x)]: f & S(M)}.

Let T : X — X be the natural embedding. Then T is strictly singular '

because M is nowhere norming. Hence T is weakly compact.

The subspace M C X* may also be considered as a subspace of (X M)k
Moreover, the restriction of 7™ : (Xjr)* — X* to M is an isometry.

The operator T* is weakly compact by V. Gantmacher’s theorem [DS,
V1.4.8]. Therefore M is reflexive, hence weak* closed in X™* by the Krein-
Shmul’yan theorem [DS, V.5.7]. Since M is a total subspace of X* we obtain
M = X*. This contradiction completes the proof.

4.2. Remark. For separable spaces this proposition follows immediately
from Theorem 2.1,

The conditions of Proposition 4.1 are satisfied by spaces with the Pel-
czyhiski property. Let us recall the definition.

A Banach space X has the Pelcaynski property if for every subset K C
X* that is not relatively weakly compact there exists a weakly uncondition-
ally convergent series Y~ | @, in X such that

inf sup z*(z,) > 0.
T ZE*EK

This property was introduced by A. Pelezyiski in [Pe] (under the name
“property (V)”). In the same paper it was proved that for any compact
Hausdorf space S the space C{S) has property (V). For other spaces with
the Pelczyfiski property see [W, pp. 166-172].

The fact that spaces with the Pelczyhski property satisfy the conditions
of Proposition 4.1 follows from the next proposition.

4.3. PROPOSITION [W, p. 172]. Suppose X has the Pelczyriski property.
Then for every operator T : X — ¥ that is not weakly compact there exists
a subspace X1 C X such that X, is isomorphic lo co and the restriction of
T to X, is an isomorphic embedding.

The spaces which fail the TNNS property need not have the Pelezyhski
property and need not satisfy the conditions of Proposition 4.1.

A corresponding example is given by James’ space J. Let us recall its
definition [LT, p. 25]. The space J consists of all sequences of scalars z =
(a1,as, -..) for which lim;,.,.0 an = 0 and

”m“ = sup 2-H1/2((a‘1’1 — Qp, )2 + (a‘Pz - a’Pa )2 +.

e + (a’Pm»l - a’f‘m)z)l/2 < 0o
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where‘the supremum is taken over all choices of m and 21 <p2<... < Dy

It is easy to see that the identity operator T': J — ¢ is a nonuwea.kTy
?ompaFt strictly singular operator. On the other hand, any total subspace
in J* is norming over J. This follows from the well-known properties of
quasireflexive spaces.

In fact, there are nonquasireflexive spaces of this type as is shown in the
next section.

8. A nonquasireflexive separable Banach space without the

Petczyfiski property whose dual has no nowhere norming sulb-
spaces

5.1, THROREM. There exists a nonquasireflerive Banach space X¢ TNNS
i:—i(:h that there exists a strictly singular non-weekly compact operator T -
-+ Cp-

Proof Let X = (3077 &J),. The unit vectors in J are denoted by
{ei}i2y. It is known [LT, p. 25] that {e:} is a shrinking basis of J, therefore
its biorthogonal functionals {e}}%2, form a basis of J*.

It is clear that the vectors

ny = (0,...,0,e,,0,...)

(where e; is in the nth place), after any numeration preserving order in each
sequence {e, ;}%%,,, form a basis of X. We need the following two lemmas
about X and its dual.

‘ 5.2. LEMMA. Buery weakly null sequence {Zm}2_; in X for which
inf |2, || > 0 contains a subsequence equivalent to the unit vector basis of ls.

5.3. LEMMA. Buery infinite-dimensional subspace of X* contains a sub-
space isomorphic to ls.

These lemmas easily follow by well-known arguments (see [An], [HTW]).
Consider an operator T : (3 @J)z — ¢g = (3. @co)g defined by

(@1, @, ) = (2),...,2),..),

where (2;) is a sequence of elements of J and (x}) is the sequence of elements
of ¢y with the same coordinates. It is clear that T is continuous. It is not
weakly coupact because for any n € N the sequence (T(ELl eng )iy has
no limit points in the weak topology. At the same time, T is strictly singular
becanse by Lemma 5.2 the space X contains no subspaces isomorphie to cg.

Suppose that X € TNNS. Then by Theorem 2.1 there exists a surjective
strictly singular operator T : X — Z where Z is a certain Banach space.
Consequently, Z* is isomorphic to a subspace of X*. By Lemma 5.3, Z*
contains a subspace isomorphic to Iy. Denote this subspace by U, Let R :
Z — Z{UT be the quotient map. The space (Z/UT)* may be naturally



48

M. I. Ostrovskil

identified with w*-clU. Since U is reflexive, by Krein-Shmul’yan theorem
[DS, V.5.7] we have w*-clU = U. Therefore Z/ UT is isomorphic to_ 2. Let
{u;}22, be a sequence in Z/U" equivalent to the unit vector basis of Iy,
By Lemma 2 of [GR] we can find in X a weakly null sequence {;}72, for
which {RT'z;}52, is a subsequence of {u,}. By Lemma 5.2, {z;} contains a
subsequence {z,, 32, which is equivalent to the unit vector basis of /2. The
restriction of BT to the closed linear span of {z,,}22, is an isomorphism.
Because T is strictly singular this gives us a contradiction.
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