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Operational gquantities characterizing
semi-Fredholm operators

by

MANUEL GONZALEZ (Santander)
and ANTONIO MARTINON (La Lagana)

Abstract. Several operational quantities have appeared in the literature character-
izing wpper semi-Fredholm operators. Here we show that these quantities can be divided
into three classes, in such a way that two of them are equivalent if they belong to the
same class, and are comparable and not equivalent if they belong to different classes.
Moreover, we give a similar classification for operational quantities characterizing lower
semi-Fredholm operators. '

1. Introduction. Several authors [2], (3], [5], (8], [9], [12]-[14], [16]-[21]
have considered operational quantities in order to obtain characterizations
and perturbation results for various classes of operators of Fredholm theory.
For example, Schechter introduced in [13] operational quantities derived
from the norm in the following way:

Let X, Y be infinite-dimensional Banach spaces, L(X,Y) the class of
all (continuous linear) operators from X into Y, and S(X) the class of all
infinite-dimensional (closed) subspaces of X.

An operator T € L(X,Y) is said to be upper semi-Fredholm if its range
is closed and its kernel is finite-dimensional, and it is sald to be strictly
singular if no restriction of T'to M € §(X) is an isomorphism. Denoting by

n(T) = |7
the norm of T' € L(X,Y), Schechter [13] (with a different nota.tion). defined
in(T) = inf{n{TJn): M € S(X)},
sin(T) := sup{in(TJy) : M € S(X)},
where Jyr stands for the canonical inclusion of M into X, and proved that
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T is upper semi-Fredholm if and only if in(T") > 0,
T is strictly singular if and only if sin(T) = 0,
and for K,T" € L(X,Y),
sin(K) < in(T) = T + K is upper semi-Fredholm.

In particular, the last result unifies and improves previous results about the
stability of upper semi-Fredholm operators under perturbation by small-
norm and strictly singular operators {see [4]).

Analogous results have been obtained for operational quantities derived
from the injection medulus

(1) I = f{||Tel|: z € X,
or from the Hausdorff measure of noncompactness
(2) A(T):=inf{e > 0:TBx C F+¢eBy for some finite subset F' C Y},

where Bx stands for the closed unit ball of X, and also for other operational
quantities.

Here an operational quantity will be a procedure which determines, for
every pair X, ¥ of infinite-dimensional Banach spaces, a map from L{ X, i@
into the nonnegative numbers.

Given two operational quantities a and b we will write a < ab, for o > 0,
if for any infinite-dimensional Banach spaces X, Y and T ¢ L{X,Y) we have
a(T) < ab(T). We will say that o and b are comparable if aa < b or ab < a
for some o > 0; and we will say that they are eguivalent if va < b < Ba for
some 8 > a > 0.

In this paper we will show that the operational quantities which have
appeared in the literature characterizing upper semi-Fredholm operators
can be divided into three classes, in such a way that two quantities are
equivalent if they belong to the same class, and are comparable but nog
equivalent if they belong to different classes. We observe that, since the
class SFL.(X,Y") of upper semi-Fredholm operators is open in L(X,Y), the
distance d(T) of T' € L{X,Y) to the complement of SFL(X,Y) can also
be used to characterize upper semi-Fredholm operators. All the quantities
we consider are less than or equal to d, and we do not know if any of them
is equivalent to d. An analogous classification will be given for operational
quantities characterizing lower semi-Fredholm operators.

X

=1},

NoTATION. Throughout, X and ¥ will be infinite-dimensional Banach
spaces, X* the dual space of X, By the closed unit ball of X, L(X,Y) the
class of all (continuous linear) operators from X into Y, Ja the canonical
inclusion of the subspace M of X into X, Q@ the quotient map from X
onto X /M and T* € L(Y*, X*) the conjugate operator of T & L(X,Y).
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2. Operational quantities derived from the injection modulus.
We will consider the following families of (closed) subspaces of X

S(X):={M < X : M is an infinite-dimensional subspace of X 1
$*(X):={M < X : M is a finite codimensional subspace of X'}
First we give the definitions of two operational quaniities.
DEFINITION 2.1. For 7' € L(X,Y) the quantities s*j and jc, are defined
by
§*F(T) = sup{d(TJp) : M € S*(X)},
joe(T) =sup{e > 0:
3Z,3K € Co(X, Z),Vz € X, eliz| < [Tz| + | K=},
where Z is a Banach space and Co(X, Z) is the class of all compact operators
from X into Z.

The quantity s*j was introduced by Schechter [13], denoted l.ay v. In [19]
s*j was denoted by B because of its relation with the Bernstein numbers.
The quantity joo was defined by Férster and Liebetrau {3].

We have (13, Lemma 2.13]

T is upper semi-Fredholm if and only if s*j(T) > 0.
Next we show that the quantities s*j and joo coincide.
THREOREM 2.2. For T € L(X, Y7,
§'3(T) = jeo(T)
=sup{e > 0:3K ¢ Co(X,Y},Vz € X, eljz|| £ |[Tz| + | Kzl||}-
Proof. Define
g(T) := sup{e > 0: 3K € Co(X,Y), ¥z € X, el < [[Tz]| + || Kz}
It is enough to prove the following chain of inequalities:
joe(T) < s*3(T) < 9(T).

() joolT) € 8°§(T). Assume & < jgoT'). There exist a ]?ana,ch space
Z and an operator & € Co(X, Z) such that £ < || Tz|| + [[Kz| for every
z € X with |jz{ = 1. Moreover, given § > 0, since K is compact, there
exists M € §*(X) such that n(K Jay) < § 4, Theorem II1.2.3]. Then we

obtain
e < inf{||Te|| + | Kzl sz € M, |z| =1}
< inf{||Tzll s x € M, 2] =1} +sup{| Kz}l : z € M, |zl =1}
s J(TTag) + (K Jar) < 8*5(T) + 6

Hence £ < s*5 (1.
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(b) ¢*i(T) < g(T). If *5(T) = 0, then the inequality is clear. Assume
s*§(T) > 0 and take & < s*j(T’). There exists a subspace M € §*(X) such
that

g < J(T ) < 8% 5(T),
hence for every m € M we have gim|| < ||Tm||. We take a finite-dimensional
subspace N of X such that X = M & N. Foreach z € X, let # = m -+ n be
the decomposition of z associated with the direct sum M @ N, We take an
operator 4 € L{N,Y) such that j(A) = n(T) + &; hence

(n{T) +e)|n|]| € ||An|| for every n € N,
and consider the operator K : X — Y given by
Kz :=K{m+mn)= An,
which is compact. For every € X we obtain
elell < elimll +-ellnll < [Tm] +ellnl| < [[Taf + | Tnl| + &linf
STz + [|Anft = {Tz]| + || Kz].
Hence £ < g(T) and the result is proved. =

The Hausdorff or ball measure of noncompaciness of a bounded subset
D of X is defined in the following way:

h(D) :=inf{e > 0: D C F 4 eBx for some finite subset F' C X},

It is clear that the Hausdorff measure of noncompactness for operators de-
fined by (2) satisfles

(3) h(T) = h(TBx).

From the Hausdorff measure of noncompactness for bounded subsets, the
following operational quantities have been derived.

DermviTioN 2.3, For T € L(X,Y) the quantities hy, and h,, are defined
by

ho(T) = inf{R(T'D) : D C X bounded, h{D) = 1},
hep(T) = inf{A(T'D) : D C X bounded countable, A{D} = 1},

The quantity hy, has been considered in [2], [8], [17], [19]; and hg, in [2]
and [19]. These quantities are equivalent to s*j, hence they characterize the
upper semi-Fredholin operators.

PROPOSITION 2.4. The quantities s*j, h, and ha, are equivalent:
hb S hcb S 2hh: (1/2)]7«:13 g S*j __<. 2hl‘11‘1'
Proof. See [2, Propositions 4, 5|. =

Remark 2.5. {a) The quantity ke {T) coincides with the injection mod-
ulus of a certain operator T' associated with T'. Consider £,,(X), the Banach
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space of all bounded sequences on X, with the supremum norm, and re(X)
the closed subspace of £, (X) of all sequences with relatively compact range.
Given T'e L{X,Y) we consider the operator

T i 0o (X)/1e(X) = £oo(Y) /re(Y)
given by ~
T{(zn) +1e(X)) = (Tzn) + re(Y).
We have [2, proof of Proposition 4]
he(T) = 3(T).

(b) Tf we consider the Kuratowski or set measure of noncompactness k,
instead of the Hausdorff measure of noncompactness b, we can obtain some
other equivalent quantities, because i < k < 2h.

DEFINITION 2.6. For T' € L(X,Y) the quantities sj and isj are defined
by
si(T) == sup{j(TJu) : M € S(X)} [13],
is§(T) == inf{sj(TTar) : M € S(X)} [9] (see also [6]).
We have [9], [6]
T is upper semi-Fredholm if and only if is5(T) > 0.
Moreover,
T is strictly singular if and only if s3(T) = 0.

THROREM 2.7. For every T € L(X,Y),
sT5(T) < is§(T);
however, the quantities s*j and tsj are not equivalent.
Proof. For every M &€ S{X} we have
s*H(T) < 8"3(TIar) < 8§ (T )-

Consequently, s*5(T) < isj(T).

In order to show that s*j and isj are not equivalent we take a Banach
space X such that there exists a strictly singular operator 4 € L(X,X)
which is not compact; for example, X = L,[0,1] (see [4, Example TIT.3.10]).
Note that for any « > 0 we can choose A in such a way that

o < i*n(A) = inf{n(AJy) : M € §*(X)}.

(The operational quantity i*n was defined by Lebow and Schechter [8] and

by Sedaev [16], and it is a measure gf noncompactness for operators.) Con-

sider the space X @ X with the nopfeNz, y)|| := lz||+ ||yl and the operator
LW

[

£
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T: X®X — X @ X defined by T'(z,y) := (0, Az). Clearly T' is strictly
singular, hence [9] (also [6])

isj(I —T) =4s§(I) =1,
where I is the identity operator on X & X. Consider the subspace
G:={(z,Az):ze X} e 5(X & X).

If M e 5*(X & X), then M NG € §%(CF); hence there exists N € §*(X)
such that

MnNG={(z,Az): 2z € N}.
Moreover, since n(AJy) > «, for some z € N, ||z|| = 1, we bave

[ -T)(zA2)] . 1

(A=) ~1+a’
then
1
(1 — - .
J(( T)JM)_HQ,
hence
1
(- T) < = s(1 — T,
SI=-T) s g = 7o - T)

Consequently, there is no £ > 0 such that isj < 85*7.

The example given in the proof of Theorem 2.7 is inspired by [14,
Example 15].

3. Operational quantities derived from the norm. The following
operational quantity was introduced by Gramsch (see [13]). In [13] it was

denoted by T, and in [19] it was denoted by G because of its relation with
the Gelfand numbers.

DEFINITION 3.1. For T' € L(X,Y) the quantity in is defined by
in(T) r= inf{n(TJar) : M € S(X)}.

Remark 3.2. In [21], for T € L(X,Y), the operational quantity
AT = sup{in(TJp) : P € §*(X)}

was introduced. This quantity coincides with in. In fact, it is clear that
in < A'; moreover, given P € §*(X), for every M € S(X) we have M N P
€ S(P); then in(T) = in(T'Jp), hence in(T) = A'(T).

Given T € L(X,Y'), we have [13]:
T’ is upper semi-Fredholm if and only if n(T") > 0.

When comparing operational quantities, the notion of distortable Banach
space, as given by Schlumprecht [15], will be useful.
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DEFINITION 3.3. Given a number A > 1, we will say that the infinite-
dimensional Banach space (X, || - ||} is A-distortable if there exists an equiv-
alent norm |-| on X such that for each subspace M € S(X) we have

z
up {20,y € b, ol =l =1} > 2
We will say that X is arbitrarily distorfable if it is A-distortable for amy
A > L

A M-distortion of X will be an isomorphism A of X onto a Banach space

Z such that for every M € S(X) we have Aj(AJy) € n(AJa).

James [7] proved that cy and #; are A-distortable for no A > 1, and the
long-standing open question if the spaces £, (1 < p < co) are distortable
has recently been solved by Odell and Schlumprecht [10], showing that they
are arbitrarily distortable.

THEOREM 3.4. For an infinite-dimensional Banach space X and A > 1,
the following assertions are equivalent:

(a) The space X is A-distortable.

(b) There exists a A-distortion of X.

(¢) There exists an isomorphism A from X onio a Banach space Z such
that for every M € S(X) we have Aisj(AJn) < in{AJn).

Proof. (a)=(b). Let Z be the space X endowed with the norm | - |
equivalent to || - || and satisfying (4). The identity operator

A: X =2 Az ==,
is an isomorphism such that for every M € S(X) we have
A
A< { S oy e, fel = vl =1}
|Ay|
_sup{|Az|:z € M, ]z} =1} = n(AJy)
Comf{|dyliy e M, Jyl =1} i(AJm)
Hence A is a A-distortion of X.

(b)=>(c). Given € > 0, for each M € S(X) there exists N € S(M) such
that n({AJy) < in(AJy) +e. We choose P &€ S(N) such that j(4Jp) +e >
57(AJwn). Then )

,\ZS’}(AJM) < )\SJ(AJN) < Aj(AJp) + Ae
< n{AJp) + A < in(Ady) + e+ Ae.
Consequently, Misj{AJy) < in(AJx).

(c)=-(a). Let A be an isomorphism from X onto a Banach space Z such

that for every M € S(X) we have Misj{AJrr) < in(AJyr). Then jz| := || Az
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defines an equivalent norm on X, and for every M € 5(X), we have
AJ(AJn) < Misj(ATa) < in{AJy) < n(Adu),

and consequently,

sup{ 10,y € M, [l = Iyll =1}

el =yl =1} = 2A%)
_sup{ o,y € M, |iz|| = ||ly|| = 1 T i(ATy)

_ [ Ayl -
That is, X is A-distortable. »

COROLLARY 3.5. For every T € L(X,Y),
is§(17) < in(T");

however, the operational quantities i85 and in ere not equivalent.

= A

Proof. Clearly sj < n; hence for every M & S(X) we obtain s5(T'Jy) <
n(TJa); consequently, is5(T) < in(T).

On the other hand, given an arbitrarily distortable Banach space X (for
example £3), for every A > 1, there exist Z, and Ay € L(X, Z,) such that
Asz(AA) < in(A)‘),

hence the quantities 757 and in are not equivalent. m
Remark 3.6. It follows from Theorem 2.7 and Corollary 3.5 that the

operational quantities s*§ and in (that is, the quantities B and & associated
with the Bernstein numbers and Gelfand numbers [19]) are not equivalent. m

Now we relate the operatjonal quantity in with another quantity derived
from the Hausdorff measure of noncompactness for operators (2), (3).

DEFINITION 3.7. For T € L(X,Y) the quantity ik is defined by
ih(T) == Inf{h(TJps) : M € S(X))}.
'The quantity ik was introduced (independently) by RakoZevié [12] and
Tylli [17]. We show that the operational quantities in and ¢/ are equivalent,

hence ik characterizes the upper semi-Fredholm operators. We need the
following lemma.

LEMMA 3.8. Let Y be an infinite-dimensional Banach space and let
U CY be a finite-dimensional subspace. For every ¢ > 0 there exisls a
findte-codimensional closed subspace V. C Y such that UNV = {0} and
lull < (1+&)|lu-+v| for everyuec U andwv e V.

Proof. See [5, Lemma 2(a)]. m
PROPOSITION 3.9. For every T € L(X,Y),
th(T) <in(T) < 26h(T").
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Proof. It is obvious that ¢h(T) < in(T). Let M € S(X) and € > 0. We
have [1, Theorem IL.3.9], [3, Proposition 1]

h(T) = inf{n(QuT) : U C Y is a finite-dimensional subspace},

where Qu denotes the quotient map from ¥ onto ¥/U. Then there exists
U C7Y finite-dimensional such that

n(QuTJa) < MTJy) + e

Using Lemma 3.8, we can find a finite-codimensional closed subspace V C Y
such that U NV = {0} and for any u € U,v € V,

loll < full + flu+ ol £ (2 + &) [|u +vl.
Define P:=T" (V)N M € S(X). Then
MT Ty} +e>n(QuTJy) 2 n(QuTJip)
= sup{inf{flu + Tz|:veU}:z € P, ||z|| =1}
>aup{(2-+&) Tz :z € P, flz| =1} = (2+ &) 'n(TJp)
= (24 ¢) " tin(T).
Consequently, in(T) € 2h(TJar) for every M € 8(X). Therefore in(T'} <
%h(T).

Recall that the quantity d is the distance of an operator to the class of
non-upper-semi-Fredholm operators and we have T € SF, if and only if
d(T) > 0. In the following diagram we summarize the relations between the
operational quantities which characterize the upper semi-Fredholm opera-
tors. The symbol | means “equivalent” and — means “< and comparable
not equivalent”:

§%j —isf — in <d

1 !
hy ih
1
hcb

Remark 3.10. We do not know if the quantities in and d are equivalent,
Remark 3.11: It is well known that
(5) lim(a(T™)V/™) = inf{|]A| : Al =T € SF. },

for a = in, s*4 [19], [17]. Consequently, (5) holds for a = 984, 1h, hp, hep. That
is, the operational quantities which characterize the upper semi-Fredholm
operators have the same asymptotic behaviour.

We observe that the asymptotic behaviour of the distance to 8SF is
given by (5) (cf. [20}]). '



22 M. Gonzédlez and A, Martinén

Remark 3.12. All the quantities characterizing the upper semi-Fred-
holm operators appearing in the literature are comparable. However, it is
not difficult to define other quantities which are not cornparable. Consider
the operational quantities a and b defined by

a(T) == s*§(T)in(T) and b(T) := isi(T)%
Using the example introduced in the proof of Theorem 2.7, for each

o > 0, there exists an operator T such that is7(T) = n(T) = 1 and s*j(T) <
1/(1 + «); that is,

1
< — 1.
a(T) < A and b(T) =1

Hence, there is no § > 0 such that Sa < b.
In [15, Theorem 3] a Banach space (X, | -|) is considered such that, for
any n=1,2,..., there is an equivalent norm |- |,, such that, for any ¢ ¢ X,

1
S B
logy(n + 1) 2] < leln < iz,

and for every ¢ > 0 and each M & 5(X) there exist z,y € M, |lzi = ||yl
=1, with
1+e

n > 1 - d . S -, .
s> 1e and S ot

Clearly, the isomorphism
T )= (K- l), To=z,
satisfies isj (1) = s*J(T) == 1/logy(n + 1) and in(T) = 1; that is,
1 1
= W and b({T)

logy(n+ 1)
Hence, there is no 8 > 0 such that 56 < a.
Consequently, the operational quantities o and b are not comparable.

a{T)

4. Lower semi-Fredholm operators. An operator T € L(X,Y) is
said to be lower semi-Fredholm if its range is finite-codimensional (hence
closed). In this section we classify operational quantities characterizing the
lower semi-Fredholm operators, in a similar way to that in the previous
section for upper semi-Fredholm operators. _

If'Y is an infinite-dimensional Banach space, consider the following fami-
lies of (closed) subspaces of ¥ with associated infinite-dimensional quotient:

Q(Y) = {U CY :Y/U is infinite-dimensional},
Q+(Y) = {U CY : U is a finite-dimensional subspace of ¥'}.
We denote by Qs the quotient map of ¥ onto Y/U.

icm

Semi-Fredholm operators 23

First we consider some operational quantities derived from the surjection
modulus

q(T) :=sup{e > 0:eBy C TBx}
of T € L(X,Y).

DeFINITION 4.1. For T € L(X,Y) the quantities s.q’, s¢’ and isg’ are
defined by

8.q (T} = sup{g(QuT) : U € Q.(Y)}},
sq'(T) = sup{q(QuT) : U € Q(¥)},
15q (T) .= inf{s¢'(QuT) : U € Q(¥)}.
The quantities s,.q' and s¢’ were introduced by Zemdnek [19], and s.q’

was denoted by M because of its relation with the Mityagin numbers; ¢sg’
was introduced in [9], [6]. We have [19], [9], [6]:

T is lower semi-Fredholm < s,¢'(T) > 0 < isg'(T) > 0.

Also, 5¢'(T) = 0 if and only if T" is strictly cosingulor; that is, uT i3 not
a surjection for any U € Q(Y").
Forster and Liebetrau [3] defined, for T € L(X,Y),

90o(T) = sup{e > 0:3Z, 3K € Co(Z,Y), eBy C TBx + KBgz}.
PROPOSITION 4.2. For T € L{X,Y},

S*Q,(T) = gao(T)
=sup{e > 0:3K € Co(X,Y), eBy CTBx + KBx}.

Proof. It is enough to prove the following chain of inequalities:
dCo (T) < S*QI(T) .
< g (1) :=sup{e > 0: 3K € Co(X,Y), eBy C TBx + KBx }.

(a) geo(T) < 8.4 (T). Let 6 > 0. If qoo(T") — 6 < @ < gao(T), then there’
exist a Banach space Z and a compact operator K : Z — ¥ such that
aBy C T'Bx -+ KBz.

Since K is compact, there exists U € Q. (V) such that n(QuK) < §. Con-
sider the space X @ Z with the norm ||(z, z)|| := max{|z|, |2[|} and the
operators

To: X0 Z—=Y, Tz z) =Tz,

En:XazZ—-Y, Kolzz) =Kz
Note that ¢(QuTs) = ¢(QuT) and n(Qu Ky) == n(QukK). We have

aByy C QuTBx +QuKBz = Qu(To + Ko}Bxez.
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Consequently,

a < q(Qu(Ts + Ko)) < ¢(QuTa) + n(QuEp) < 9(QuT) + 6;
that is, g(QuT) > a — 8. Since § is arbitrary, s.¢'(T) > o; hence geo(T) <
s.q' (T).

(b) 5.¢' (T) < ¢(T). If 8,¢'(T) = 0, then the result follows from (a}.
Assume s,¢'(T) > 0. For each ¢ < s,q'(T") there exists U € Q.(Y) such
that £ < g(QuT); that is, eBy,y C QuTBx. Take V € Q. (X) such that U
and V have equal dimension and let A € L(V,U) be an isomorphism from
V onto U satisfying g(A) > n(T) + g; that is,

(n{T) +¢e)By € ABy.
Let W be a complement of V. For each # € X let # = w -+ v be the
decomposition of x associated with the direct sum W&V, Now the operator
K: X —Y given by Kz := (¢ + n(T)) Av is compact. Moreover, for every
y € By, there is x € By such that

ey+U=Tz+U € Byy.

We have ey ~Tz € U and ||ey —Tz|| < n(T) +e. Then there is v € By such
that ey — T'x = Av = Kv, hence ey e TBx + KBy and e < ¢'(T). =

THEOREM 4.3. For every T € L(X,Y),

544 (T) < is¢'(T);

however, the operational quantities s.q’ and is¢' are not eguivalent.

Proof. Obviously s.q’ < s¢'; hence, for every U € Q(Y),

50 (T) £ 54q'(QuT) < 5¢'(QuT).

Consequently, s,.¢'(T) < isg'(T).

Now we show that s.g’ and isq’ are not equivalent. We take a Banach

space X such that there exists a strictly cosingular noncompact operator
A € L(X, X); for example, we can take X = L1[0,1] (cf. [Remark IIL.3.11]).
We define

T XeX—-XaX, T(xy):=(Ay0).
In X@X we consider the norm ||(2, ¥)|| == max{||z|l, |y||}. Since T iy strictly
cosingular, ¢sg'(I — 6T) = isg’(I) = 1 for any § > 0 [9], [6]. We will show
that s.¢'(I — 6T) < (ab)™*, where

o= h(A4) = inf{n(QvA): V e Q.(X)} > 0,

because A is noncompact (see the proof of Proposition 3.9).
We fix a finite-dimensional subspace U C X @ X. Then we take finite-
dimensional subspaces Uy, Uy of X such that UV c U; @ Us, and we let

V :=U; + Al. We have n{QvA) > «. Then we can find € X such that
iz|l =1 and ||Qv Azl = dist(Az, V) > «.
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Assume that (0, z) + U belongs to the range of Qu (I —7") (notice that
(0, 2){l = 1). Then

(0,2) = (u1,ug) + (I — THy, z) = (u1,u2) + (y — Az, 2),
withy,z¢ X, u; € Uy, ug € Us. So z =us + 2 and
O#u1+y—Az=u1+y—Am+Auz.
Then y = Ax — w1 — Aug; hence
lylt = dist{Az, V) = o.

In this way we conclude that Qy (I — T)(y, z) = (0, z) implies ||(y, 2} || = «,
and so ¢(Qu(I - T)) < a7

Since U is an arbitrary finite-dimensional subspace, s.¢'(I —T) < «
In an analogous way, we obtain s,q' (1 ~ 6T) < (ab)™!. =

~1

Now we consider an operational quantity derived from the norm.
DEPINITION 4.4. For T € L(X,Y) the quantity in' is defined by
in'(T) = inf{n(QuT) : U € Q(Y)}. '
Weis [18] introduced the quantity in’ and proved that
T is lower semi-Fredholm if and only if in'(T) > 0.

In [19], in’ is denoted by K because of its relation with the Kolmogorov
numbers.

THEOREM 4.5. For every T € L{X,Y),
isq'(T) < in'(T);
however, the quantities is¢’ and in' are not equivalent.

Proof. From g < n we obtain s¢' (QuT) < n(QuT) for every U € Q(Y),
hence isg’ (1) < in'(T).

Now, in order to show that isg’ and in’ are not equivalent, we consider
a reflexive arbitrarily distortable Banach space X (X = {3 for example; cf.
[10]). For every A > 1, let Ay : X — Z, be a A-distortion of X. Given
any M € $(X) we have Mj{AxJar) < n(AxJur). As §(B) = g(B") for every
operator B (see [11, Proposition B.3.8]), we obtain

(6) Ag(QuAL) £ n(QuAl)
with U = M, the annihilator of M. Since X is reflexive, any infinite-
codimensional subspace U of X* can be written in the form ML for a
suitable infinite-dimensional subspace M of X. Consequently, (8) is true for
any U € Q(X™).

Let & > 0. There exists U € Q(X*) such that n(QuA}) < in'(43) +e.
Moreover, there is V € Q(X*),U C V, satisfying ¢(Qv A} )+ > s¢'(Qu A3 ).
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Then
Aisq'(43) < Asq'(QuAl) < AM(QuA4l) + Ae
< n(QyAy) + Ae < in'(AL) +& + Ae.

Consequently, Aisg'(A}) < in'(A}). Hence there is no # > 0 such that
wn'(T) < Bisq'(T) for every operator T acting between infinite-dimensional
Banach spaces. m

Remarik 4.6. It follows from Theorems 4.3 and 4.5 that the operational
quantities s.q¢' = M and 4n’ = K, associated with the Mityagin numbors
and Kolmogorov numbers [19], are not equivalent.

Tylli [17] proved that the following operational quantity derived from
the Hausdorff measure of noncompactness £,

th'(T) :=nf{h(QuT): U e & (Y3,
coincides with in'.

Remark 4.7. The class SF_(X,Y) of all lower semi-Fredholm oper-
ators from X into ¥ is an open subset of L(X,Y), and in/(7) is smaller
than or equal to the distance of T' to the boundary of SF_(X,Y) (denoted
by 85F._(X,Y)). Then the question arises whether in’ and the distance to
O0SF_(X,Y) coincide, or are equivalent,.

Remark 4.8. For @ = in/, 5,9’ we have [19]
(7) lim(a(T™)*") = inf{|A| : AT~ T ¢ SF.}.
Hence {7) also holds for a = isq’.

Note that (7) holds for the distance to 9SF. (cf. [20]).
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