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Analyticity of transition semigroups
and closability of bilinear forms in Hilbert spaces

by

MARCO FUHRMAN (Milano)

Abstract. We consider a semigroup acting on real-valued functions defined in a
Hilbert space M, arising ag a transition semigroup of a given stochastic process in H.
We find sufficient conditions for analyticity of the semigroup in the L®{1) space, where
# 18 a gaussian measure in H, intrinsically related to the process. We show that the in-
finitesimal generator of the semigroup is associated with a bilinear closed coercive form
in £2(1). A closability criterion for such forms is presented. Examples are also given.

L. Introduction. Let H be a real Hilbert space with scalar product {, ).
Let £(H) be the algebra of all bounded, everywhere defined, linear operators
in H. We denote the norm in H and in £(H) by the same symbol || ||. Let
By (H) be the set of all bounded Borel measurable functions f : H — R.
Let A be the infinitesimal generator of a strongly continuous semigroup e*4,
t > 0, of linear operators in H. Assurne R € £(H) is a nonnegative operator
in H,ie R=R">0 and assume that J; given by the formula

¢
Qi = f e Re®4" ds
0
Is a trace class operator (here and in the following, operator-valued integrals
converge in the strong operator topology). Then one can define the transttion
sEMIgroup

(1) (P9)(@) = [ o) N(e"2,Qu)(dy), & € By(H),
H

where N(e*4z, Q) is the gaussian measure in H with mean value e*4z and
covariance operator @y. In this paper we will study regularity properties
of Pt.

A motivation for studying P; is its well known probabilistic interpretation
which we now sketch. Consider the stochastic differential equation in H:
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54 M. Fuhrman

) dX(t) = AX(t)dt + RV 2dW(t), t >0,
X0)=xcH,

where W (t) is white noise. Let X (L, z) be its mild solution. Then
(PL'Q&) (."r) = Ego{X(t, m))’ ¢ < Bb(H)

Here E denotes the expected value. We refer to [6] for details.

One can consider F; as a semigroup in the space of all continuous real-
valued bounded functions in H: we refer to [6], [2], [3] for this approach.
But other natural choices are possible. If we assume that [le!4| < Me~vt
for some constants M,w > 0 and that sup,.o TrQ; < oo then one can define
the operator

o0
o0 :fetARetA*dt,

which is a trace class operator, and the gaussian measure g = N(0, Qo) is
well defined. u is an invariant measure for P, ie.

J (Po) j 6(z) pldw), & € Bo(H

H

(see [6]). So it is natural to consider P; as a semigroup in the space L*(g),
the Hilbert space of all Borel measurable functions f : H — R which are
square integrable with respect to i, endowed with its usual scalar product:

f Bz .9 € L*(p).

It is known that P, has a unique continuous extension to a strongly con-
tinuous contraction semigroup of linear operators in L2(u)} (see [5]), which
we will still denote by Py. In the following we will always consider F; as a
semigroup in L?(u). Some additional properties of Py, such as a more pre-
cise characterization of its infinitesimal generator and its domain, as well as
applications to nonlinear cases, are studied in [5].

One of the main aims of this paper is to find sufficient conditions for
the infinitesimal generator A of the semigroup Py to bhe variational, i.e. to
be associated with a bilinear closed coercive form &€. Consequently, we will
find conditions implying that P is an analytic semigroup. For terminology
and material on bilinear forms we refer to [8]; also, Sections 2 and 3 con-
tain a short review of the results we need. More exphcnly, we will prove
that

3  Eld)=

CRDIEIN z) pdz),

~ [ (Ag)(z)p(z) u(dz),

¢ € D(A), ¥ € D(£),
b , .
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where £ is given, at least formally, by

) E@¥) =~ [ ($e(2), AQuotu()) u(dz), @, € D(E),
H

provided certain assumptions are satisfied. In (4), D(£) ¢ L2(u) is the
domain of the form £, and ¢,,%, are the Fréchet derivatives of ¢ and
¥, at least if they are sufficiently regular (see Section 3 for precise state-
ments).

The equation {4) is only formal. In order to define properly the form &
we are led to considerations which we think have an interest in themselves

and consitute another aim of this paper. £ will be defined as the closure of
the form

(5) &l ¢)

=~ [ (¢s(z)
H

where FCE°(H) is defined as follows. Let {e;} be an orthonormal basis of
H consisting of eigenvectors of Qo and let us denote by Cof(R™) the set of
all functions f : R™ ~ R which have continnous and bounded derivatives of
all orders. Then we say that ¢ : H — R belongs to FC(H) if there exist
m & N and f € CF°{R™) such that

dlz) = f({z,e1),...,{z,em)), =z€& H.

Closability of infinite-dimensional bilinear forms has been the subject of
recent investigation: we refer to (8] (see also Remark 2.3). In Section 2 we
will give conditions implying that the form &; is closable in L?(u). This will
be done through an integration by parts formula and the remark that the
gsymmetric part of & is

6)  FEld,%)+Elw,4)
1
2

(Rés(2),%a(2)) pldx), ¢, € FOF(H).
In twm, this depends on the fact that Qo satisfles the (formal) Lyapunov
equation

AQDO -+ QooA-* = —R.
Equality (6) allows us to state sufficient conditions for the closability of the
form & in terms of A and R, without requiring, in particular, the operator
R to be strictly positive (compare also with Remark 2.3).

We finally recall that, even in the infinite-dimensional case, the connec-
tion between bilinear forms and transition semigroups (assoclated with even
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more general stochastic processes than the solution X (¢) of (2)) has been
deeply studied: the interested reader can consult for instance [8] and the
references given there. One of the major achievements is the characteriza-
tion of those forms that possess an associated stochastic process. Our point
of view is slightly different, since we start from a specific transition semi-
group P; (for which we even have the explicit formula (1)) associated with a
given stochastic process X (¢), and we prove that P; can be associated with
a form £. However, we think that the situation we are considering is suffi-
ciently general and, in view of (2), typical. Moreover, we obtain an explicit
description of the form £. Also we recall that it is an open problem to find
necessary and sufficent conditions on A and R in order that P is analytic
in L2 (u).

In the following sections we will list again all our assumptions, but we
will keep the same notations already introduced. Additional notations will
be used in Sections 2 and 3.

Throughout the paper we consider real Hilbert spaces. Whenever com-
plex scalars are needed (e.g. in order to consider analytic semigroups, or in
some examples of Section 4) it is enough to consider the complexification of
the space, and we will do this without explicit mention.

The author wishes to thank G. Da Prato and J. Zabezyk for interesting
discussions.

With the exception of Example 4.3 and some minor comments, all the
results of this paper have been presented in the preprint [7]. During the
preparation of the final manuscript the author learnt that results similar
to those of Theorem 3.6 have been independently proved by B. Schmuland
[10]: the two results are similar, but neither includes the other.

2. An integration by parts formula and the closability of a sym-
metric form. The following proposition will be used only to prove Theorem
2.2, but it may have an interest of its own.

ProrosiTioN 2.1. Assume Q@ € L(H), Q = Q* > 0, TrQ < co. Let
{ex} be a complete orthonormal basis of H such that Qek = Apey for some
At = 0 and let p= N(0,Q). Then

(i) For any h € H the series

() Si0)= Y (hew)(sen) =

k=1, Ay >0

converges in L*(u). Moreover, if I'¢ H and h = QY21 we have
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Sh(l‘) = (luﬁ)
(ii) For eny h € H and ¢, € FC(H) we have

8) [ (¢al2), QV2R)pp(x) u(da)

B

where Sp(x) is given by (7).

p-a.e.

2), Q'h)¢(a) ulde) + [ $(a)b(z)Sn(z) p(da),

H

Proof. (i} Recalling that {x,e;} are independent real random variables
with law A(0, Ag) on H, endowed with the probability measure u, we obtain,

for M > N,
iy )
(h,en)(z, Ek)——) w(dz)
H k=N, AR >0 \/X;
a 1
= f (h,ek)Q(m,ek)Q-)-\— w(dz)
k=N, Ap>0 H k

M
<D (hyex)? =0, M,N— oo
k=N

Now observe that if Ay = 0, then {z, ex} has law (0, 0), so that (z, ex) =0

pae. So if h = QY2 we obtain from (7),
= 1
Sh(m) = Z (lan/zek)(maek)
k=1, Ap>0 \/’E

= Z Lewyzep) ={,z) pae
SE

(ii) There exist m € N and f,g € CS(R™) such that
d(z) = flz1,. .. P(z) = glz,..

where we set @y = (i, ep). Without loss of generality, we can suppose A > 0
for k =1,...,rand Appy = ... = A = 0. So we have zpuq = ,.. =
Zm = 0, p-a.e. Denoting by &), the partial derivative with respect to the kth
argument, we have

emm)w -amm): z€ H,

($a(2),e8) = Bef) (@1, -+ Zon)-

Now we obtain
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[ (#2(2), Q2R (=) p(de)

H

) ex) (QY2h, e e (z) u(d)

e 10

J
"
f alcf 2 PR
H
J(

b, en) VARG(@L - -y Bm) p(d)
k=1
ak:f &11-- £T‘505"‘50)g(§1)"'!£7‘5 )Qr(E)dE
k=1 B"
% {h, ek)\/_
where g, (£) = (20) "2 (A1, )" 2 exp (~3 Yh_, £2/Ak). Integrating by

parts we obtain

9) [ (¢a(2), @ hytp(z) p(dz)

H

= _Y [ @) En0,

k=1 RT

x (haek}\/XIZ
+y [ gt &0, 0)f (6L, 6,0,

k=1 R"

20V (€1rv 36000, -, 0)0n(§) €

L 0)en(€ >j’L

Denote by I; (respectively, I») the first (respectively, second) sum on the
right-hand side of equality (9). By similar arguments it is easy to see that

—f ({2

d§ {h, er).

th () p(de)

and

T

chs z)pp(x){z, en) (h, ek>\f—u dz)

1

i }[qb o)), en) b, ek)\/..._ u(dz),

1 Ar>0

f 8(2)t(2)S(x) u(da),

H

i

where Sp(z) is the same as in (i). The last equality is due to the fact the
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series
[+ ]

1
Yo e (b e —=
k=m41, \g>0 VA

converges in L*() to a random variable independent of ¢(2)9(z) and having
zero mean value. w

We now recall some definitions and fix some additional notations con-
cerning bilinear forms, We keep the approach of 8], to which we refer the
reader for further information and details.

Let D be a dense linear subspace of a real Hilbert space H. (in the
following we will take H = L*(u)). We denote by || || the norm of H and by
{, }» its scalar product. A form is a bilinear function D x D — R, (¢,) —
E(¢, ), satistying £(¢, ¢) 2 0, V¢ € H. D will be called the domain D(&)
of the form and will be endowed with the norm

(10) 6llpgey = (E(,8) + I8]l5) 2.
A form & is called coercive if there exists K > 0 satisfying
(11) E@N < K|llpey¥llpey:  ¢.% € DE).

Note that every symmetric form (i.e. satisfying £(, ) = E(1, ¢), Vo, v €
D(£)) is coercive, since (11) holds with K = 1, hy Cauchy-Schwarz’s in-
equality. We will call a coercive form £ closed if D(£), endowed with the
norm (10), is a Banach space. We will call a coercive form &y closable if
every sequence ¢, € D(&y) satisfying

“(anH =0, n—o0, [¢n— (ﬁm”D(Eu) — 0, n,m — oo,

also satisfies

18nlneey =0, n— oo

If this is the case, the completion of D(€g) can be naturally identified with
a subspace D’ of H and the unique continunous extension of & to D’ is a
coercive closed form £ in H with D' = D(£), called the closure of £5. Note
that the closedness or closability of a coercive form £ depends only on its

symmetric part &(E(¢, %) + E(¢, 4)).

THEOREM 2.2. Assume @ € L(H), @ = Q" 2 0 and Tr Q < oo. Let
{ex} be a complete orthonormal basis of H such that Qey = Xyex for some
Ap 2 0 and let p = N(0,Q). Also assume thot the opersior R ¢ L(H)
sotisfies R = R* > 0 and we have
(12) R € Q' (H)

for all g in a dense subset G of H. Then the symmetric form .
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D(&) = FCF°(H),

(13) &l %) = [ (Roo(x), dula)) u(de),

H
is closable in L2{p).

Proof. Denote by L?(p, H) the Hilbert space of all Borel measurable
functions F' : H — H such that [, 1|F(a:)f|2,m(d:n) < oo endowed with
the scalar product [, (F(z),G(z)) u(dz), F,G € L*(u, H). Let Tx be the
following operator, with domain D(TR):

(Trd)(@) = R\ ¢u(z),  D(Tr) = FCP(H),

Since &y(¢, @) = (Tre, TRO)L2(n, 1y the closability of & is equivalent to
the closability of Tr as an unbounded operator L*{u) — L*(u, H). Take
¢n € D(Tr) such that ¢, — 0 in L*(u) and Tre, — F in L2(u, H). We
have to show that F = 0. Let ¢ € FCP(H, H), i.e. ¥ has the form

Bla) = yilx)gi, Wi € FOR(H), z € H,
i=1

for some m € N and ¢;,..., gm € G. Then

™

J (@rén) @), (@) plde) =3 [ ((¢n),(2), R 2giti(z) u(de).

H i=1 H
Since by (12) there exist h; € H such that QY/2h; = RYVg, i = 1,...,m,
we obtain, by (8],

J (Tren) (@), v(x)) p(de)

H
= =y [ (()al), Q2R 60 (@) u(de)
+zm: féi’rl(fﬂ)@b-i(w)( i (Cﬂ,ek)(hi,ek)———}m) u(dz),
il I k=1, Ap>0 )\k

where the series converges in L2(p). Letting n — oo we obtain

[ {F(z),9(2)) w(de) = 0,

H
so that F' =0, since FO*(H, H) is dense in L2(u, H). =

Remark 2.3. The proof of Theorem 2.2 runs along classical lines, sinee
closability of bilinear forms is known to follow from integration by parts.
However, we are not aware of any result that trivially leads to Theorem 2.2.
Observe that condition (12) does not imply that R is boundedly invertible,
or even injective. If R > 0 and KerQ = 0, then condition (12) is always

Wib & FOP(H, H),
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satisfied, since we can take as G the subspace spanned by R~/ *(er), k € N.
However, in this case, the closability of £y follows also, for instance, from the
results of [8]. There the reader can find generalizations to other situations:
operators R depending on € H and more general measures on topological
vector spaces than a gaussian measure u on a Hilbert space H. Finally,
we remark that a satisfactory extension of Theorem 2.2 wounld consist in
finding necessary and sufficient conditions for the closability of the form
(13) in terms of @ and R; however, we do not know whether (12) is also
LECcessary. :

3. Analyticity of the transition semigroup. We start this section by
fixing some additional notations. We also recall some results about bilinear
forms and semigroups, referring the reader to 8] for details.

Suppose £ is a closed coercive form in M. Then one can define a linear
operator A% : H D D(Af) — H as follows:

D(A%) = {¢ € D(E) : ¥ — E(¢,¥) is continuous with respect to [ 1}

and A%¢ is the unique element in M such that

E(b,9) = ~(A5p, %), Vi € D(E).
It can be proved that A° is the infinitesimal generator of a strongly con-
tinuous analytic semigroup of contractions in . Moreover, for any a > 0
and any ¢ € H, the vector u = (af — .A%)~'¢ (where I denotes the identity
operator on H) is the unique solution of the equation

In this situation, we will say that the semigroup generated by A€ is associ-
ated with the form €. Operators arising in such a way from a closed coercive
form will be called veriational

The rest of this section iy devoted to proving that, under suitable con-
ditions, the transition semigroup P, mentioned in the introduction is asso-
ciated with a closed coercive form in H = L2(u).

In the sequel we will need the following assumptions.

Hyrorugsts 3.1, (i) The operator A generates o strongly continuous
semigroup in H salisfying ||e'4)] < Me™* for some M > 0 and w > 0.

(i) Re L(H), R=R* > 0.

(11i) Setting

¢
Qi = [ e**Re**ds
g
we have

sup Tr @y < oo.
0
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Under Hypothesis 3.1 one can define the transition semigroup P; defined
by equation (1). In the following we set
oo
Qoo = f e'ARe dt.
0
Note that Q. is well defined by Hypothesis 3.1(1) and it is a trace class
operator by Hypothesis 3.1(1ii). Setting p = M(0, Qo) it can be proved that
P, has a unique extension to a strongly continuous semigroup of contractions
in L?(u) (see [B]).
HyroTHESIS 3.2. Qo (H) C D(A).
Some sufficient conditions in order that Hypothesis 3.2 hold will be given

in Section 5. Note that 3.2 implies that AQ., € L{H), by the closed graph
theorem.

LEMMA 3.3. Assume that Hypotheses 3.1 and 3.2 hold. Then Qo satisfies
the Lyapunou-type equation

AQu + (AQ)* = —R.
Proof We consider the Yosida approximations of A given by
A, =nA(nI - A", neN

Then it is well known that A, € L{H) and by 3.1(i) there exist My, wp >0
independent of n such that

(15) et || < Mge™>*",

(see for instance [9]). Define

t>0, neN

[+0]
Q) = [ et Rt gt
0

Q" is well defined by (15). Furthermore, we have
o0
AnQ(n) + Q(R)A; — f (AnetAﬂRetA; + EtA'”RGtA;A;) dt
0

f (—d—eMnRemi) dt = —R.
s\t

It follows that

(16) (QMe, Any) + (Ahe,Q™y) = ~(Ra,y), wm,yeH.

Recall that for z € H,y € D{A*) we have A%y — A*y, e*4ng — ez, and
e hng — et as n — oo (see [9]). It follows that Q™ z — Qo as 1 — 00
for # € H. Choosing z,y € D(A*) and letting » — oo in (16) we have

(Qoo, A"y} + (A%2, Quoy) = —(Rz,y), z,y € D(A*).
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By Hypothesis 3.2, @, Qooy € D(4) and we obtain
(17) <AQ00'7"’y> + (vaQOOy> == _"<Rwa y): T,y S D(A*)
Since D(A*) is dense in H, (17) holds for every x,y € H. u

HyPoTHESIS 3.4, There exists K > 0 such that
(&, AQuor)| < K (Ra, )/ (Ry, )"/,
First note that 3.4 always holds, by Hypothesis 3.2, if we assume R > 0.

In particular, it holds in the important case R = T.

Also note that by Lemma 3.3 and Cauchy-Schwarz’s inequality, 3.4 is
equivalent to

(18) (2, AQuoy) — (AQuoz,y)| < K'(Ra, 2)'/2(Ry, y)"/?,
for some K > 0.
Finally, note that 3.4 implies that
(19) Qoo (H) © RMA(H).
In fact, for any =z € H,
1Qsosll” = (4Quot, (4°) ™' Quot)
< K(Rz,2) " (R(A*) ' Qoot, (A7) ' Que) /2
< KRV ] |RMY2(A") 7| | Quocll
so that || Que|| < K|RY2(A*)™"| |R/?2||, which implies (19) (see for in-
stance [6, appendix B]).
Now consider the following definition:
(20)  Eo(9,¥) = ~ [ ($a(2), AQuot(w)} p(da),
H

We claim that, under Hypotheses 3.1, 3.2 and 3.4, &y is a coercive form. First
note that formaula (20) is meaningful by Hypothesis 3.2. Then, by Lemma
3.3, it i easily verified that the symmetric part of £y is given by

(2 5{aldv) +Eo(w.4)
= 2 [ (Réu(a), valo)) uldo),

2H

From (21) it is apparent that £y{¢, @) = 0, V¢ € D(&p) and from Hypothesis
3.4 it follows that

Eol(e, )| < K Eoldh, o)/ *Eo (0, )12,

s0 that & is a coercive form.

x,y € H.

D(&) = FCE° (H).

¢, % € FO(H).

¢,¢ € FOPFP(H),
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HyproTHESIS 3.5. The form & defined in (20) is closable in L2(p).

In the applications, we can apply Theorem 2.2 to the symmetric form
(21) in order to check the validity of Hypothesis 3.5. In particular, 3.5 always
holds if we suppose R = I or, more generally, R > D (see Remark 2.3).

We will denote by £ the closure of £y, by Wg*(u) its domain, and by
AF the infinitesimal generator of the semigroup associated with £.

THEOREM 3.6. Assume that Hypotheses 3.1, 3.2, 3.4, 3.5 hold. Then, in
the space L%(p), the semigroup associated with the form & coincides with
the transition semigroup P.. In particular, P is anelytic.

Proof. We first remark that the functions
q&&l)(w) = cos{\, z), qb(f)(m) = sin{}, z),
generate L?(p). In fact, if

f = Lz(nu’): <f: QSSZ))L?(;L) = O)

A € D(A"),

AeD(A"), i=1,2,
then

(22) [ fz)e!*) pldz)y = 0, A& D(AY).
H

Then (22) holds for all A € H, so that, setting »(dz) = f(z)u{dz), (22)
implies that the characteristic function of the measure » vanishes, so that
v =0 and f = 0, g-a.e. Therefore in order to prove the thecrem it is enough
to show that

(23) (ol — A9 = (af - 45", a>0, e DY), i=1,2.

We limit ourselves to proving the equality (23) for the case { = 1, since the
other case is analogous. Note that

(Ptqb)\ ( f e’ i) GLA.'E, Qt){d.ﬁ')) §Re
where R denotes the real part, It follows that, setting

f cos{e!dz, Ajete B QAN gy
0

(@, ,\)

{24) v(x
we obtain

(el = A) 1¢>(1) Te_quSA Y(z) dt = v(z).
0

C Setu = (aI—wAS)‘lng\ . In order to prove {23), we have to show that u = v.
Recalling (14), we see that u is the unique solution of

E(u, ) + alu, P)pagy = (¢E\1),¢)Lﬂ(u), u, b € Wg*{(u).
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So it is sufficient to prove that v belongs to T/Vlll;‘,l’2 (1) and
1
(25) E(v, ) + alv, ) Lagy = (&} )»Tﬁ)m(p),

Since FCR(H) is dense in Wy (1) by definition, in (25) we can suppose 3 €
FCOP(H). Let {en} be an orthonormal basis of H consisting of eigenvectors
of Qoo and let P, denote the orthogonal projection in H onto the subspace
spanned by {e1,...,e,}. Define v,(z) = v(P,z). Since

¥ e Wgip).

o0

{{vn)u(z), h) = -—f Sil’l(@tA,Pnaf:,A)e_“t““%<Qt>\1)\)(h’ pﬂefﬁ*/\> dt,
0

it is easily seen that {v,} C W 2( ) is a Cauchy sequence for the norm of

W52 (u) and that |jo, — v|[pa(u) — 0 as n > co. By definition v € Wy*(n)
and |y, — ru||W1 2¢,) — 0. So we can let n — oo in the equality

E(un, ) = Ey(vn, %)

- f <AQw1/)m f sin{e*4 Pz, Ae~te- 3@ p nem*)\dt>u(dm),

obtaining

E(v,w)Zf <AQm¢m(x), fsin(ema:,)\)e“m—%@t"”\)em*)\dt>g(dw).

H 0
By Fubini’s theorem,

(26)  £(v,9)

o;_ﬁg

et T (@A) f (e (2), Qoo™ A* A sin(ete, A) u(da) dt.
H

We now integrate by parts. Since the function  —+ sin(e** Pz, A) belongs
to FCOP(H) we can apply Proposition 2.1 to obtain

I (s (2), Qo™ AN} sin(eA Py, ) p(da)

o

= -f cos(e! Pz, A (e X, Qoo A*etd”

H

+f fAA*

N (z) u(de)
() sin{e*A Pz, M) p(de).

Letting n — oo gives
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[ (We(@), Quoe™ A"N) sin(e*z, A) u(d)
H

= —fcos(emm,/\)(em*)\,QooA*etA*)\W(ﬂf)M(dﬁ)

+I (z, " A* AV () sin{et e, \) pu(de).
H

Since, by Lemma 3.3,
(AN Qoo A" ANy = —L(Ret4 ) &4 \),
we obtain from (26) and another application of Fubini’s theorem

g(v:w) +'a(vs'¢’>L2(,u,)
:f () f e”m""%(QMw\)(%(Re*“ﬁ)\,e*”)\) cos{et4z, \)

+ (2, 6" A* Ny sin{ea, \) + acos(ex, M) dt p(dz).

Now observe that
d
%(Qt)\,)\) = (Re
and we finally obtain
5(-1;: ¢) + O:'(U,’l,f))Lz(“

=—fw f
—fw

Thus (25) is proved, and so is the theorem. =

4 ez, \) =

A4~ tA*
NN, =

(e*hz, A*X),

et (@A) oogletdy A dt u(dz)

)cos(z, A) i

f w(z)o( (x) u(da).

Remark 3.7. Assume that Hypothesis 3.1 holds; then we do not know
whether Hypotheses 3.2, 3.4 and 3.5 are also necessary for the infinitesimal
generator A of F; to be variational. Theorem 3.6 gives sufficient conditions
for A to be variational, but it could be interesting also to find conditions
implying only that P; is analytic, which is a weaker condition in general, Ex-
ample 4.3 shows that assuming only Hypotheses 3.1 and 3.2 is not sufficient
to have analyticity of P, even in case dim H < oo.

In the finite-dimensional case the hypotheses of Theorem 3.6 become
simpler. We do not restate them explicitly, but we limit ourselves to stat-
ing as an instance the following result, corresponding to the cage R = I.
Examples 4.2 and 4.3 deal with the finite-dimensional case.
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COROLLARY 3.8. Assume H =R™ and A is an n x n real stable matriz
(i.c. satisfying [|e*4|| < Me~“* for some M > 0 and w > 0). Define
:

(27) Q= [ e ds,
0

(Pio)(z f $(y

QDQ - f ESAESA*d-S: L= N(Oa Qoo):
b .

N2, Q) (dy), ¢ € Bo(RY).

Then Py eztends to an analytic semigroup in L*(u) ond its infinitesimal
generator is variational.

4. Examples

ExamMpPLE 4.1 (The deterministic case). Assume A satisfies Hypothesis
3.1(i) and R = 0. Then Qo = 0 and pu is Dirac measure. So £ = 0 and
A = 0. Indeed, for ¢ € By(H),

(Pg)(w) = f B(y) N (e, 0)(dy) =

¢(et‘4m): ¢> € Bb(H)i

and ¢(e**z) = $(0), u-a.e., so that £ P,p=0.
ExAMPLE 4.2. We take H = R? and the operators 4 and R given by the

matrices
-2 1 1 1
a=(30) #=( 1)

Then Hypotheses 3.1 and 3.2 are clearly satisfied and an easy computation

shows that
171 1
=31 1)

AQoo = QuoA* = ~LR.

By (18), hypothesis 3.4 holds and the form &y given by (20) is a symmetric
form which is closable by Theorem 2.2, since (12) is satisfied (in fact, R =
2Qs). In this case, although A is not symmetric, the generator A of the
transition semigroup P is self-adjoint (this is possible since R # I: compare
with [12]). In [5], among other results, it is shown that A is the closure of a
differential operator, defined on a properly chosen set of smooth functions
on H, for which an explicit expression is found. As a consequence, for ¢ €
FC(R?), we have

So it follows that

1(8% , 6% +g%g§)-+(m2 220) 28 _ 4, 99

(Ad) (w1, 20) = (3:c1 + 250 T 2 Eraiab
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EXAMPLE 4.3. We take H = R?. Let {e1, ez} be the canonical basis and
let the operators A and R be given by the matrices

a=(7 4) a=(5 1)

Then Hypotheses 3.1 and 3.2 hold but 3.4 does not, since in this case

L/1 1

We want to show that P; is not analytic in L2(u), with p = A(0, Q).
First we remark that P; extends by linearity to LZ(u), the Hilbert space of
p-square summable complex-valued functions, with the usual inner product.
Analyticity would imply (see [9]) that there exists €' > 0 such that

@ |ird,

SOt Y|¢lragy, 0<t<1, ¢ e Ld(y)

Take ¢u(z) = eq"(m"’), with » € R?. Then
(Ptqﬁ) (.7,‘) = ei(r/,etAw)—-%(Q!u'y)

(gn)r

= =@ (1, Ae*Ae)? + LetARet 1, 1)),
H—m)

b

> g~ (@) f (v, Ae* )2 p(de)
LE H

= e (@evh grgtA"y, QuoA*et A" Y.
Since ¢, has unit norm, (28) implies that
(29) tge_(Q“”")(A*etA* v, Qoo A et 1) < O,
An easy computation shows that
— Lem2(s2 1) e~ 2y — Lo~

_ l(lwe—%) i(lm 1
pr(4 ¥ﬂ—f“mﬁ~éw-m ! 1(1 = =2) ).

Setting v = e1(§(1—e ) — e~2(12 4 t))bl/?' and evaluating the left-
hand side of (29) we cbtain

0<t<1, ve R

2+ 2% 5

L 21 t2

~e (1— T

4 _ (1 —e~2) se (12 4+ t)
Letting t — 0 we get a contradiction.,

<0, 0<t<l

EXAMPLE 4.4. Suppose G is a skew-adjoint (in general unbounded) op-
crator in H, l.e. G* = —G. Take R=I and A = G? + @ — wl, with domain
D(A) = (Gz) = {2 € D{(G): Gz € D(C)} and w > 0 (if G is boundedly
invertible, we can take A = G+ in the rest of this example). Recall that,
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by Stone’s theorem, G is the mﬁmtemmal generator of a strongly continuous
group of unitary operators €' in H. Since G2 = —QG* < 0, it turns out
that A is the infinitesimal generator of the semigroup et = !G¢G g-wi
(this follows by applying e.g. [9. Cor. 5.5] and remarking that e!¢" and
¢*® commute). So Hypotheses 3.1(i),(ii) hold. Assume now in addition that
Hypothesis 8.1(iii) holds. By commutativity and since e!®" = e t¢ we oh-
tain

oo o0
3 e 2 e : vy 1
o = f b bl gl 8GR et dt = f B = 2wt gy ~2~(wI— G{2)—1
0 ¢

Therefore Qoo (H) = D(G?) = D(A) and Hypothesis 3.2 is verified. Since
R = I, Hypotheses 3.4 and 3.5 hold, and we can conclude that 4 is varia-
tional, by Theorem 3.6.

EXAMPLE 4.5 (The commutative case). Assume A and R satisfy Hypoth-
esis 3.1. Define

(o]

th :femem dt.
0
In addition, assume

(30) RA™' = A"'R,  Qu{H) C D(A).

Then we have Qu = RQ: = Q1R and Hypothesis 3.2 holds. Next, using
again the commutativity condition in (30), we obtain for z,y € H,

{AQut,y)| = |(RAQiz,y)| = [(R'*AQuz, B%y)|
S |RY?4Qua | | R ?y| = | AQy R 2a||| B 2y
< |l AQy || )| RM?x|| | B 2y]|,

which implies Hypothesis 3.4. Finally, in order to verify Hypothesis 3.5, we
check the closability of (21) by using Theorem 2.2. We additionally assume

(31) Ker Qu = 0.

Then we take an orthonormal basis {ey} of H such that Quer = Apey for
gnitable numbers A, > 0. We take as G the linear span of {ek} and we see
that (12) holds, since

Rl/zﬁ;\, = Ar 1R1/2Qmek = ’\ElroRl/zek & Qiég(H)
Therefore we obtain the following

CoROLLARY 4.6. Assume that Hypothesis 3.1 holds and assume that (30),
(31) hold. Then the operator A is variational.

The previous passages also show that the conclusion of Corollary 4.6 still
holds if we assume Hypotheses 3.1, 3.5, and (30),



70 M. Fuhrman

ExaMmpLe 4.7. Assume R = I and suppose that Hypothesis 3.1 holds,
Moreover, assume that
(i) AL (A7) = (4%) 71 A7,
(ii) A generates an analytic semigroup in H,

(iii) we have
(32) (H,D(A))o.2 = (H, D(A"))o2,
for some # > 0, where (H, D(A))y2 denotes the real interpolation spaces

(see [1]} between H and the domain of A (endowed with the norm |z| -
l|Az||). By the results of [4, Th. 3.7, Rem. 3.8, Th. 3.14], the operator

A+ A" HDODANDAY) - H
is boundedly invertible and generates an analytic semigroup. It follows that
Qoo = (A+A*)71, so that Hypothesis 3.2 holds. Therefore A is variational.

For a discussion of (32) we refer the reader to [11]; in particular, (32) holds
if e*4 is a semigroup of contractions.

ExXAMPLE 4.8. Assume that Hypotheses 3.1, 3.4 and 3.5 hold; assume in
addition that

(i) A generates an analytic semigroup in H,
(ii) R is a bounded linear operator from D{{—A*)%) to D((~A)%) for
some &, o with 0 <8y < 82 < 1.

Then A is variational. In fact, we only have to verify Hypothesis 3.2,
Since we have (see [9])

(=)' ety < e, (- AT e < OO,
for some C > 0 (depending on #;, 63) and all £ > 0, it follows that
[Ae™ R | = || (—A) e (—4) R{-A") ™" (-4 4|
< Ct~14-926mwfll(_A)92 R(_A*)"gl”t—ﬂle—wt,
which is integrable on (0,00). So by the closedness of A it follows that
Qu(H) C D(A) and

AQoo = [ Ae*Re!* dt,
0
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