icm

STUDIA MATHEMATICA 121 (1) (1696)

Hankel convolution on distribution
spaces with exponential growth

by

JORGE J. BETANCOR
and LOURDES RODRIGUEZ-MESA (La Laguna)

Abstract. We study the Hankel transformation and Hankel convolution on spaces of
distributions with exponential growth.

1. Introduction. The Hanrkel integral transformation is usually defined

by
[=a]
b)) = | (@) Tu(ay)p(@) dr, @ € (0,00).
0
Here J,, is the Bessel function of the first kind and order p. Throughout this
paper the order u will always be greater than —1/2. Also in the sequel we will
denote by I the real interval (0, c0). A. H. Zemanian [21}-{23] investigated
the h, transformation on certain spaces of distributions. He introduced in
[21] the space H, that consists of all complex-valued functions ¢ = (x),
x € I, such that
Mo (p)= sup |2F (lD) (z™* Y 2p(x))| < o0
! z&(0,00) T

for every k,m € N, When endowed with the topology generated by the
family {)\":Sm}k,meﬁ of seminorms, H, becomes a Fréchet space and the
Hankel transformation is an isomorphism from #, onto itself. The dual
space of H, is denoted by ;. :

For every o € I, A. H. Zemanian [22] defined the subspace §,. of
H, consisting of ¢ € M, such that w(z) = 0 for x > a. The space
Bu = Usso Buse endowed with the inductive topology is a dense subspace of
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H,, and the Hankel transform on §, is characterized in [22, Theorem 1]. As
usual the dual of g, is denoted by 4,

F. M. Cholewinski [9], I. I. Hirschman [13] and D. T. Haimo [11] studied a
convolution for a variant of the Hankel transformation that, after straight-
forward manipulations, allows defining a convolution for the h, transfor-
mation. A measurable function ¢ on I is said to be in L, if, and only if,
z#1/2p is absolutely integrable on I. For every p,1 € L, we define the
Hankel convolution @ # 1 of ¢ and ¢ by

o
(p#9)(2) = | W) mt) () dy, =z €,
0

where (1:9)(y) = §5 Dau(@, v, 2)9(2) dz, 2,y € I, and
DH(may: Z)

oQ
= |7 H 2ty 2T () (y2) 2T () (o) 2T (2t) dt, wyy,z € L
0
The operator 7., & € I, is called the Hankel translation.

In a series of papers J. J. Betancor and I. Marrero [3]-[8] and J. J.
Betancor and B. J. Gonzalez [2] have investigated the Hankel convolution
on the Zemanian spaces H,, and 3, of generalized functions,

'The Fourier transform of distributions of exponential growth had been
investigated earlier (see [12] and [24], among others). However, the Hankel
transformation has not been defined on distributions of exponential growth.
In this paper we investigate the Hankel transformation and Hankel con-
volution on distributions of exponential growth. In Section 2 we introduce
two Fréchet function spaces, namely: X, of all smooth complex-valued func-
tions ¢ = (), z € I, such that e’”éD)m(m‘””l/zw(w)) is bounded on
I for every k,m € N; and @, of all complex-valued functions & such that
gzl 2915(3;) is an even entire function rapidly decreasing in any horizontal
strip. It is established that h, is an isomorphism from X, onto Q.. The
Hankel convolution of distributions in A.’L, the dual space of A, is studied
in Section 3. '

The following boundedrness properties of Bessel functions that can be
found in [19] will be very useful in the sequel.

There exists C' > 0 such that

(L [27H T, (2)| < CeM™el, z e,

IfH ﬁl) denotes the Hankel function of the first kind and order  then there
exists ' > 0 such that

(2) |22H (2)] < Ce ™2, zeC, |2 > 1.
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Throughout this paper € will always denote a snitable positive constant
not necessarily the same at each occurrence.

2. The spaces &, and Q,, and the Hankel transformation. In this
section we introduce new function spaces that the Hankel transformation
maps isomorphically.

The space X, is formed by all smooth complex-valued functions ¢(z),
x € I, for which

Vi m (1) = sup

1 m
"= (MD) (= 2p(2))| < oo,
zel x
for every k,m € N. When endowed with the topology generated by the
family {'y’,:,m} kmen of seminorms, &, becomes a Fréchet space. Moreover,
according to [17, Proposition 4.1.5], X}, is nuclear. Proceeding as in [5,
Lemma 2.2] we can see that the seminorms

Thom () = sup ¥ e A28 (2)], @€ Xy, k,mEN,
z€

where 8, denotes the Bessel operator ¢~ #~*/2Dz?+1 Dz =#~1/2 induce on
X, the same topology as that defined by {7{ ,}¢,men. Note that A, is
continuously contained in H,,.

E. L. Koh and C. K. Li {14] and E. L. Koh and A. H. Zemanian {15] have
defined the Hankel fransformation on certain spaces of generalized functions,
It is easy to see that the Fréchet function spaces introduced in [14] and [15]
contain A,.

We denote by @y the space of multipliers of A),, that is, a function f is
in #x whenever fy is in X, for every ¢ € &,. A procedure similar to the
one used in [3] and [20] allows one to prove that f € fx if, and only if,

(i) f is smooth on I, and
(ii) for every m € N there exist k € N and C > 0 such that

(%DYf(m)

The dual space of X, will be denoted as usual by X;. 8 is also the space
of multipliers in &},. By using standard techniques (see, for example, [1], [5]
and [18]) it is not hard to establish that a functional T on X, is in X} if,
and only if, there exist r € N and essentially bounded functions f on I,
0 € k < r, such that

<Ce*®,  rel

T
T=>) Sk(er*ar M2 f),
k=0
The space Q,, consists of all complex-valued functions $ such that
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(i) 27#~1/%3(2} is an even entire function, and
(ii) for every k,m € N,
Wh(®) = sup (14 [2[?)™[2747H%8(2)) < .
Im z| <k

When endowed with the topology generated by the family {w}  }xmex of
norms, @, is a nuclear Fréchet space. The dual of Q, is denoted by QL.

We also introduce the space g of all complex-valued, even and entire
functions F' such that for every k € N there exists m € N for which
sup (1 + (2)*) ™ F(z)] < oo.

<k

(Tm 2| <
It is clear that F is a multiplier of @, whenever F & fg.
We now establish that the Hankel transformation maps X, onto Q,

homeomorphically.

THEOREM 2.1. The Hankel transformation h, is an isomorphism from
Xy onto Q. Moreover, the inverse of hy, is also hy,.

Proof. Let ¢ be in A),. Define & = h,(¢). By (1), for every & € N,

§ (e2) ™ (o) (2112 o (2)] da
0
< C | e 2lghtl2)o00)| da
0

< Csup le®+12g=#=1/25(2y  if [Im z| £ k.
zel
Hence 27#~1/28(z) is an even entire function. Also, since H,. contains X,
by [23, Lemma 5.4-1] we can write for every &, m € N,

ufl“}’{k(l = |2 2TE 28 (2)) < Cnty olie) + s ()}

Therefore 7y, i3 a continuous mapping from X, into Qu.
Let now & € Q,,. Since & is absolutely integrable in (0, 00) we can define
o0
o@) = { (@) *T.(ap)B(y) dy, sz €],
0

and the integral is absolutely convergent for every z € I. Also according to
well-known properties of Bessel functions [23, 5.1(7)], for every m € N and
z € I one has

® (30) @i

= (=1)™ { (@1) " Tppmay)y? 20 () dy.
0
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The integral in (3) is again absolutely convergent for each z € I. Proceceding
as in [10, proof of Lemma 6.1] we can conclude from ({3) that

(20) 20t = C T (ot imy -2l + i)

% (£+zn)2m+u+1/2@(£+iﬂ) dg

for every 2 > 1, 7 > 0 and m € N. Here H, ﬁl) denotes the Hankel function
of the first kind and order g. Since |z(£ +in)| > n for z > 1, (2) yields
<Ce™™ | |¢+ in|™|B(E + in)| dE

—0Q

@ |(20) o

for every @ > 1, 7 > 0 and m € N, where the positive constant (' depends
on 7. .

Now we choose ! € N such that { > g+ 3/2. Then from (4) we deduce
that for every k,m € N,

® |¢=(30) @)
<O | I+ itk + DIMB(E +i(k + 1) de
<Ol ik + DEFA i D

x (€ +ilk+ 1) THV2(E + ik + 1)) dE
< Cwpeyy py(P)  for every z > 1.

Moreover, for every z € (0,1) and k,m € N we have

eke (%D)m (1 p(z))

(6)
5]
< ¢ [ 1(@0)* M Turm(@y)l - [y 8() | dy < Cwl (),
0 .
where n € N and n > p+ 1. By combining (5) and (6) we conclude that h,
is a continuous mapping from Q,, into X),.
Finally, since &), is contained in ‘H,, it follows that h, = h;l. ]

An immediate consequence of {23, Theorem 5.4-1] and Theorem 2.1 is

COROLLARY 2.1. The space Q, i3 continuously contained in H,,. =
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We define the generalized Hankel transformation between &), and Q) to
be the transpose of the h, transformation, that is, the Hankel transform
W,(T)y of T € X, (vesp. Q) is the element of Q, (resp. &) defined by

(hlu(T)!‘P) = (T, h,u'(‘zo}): p € Q, (resp. X,_;).
The behaviour of h;{ on X ,i and QL is deduced from Theorem 2.1,

THEOREM 2.2. The generalized Hankel transformation is an tsomorphism
from X/, (resp. Q) onto @, (resp. ) when we consider on X and Q,
the weak * or strong topology. w

3. Hankel convolution on &), and X;. We first investigate the be-
haviour of the Hankel translation and Hankel convolution in A,.

PROPOSITION 3.1. For every o € I the Hankel translation , defines a
continuous linear mapping from X, into itself.

Proof Let z € I. By [16, (2.1)], since X, is contained in 7, we have
for each ¢ € X,,,

(N (r9)y) = hult™* 2 @) T ()bl )D)(y), v € 1.

By Theorem 2.1 to see that 7, is continuous from X, into itself it is
sufficient to prove that the function $,(t) = (xt) HJ,(zt), t € C, is a
multiplier in @,. Note first that P, is an even entire function. Moreover,
from (1) it follows that

|B.(t)] < Ce®™™tl teC.
Thus @, € #o and the proof is finished. =
PROPOSITION 3.2. The Hankel convolution defines a continuous linear
mapping from X, x X, into A,

Proof. It is easy to infer from [13, Theorem 2.d] that for every o, 1 € X,
the interchange formula

(8) (i 3 10) = v 2Ry () hy (3))

holds. Moreover, the mapping (&, %) - y~#~1/2dF is continuous from
Q, x @, into Q. Then Theorem 2.1 yields the desired result. =

Proposition 3.1 allows us to define the Hankel convolution T # ¢ of
T € X, and @ € &, as follows:

(T#(P)(w) = (T’me>7 zel
Note that we cannot insure that T # ¢ € X,,. In fact, define
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oQ

(T, ) = S 2200  da,  pe X,
0

It is clear that T' € X),. Let ¢ € &),. By invoking {13, §2, (2)], we have

(T, To0) 2 t1/2 S

0

Du(z,y, z)p(y) dydz

w(y S Dy, y,2)2# 2 dz dy

g
"j

ZCEIIM_H/Q S yp+1/2(p(y) dy, zel,
0

where ¢, = 2“T'(p + 1). Hence o~ #~ VT, mp0) = cn 1%yt 20(y) dy
z € I, and
emm_”_l/g(T, Te@y —r 0O as & — 00.
Thus T# p & X,
The next proposition states that for every T € A}, and ¢ € A,
x~#=2T 4 o is a multiplier of X),.
PROPOSITION 3.3. If T € A, and ¢ € X, thenz ™ *? T # ¢ € 0.

Proof As established in Section 2 there exist r € N and essentially
bounded functions f on I, 0 £ k < r, such that

T= Zsk(erm —,u—l/ka).

Hence it is sufficient to prove the result for
T = Sk(erm —,u——l/z-f),

where f is an essentially bounded function on I and 7,k € N.
Let i € X,,. By [16, Proposition 2.1(ii)] and (7) we have
(T # o)) = (T, ) = | Fw)e™y™# Pre(She) (y) dy
0

o

= (-Dka2 | fly)ervy
0

X hyl(ot) H (et (@) (B8 (1) dy,  we L.
Let now € N. By using [21, 5.1(7)] it follows that
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1 n
(30) e # o)
o0

= (1) § ety e
0

X [P0 @) (@t ()
Then for every z € I,
1]
(30) @ # o)

< Csup el vy =#=12p, 2R (o) =8 I (2t Y (2) () ()
yelI

Olwydy, el

By Theorem 2.1 and since z7#J,(z) belongs to fg, there exist I, m € N such
that

@ |(30) e s o)

< Cuf,, (BB (mt) " # Ty n(athu(p)(t), wel.
Moreaver, from (1) one infers that

(10)  wh ((8t)# " upa (@) *H ™Ry (0)(2))
S Cw#m+.’c+n(h,ﬂ(¢))emla zE I,

where C is independent of x € I.
Finally, according to Theorem 2.1 again and by (9) and (10) we conclude
that

|(30) @ a4 )

Hence 2=+~ 1/2(T 4 p)(z) € 8 and the proof is complete. u

According to Proposition 3.3, if T € &), and ¢ € &), then T"# ¢ defines
an element of &, by

<ce®, zel

T o) = | (T H (), e,
0 .

ProposITION 3.4. If T € X and ¢ € X}, then

(11) (T # 7/)) = (T7 E '9[’): %€ X/.u
and the interchange formula
(12) Bu(T 4 0) = 277220, (T) by (i)

holds. Moreover, for every T € X, the mapping ¢ — T # ¢ is continuous
from X, into X’ when we consmder on X, the strong topology.
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Proof Let ¢ €X,. We have
{TH# o0 S (T # o) (z)(z) de = | (T, ) (x) de.
0 a

Hence, since (149)(y) = (ry)(z), T,y € I, the proof of (11) is finished when
we prove that

19 [T de = (7). | ()@l de).
Cram 1. i ’

(19 lim | () (g)(a) do = 0

and )

(15) ;g%s () () s = O,

in the sense of convergence in X,.
Proof. First we establish (14). Let @ > 0. It is clear that

[==]

| (=0)@)p(z) de = (o # 9)¥), vEL

a

where @)
Ple), z>a,
wle) = {3 220
Moreover, by [13, Theorem 2.d],

hu(tha # ) = 27# 7 hu (o) hu(e)-
Thus, according to Theorem 2.1, ¥ # ¢ — 0 in X, as a — oo if, and only
if,
z‘“"‘lmhﬂ(wa)hp(tp) — 0 in Q,asa-+o00.
By (1), @~#1/2h, (4,)(x) is even and entire, and also for every k € N
one has

(P, ) < | o) Iy () dy

Fa

o
o | ¥y () dy, |mazi<k.
Hence
Jim o7 Ry () (i) = 0

in the sense of convergence in Q. Thus (14) is proved.
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In a similar way (15) can be established.

CLAIM 2. Let 0 < a < b < co. Then
b

(16) (T (e} do = (T(y), | (rep)w)(o) do ).

[ a

Proof. We use the Riemann sums technique. Let m € N - {0}. Define
Zn =a+n(b—a)/m, n=01,...,m Linearity of T leads to
b g

(@ ragi@)de = lim (T(), =23 (ry0)(@n)(@n)).

a el

Hence to establish our claim it is suflicient to see that

2oL S (e anb(en) = | () (@) (a) do
n=1

a

(17) lim

m—00

in the sense of convergence in A),. Moreover, according to (7), [13, Theo-
rem 2.d] and Theorem 2.1, (17) is equivalent to

18)  tim DY ) 0) () ) a0)
n=1

= 07V Ry () () e (Ya,0)(E)

in the sense of convergence in Q,,, where

o p(t) = {'{t)ﬁ(t), t € {a,b),

. tE(ab).
We now prove (18). Let [,k € N. From (1) we deduce
b - m
In(t) = (1 + 82 t*u—]./2h#(<,o)(t) (WQ Z(tmn)““Jﬁ(mn)mﬁﬂlzw(mn)

ne=l
b

- ) ) ()

a

< G+ P hule) @)t [Imi < &,
where C is independent of m € N.
Let & > 0. There exists R > 0 such that if [Rez| > R and [Im#| < k then

(19) Im(t} <& for every m & N.

Moreover, there exists my € N such that for every m € N with m > my,
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(20) ’ E;L—G i(twn)_‘ﬂf“ (tzn)et TV 2 (x,)

n=]

b
—{ o) H 7, (t)2 2 () de| < e

a

for |[Ret| < R and |Im¢| < k. Combining (19) and {20) gives (18). Thus our
claim is proved.

We now show (13). For every 0 < a < b < oo, by Claims 1 and 2,

OS:<T, Tep)¥(z) dz — <T(y), OS:(W)@W@ dm>
_ § (T ) b(0) do + § (T, 7e) () do +_°3:<T_, (e ds
- (7o E (ree)6)pla) da) = <IT(y)’ S: (o) y)th () do )
{70, Dg(w)(y)d»(m) ) — 0

as ¢ — 0 and as b — oco. Hence (13) is established.
Let now ¢ € @,,. By using (8) and (11) we obtain

(b, (T # ), 0) = (T # 0, hu(¥)) = (T, 0 # k(1))
= (R, (T, hyu(p #-hu (@)} = (@™ Y20, (TR, (9), ).

Thus (12) is proved.

Finally, by invoking Proposition 3.2 we can conclude that for each T' € X,
the mapping ¢ — T # ¢ is continuous from X, into &}, when on &) we
consider the strong topology. w

Our next objective i3 to introduce a subspace, X,i,#, of A such that
S#pe X, for every 5 € &), and ¢ € &, The new space &), , contains
X, and ¢}, ([5]). Also we will define the Hankel convolution on &, x &) ..

Let m € Z The space X, m 4 consists of all smooth complex-valued
functions ¢ = w(z), = € I, such that

k

P

() = sup €™z~ 28k ()] < o0

rel
for ew}ery k € N. When endowed with the topology generated by the system
{ak, utren of seminorms, Xy m u is a Fréchet space. It is clear that A, is
contained in X om 4. We define Xy, m 4 as the closure of X, in Xy ;. It is
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obvious that X, m g is a Fréchet space. Moreover, &) m.1, i8 continuously
contained in Ay 4.
We now give a representation for clements T' € X 4 ON A

then there exist r € N and
r, such that

PROPOSITION 3.5. Let me Z. If T € X,
essentially bounded functions fr, on I, k=0,...,

T
T = ZSﬁ[m"”_l/ze("""z)”‘fk} on A,.
k=0

Proof Let T € &), . There exist n € N and ' > 0 such that

(21) \(Ta @)I < 0021’?‘%‘:” O"m,,u((la): pE & G FE
Let p € &, and k € N. Assume first that m € N. For every z € I one
has
@€
whEgho(x) = | Dyt 28k o(t)] dt.
o0

Then

ey =H 2k ()| < e 5 |Delt #7128k o(t)]| dt

[=. =]

< § ™Dt 28 (8] de

0
1 t
S e™tt 2“_1‘ S u"""l/gSﬁ"'lcp(u) dul dt
] 0

o0 00
+ S emtt_z“_ll S u“"‘l/zSﬁ“"ltp(u) du’d‘t
1 L ’
t
em S u'“”1/2|3ﬁ+1tp(u)| du dt
0

<

O ey

oG [+
+ S et 21 S e”(m+l)u“+1/2|5ﬁ+ltp(u)|dudt
1 ¢

( S y~H2 Sk+1cp(u)| du

0
+ | elm Dy gk o) du),  z el
0
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Hence

(22) Au{0) < O | M2y =1/2 gkt (u)| du.
0

Assume now m € Z, m < —1. For each z € T we can write

|emw$-—#—1/23ﬁ(’0(z)‘ < S lDt(SMtt““_lmsﬁﬁD(ﬁ))idt
0
o0
< |mj § emttr2| 55 (1) dt
)]

+ | ™| Dyt 2SR ()] dt

Ot..’-ng

< |ml| | emtimt21 85 1)) dt
0

¢
emig— 2l S w28k ()| dudt
0

+

Ot B

s o femten2 sk ()] at
1]

+ { emtDtmel gt at), sel
0
Then

2

(23) ok, () < O( § emttr22|Sko(t) at

o

+ S elm AUt a—1/2 gkl (1)) dt).
0

By combining (21)-(23) we conclude that
oo
mp2Yt—u—1/2) ok
(24) (T} S C max. (S) S A PRV A
for some 7 € N. The desired result can be deduced from (24) by using a

standard procedure (see e.g. [1] and [18]). w

We denote by X, 4 the space |J,,cz Xum4 endowed with the indu-
ctive topology ‘We now characterize the elements of A that belong
to X

o
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THEOREM 3.1. Let T' € X,,. The following assertions are equivalent:
HTeX, s
(i) a=#-1/a, (1) € Do,
(iil) For every m € N there esist r € N and continuvous functions Fi on
I, k=0,...,7, such that

-
(25) T=> Skfy

k=0
and €™® fr, is bounded on I for every bk =10,...,r

(iv) For every m & N there exist r € N and bounded continuous functions
fe onI, k=0,...,r, such that (25) holds and €™ fy, — 0 as & — oo for
every k=0,...,r

(v) For every m € N there ezist v € N and bounded continuous functions
fronl, k=0,...,r, such that (25) holds and €™ fy, is absolutely integrable
onl for each k=0,...,r

Proof (i)=(ii). Let T € X, 4. Then T € X . for every m € Z.
Assume now m < -2. By Prop051t10n 3.5 there exmt r € N and essentially
bounded functions f, on I, n=10,...,r, such that

-
T e Z Sg[e(m"'g)mm_“'l/zfn] on X,.
n=0
Then by setting gn(z) = e™+22g=#-1/2f n = 0,..
rem leads to

., 7, the Fubini theo-

{Pu(T), @) = (T, hu(2))

=S S

huly* ()] (2) dz

n=0
= (e | g
n=>0 0
o
X S gn (@) V2 ey P I (ay) dudy, P € Q.
0
Hence
T o0 .
(26) ¢ MPRL(T) = (1" § gnl@)e T Aay) T T (my) da
n==0 0
For every k € N by choosing the representation (26) agsociated with
m = —k — 3 and using (1} we can write
T PR(T) < C Y ™, myl <k

=0
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Therefore y=+~1/2h/ (T)(y) is in fg.

(ii)=>(iii). Let m € N, We define § = Ry, T. Then for every k € N there
exist ¢y > 0 and ny € N such that

ly™H 71200y < O (1 + i)™,

Set v(y) = (M? + y*)7'8(y), {Imy! < m + 1. Here M € N is such that
M >m+1,and [ € N satisfies I > nppq1 + /2 + 3/4. Thus v is absolutely
integrable on I and hj,(v) = hy(v). Hence by [23, Lemma 5.4-1], we can
write

Imy| < k.

T = hy,(6) = i, (M2 + %) ()
!
= X (st rspe -3,
J=0
where f; = () (-1 M*-Dh,(z), 5 = 0,...
7=20,...,1, f; is a continuous function on I.
To establish (iii) we have to show that e™*h,{v) is a bounded function on
I. Since v is absolutely integrable on I, e™“h,(v)(z) is bounded on (0, 1).
On the other hand, by using a procedure similar to the one employed in
[10, Lemma 6.1] we obtain

27 hu(v)(=)

,i. It is clear that, for every

= a2 [ (ale+ im)) S a(g + im))(€ + in)*H3o(€ + i) g

for every £ > 1 and 0 < n < M. By (2), (27) leads to

[e] i+ 1 at1/2
le™* Ry, (v)(z)] £ Ce™™ _S a +tf§_|:}_zfg(m_:_ i;iz)z—nmﬂ

dg

x sup (14 |z2) ez 2 (E)|, o> L
|Im 2| <m+41
Since | > M1 + /2 + 3/4, it follows that e™°h,(v)(z) is bounded on
(1,00).
(iii)=>(iv) and (iv)=>(v} are clear.
(v)=(i), We have to show that T € X, . for each' m € Z. Choose
r € N such that » > —m + L. There exist k e N and bounded continuous

functions f; on I, 4=0,...,r, for which
k
T=3 5.
=0

and e™® f; is absolutely integrable on I for every ¢ =0,...,%&. Then
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k oo
Ty =" | filz)Sio(z)de, ¢ € X,
i=0 0

Therefore

dw

k oo
(Too) < 3§ e fua) ot i/ 2elmmrlagmay—n=1/2|5i ()
i=0 0

k
<0y ol (v), veAd,.
2

Since X, is a dense subset of X, 4, it follows that 7" can be extended to an
element of X;’m’# defined by the same formula, and the proof is complete. w

As an Immediate consequence of Theorems 2.1 and 3.1 we infer that A,
is a subspace of X’,#.

In [4] there was introduced the space €, consisting of all smooth complex-
valued functions ¢(z), z € I, such that the limit

1 N\F
15, (20) e

exists for every k € N. This space is equipped with the topology generated
by the family {8/ , }men-{0},kew, Where for each m € N— {0} and k ¢ N,

(lﬂ)k@-#-l/%(m))

x

() = sup

, P EeE,.
TE(0,m)

The dual space of ¢, is denoted by Efu and it was characterized in
[4, Proposition 4.4]. Moreover, by [4, Propositions 4.5 and 4.6], £, is con-
tained in X;,#.

‘We now prove that elements of X' f;,# define convolution operators in Ay

3ROPOSITION 36 Le? S € X . Then the mapping ¢ — S # © is
continuous from X, into itself.

Proof. By Proposition 3.4 for every ¢ € A, we have
(S # 0) = 27472 (S)hu ().

Hence by Theorems 2.1 and 3.1, h!,(§#¢) € Q,, for each ¢ € X,.. Moreover,
the mapping  — h(S # ) is continuous from A, into @,. Finally, since
h,, reduces to h, on @, we infer from Theorem 2.1 that @ = 8 # o defines
a continuous mapping from X, into itself. m

Proposition 3.6 leads to the following definition. For T ¢ A, and S €
. the Hankel convolution T # § is the element of A, defined by

(T#S,W)=<T,S#(p), (PGX'“.
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Note that by Proposition 3.4 the definition of Hankel convolution on
X;i Py X;i,# is a generalization of the above definition of Hanlkel convolution
on X, x X,

We now establish the interchange formula for the generalized Hankel
convolution.

PROPOSITION 3.7. Let T € X, and S5 € &, . Then
hi (T # 8) = z=#71/20) (T)R,,(S).
Proof According to Propositions 3.4 and 3.6 we can write
{(h(T # 8),®) = (T # 5, hu(®)) = (T, 5 # hu(2))
= (T, hu(S # hu(9))) = (W(T), &7+~ 2h,(5)2)
= (@ P20 (TR, (S),8), $€ Q. m
As a consequence of Theorem 3.1 and Proposition 3.7 we obtain
CorOLLARY 3.1. If R,S€ X} , then R# S € X 4. m

Next we show some algebraic properties of the generalized Hankel con-
volution.

PROPOSITION 3.8. Let T € X, and R, S € X, . Then

(D) (T#R)#S=T#(R#5)
(i) R#S=5#R.
(iti) Su(T # R) = (S,T) # R=T# (S,R).
(iv) If 6, denotes the functional on X, defined by
(Burp) = 2°T(u+1) lim a7+ 2(a),  p ey,

then §, € X, , and R# 6, = R.
Proof. (i)-(iii) follow immediately from Proposition 3.7. To see (iv) it
is sufficient to note that y=#~1/2h, (6,) = 1. =
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Invariance properties of homomorphisms on algebras of
holomorphie functions with the Hadamard product

by

HERMANN RENDER and ANDREAS SAUER (Duisburg)

Abstract. Let I (1) be the set of all bolomorphic functions on the domain Gy, Two
domains (71 and Gy are called Hadamard-isomorphic if H {G1) and H(G3) are isomorphic
algebras with respect to the Hadamard product. Qur main result states that two admissible
domains are Hadamard-isomorphic if and only if they are equal.

Introduction. Let f{z) = 3 7 ja,z™ and g(z) = Y -7, bn2™ be power
gseries with positive radii of convergence. Then the Hadamard product of f
and g is defined by f*g(z) = ¥ " @nbnz". Let G be an open domain of C
containing 0 and let H(() be the set of all holomorphic functions on G. We
call a domain G admissible if for all f, g € H(G) the Hadamard product f*g
extends to a (unique) function of H{G), i.e. H(G) is a commutative algebra.
Examples of admissible domains are the open unit disk D := {z € C : |7|
< 1}, or more generally I, := {z € C: 2| <r} for r > 1, C\ {1} and so-
called a-starlike regions like C_ := {z € C: z & [1,00)} (see [3] for details).
By the famous Hadamard multiplication theorem a domain G is admissible
if and only if the complement G® of G is a multiplicative semigroup (cf.
e.g. [5]).

The aim of this paper is to study homomorphisms on H(G). Let us
call two domains Gy and G2 Hadamerd-isomorphic it G and (75 are ad-
missible and H(G:) and H(G») are isomorphic algebras with respect to
the Hadamard product. Our main result states that two. admissible do-
mains Gy, Ge with 1 € Gf are Hadamard-isomorphic if and only if they are
equal. This stands in sharp contrast to the following classical result: H(Gy)
and H{(Gy) are isomorphic algebras with respect to the peintwise multi-
plication if and only if Gy is bibolomorphically equivalent to G. Indeed,
we give a complete description of all isomorphisms for admissible domains
G with 1 € G°. Roughly speaking, if G is an admissible domain differ-
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