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On equivalence of K~ and J-methods
for (n+ 1)-tuples of Banach spaces

by

IRINA ASEKRITOVA and NATAN KRUGLJAK (Yaroslavl’)

Abstract. [t is shown that the main results of the theory of real interpolation, i.e.
the equivalence and reiteration thecrems, can be extended from couples to a class of
(n+ 1)-tuples of Banach spaces, which includes (n4- 1)-tuples of Banach function lattices,
Sobolev and Besov spaces. Ad an application of our results, it is shown that Lions’ proklem
on futerpolation of subspaces and Semenov's problem on interpolation of subcouples have
positive solutions when all spaces are Banach function lattices or their retracts. In general,
those problems have negative solutions.

0. Introduction. Oue of the most important achievements of the real
interpolation method for couples is Lions—Peetre’s remarkable reiteration
formula

(8o 5 6y).

The crucial point of the proof of this forraula is the so-called equivalence
theorem for K- and J-methods:

— — fa—y
(Xﬁn,qn 1 X6'1 41 )9,9 = X(1—6)90+091,q

— —
Xogx = Xg,g0

Sparr [S] shows that if an analog of the equivalence theorem is valid for
an (n + 1)-tuple then an analog of Lions-Peetre’s formula is also valid for
this tuple. Howoever, extension of the equivalence theorem to (n - 1)-tuples
for n > 1 encountered considerable difficulties.

The first counterexamples to the equivalence theorem are due to A. Yo-
shikawa [Y] and G. Sparr [S], but these examples are “degenerate” in the
sense that the intersection of all spaces X; (i = 0,1,...,n) of the tuple

X)) consists only of zero.
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102 I. Asekritova and N. Krugijak

DerNiTION. We shall say that the thafamental Lemma with the Cal-

derdn operator S is valid for the (n + 1)-tuple X if any element x € O'(X )
can be represented as a series

(1) z= Y =

KEZ™
3 —
abgolutely convergent in X(X'), where zx € A(X) and

(2) J(2%,015.X) < CISE (-, 2, X))(2%).

Here and below 2% = (2%:,..., 2%} where k = (k1,...,k,) € Z",and C' > 0
is a constant (different in different places) independent of 2 and k.

Remark. An important difference between conditions (1)-{2) and the

F-condition of Sparr [S] is the appearance of the operator S in (2} and of

the operator S in the definition of a()_() }.

LeMMA 1. Let X be an {n+1)-tuple consisting of Banach function lottices
X; (1=0,1,...,n) on 2. Then the Fundamental Lemma with the Calderdn
operator S is valid for 3"{:} . _

Proof Without loss of generality we can assume that for any k & Z"

and © € )3(5{:> ) there can be found nonoverlapping sets 4;(k) = A;(k,z),
3=0,1,...,n, such that

(i) U Aj(k) =
=0
(3) n
y _> o
(i) K (2%, 2; X) = ||mXAb(k)NXe + 325 |l o ;-
i=1
The notation “~" means that the constants of equivalence are 1ndopcn—

dent of z € E(X) and k € Z",
_._>

‘We shall construct the required decomposition (1) of 2 € ¢(X) in several
steps, using a special partition of unity.

Step 1: Consiruction of a new family A;(k) with the monotonicity
property. For k € Z" we definie

(k) == {s € Z" | 1 = min(1, 2k~ 2kn—sn)]

2;(k) :=={s € 2" | 287% = min(1,257%, ..., 255}, i =1,...,n
Let ' '
(4) A(k U A J=1...mn,

‘sef2;{k) '

icm
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(%) - O

It is obvious that Aj(k) D Aj(k), 5=1,...,mn, and

(6) Ag(k) © Ag(k).

Moreover, it follows from (3), (4), (6) and the inequality SK (-,33;5(—> ) =
K(~,m;5(—)) that

no . .
||mXA(1(k)HXU + 22’6] ||$X.4Tj(k)||X;i < O[SK( Ty I X)Mzk)

=1
Let I+ Z" — Z" (i = 1,...,n) be the shift operator on the 7th variable:
I‘ (k) (}"‘Cl, e k‘ ) = (k]_, ey kiml,ki - 1, k.H_l, - k}n)
Then monotonicity of the family {A;(k)} (j =1,...,n):
(7) (k) € A() for 4, A (T(0) D A (K),

follows from the analogous monotonicity properties of the sets §2;(k), § =
0,1,...,n

Ste ’}3 2: Construction of elements from the intersection. For any point
..,2") € RT we define

i)\ | Ao(13(k))-
i=1

2K
(8) B(k) :=
Taking into account the definition (5) of Ag(k) and monotonicity (7) of

A;(k), i =1,...,n, we obtain

n

(9) B(k) = (] [&(L) UA )}
" =1
Since |z|xpa) < |~U|XAU(1<) and . |z|xB ) \m\XA ray), =10, it

follows that zx gy € A(X ) and fori=1,..".

244 e
Since SK(-,2; X ) is a nondecreasing function, we obtain
lexpollxe < CISK (-, 2 X)](29),
2%l 2x B 1 x: < OISK (-, X2, i=1,...,n.

, 1 we have

o S P exa o lx < OISK( 33 X)) (27,

(10)

(11) e = zlxBu), kEZN.



. . @
104 1. Asekritova and N. Krugljak Im Equivalence of K- and J-methods 105

Then it follows from (10) that has measure zero. For this it is enough to show that
— —
(12) 702, ) < CISK (-, X))(25). e~ 2%, 20l 5y = .
Step 3: Construction of the required decomposition. Since © € J(}? )y Let us take an arbitrary € > 0 and prove that

from (9) we have 2 = 21, gy Bk“;:(;'c‘) <&

Z “yk]lz(x < Z Z [l ¢ From the definition of the set Ag(m) (m = (m, ..., m) € Z"), using the fact
kez™ 3=0ke2;(1) that z € cr(:f J; we deduce that for sufficiently large m we have
—+
[SK(-,=,; X)](2%) n %
< 3 CISE( 2 X))(2%) +Z 3 c 2 o _ SE(C 2 X))2™) =
K€ (1) i=1kem (1) 2% 2 — X Ay ey | 5 2) < ?;1/ le:x 3, gyl < C om <3
< C[SzK( ., a:,)_f)](l) < 0. From this and from the fact that
Thus the series ), .p» Uk is absolutely convergent in Z(}_{)) and therefore lz = EXUreern B"HE <z - TXcean B’“”AD(m)HZ(X )

(see, for example, Corollary 2 of Theorem 1, Chapter 2 of [KPS)) it is point-

it is clear that in order to prove (13) it is enough to show thai
wise convergent almost everywhere.

£

Below we shall show that the inequality (14) 12X 4 () — EX Ao (m)Uyegn Bk}lch) <3

(13) |z < Z ()" To prove this we shall consider the sets
keZn
ol == ] [ " ™ -i< ,'z LR

holds almost everywhere. Oma= k= (ki hn) €27 U <ki Sy 4= 1 nt

If (13) is correct then suppz C supp 2 xezn Yk and the series composed and
of the elements _ ” ml—{k (kyooo k) €20 | kg =1 I<ks<m, i#5}, j=1...,n

Ty = o
2emn Yk It follows from the definition (8) of B(k) that
pointwise converges to = almost everywhere. It follows from (13) that ‘
15 Ag( YUl | Ap(Ii(k
.”5111:”2(;‘(‘) < Hyklfg(_;f). (15) U o(T3(k)).

So the series D ;) 0 ) is absolutely convergent in E()_f ), and since it point- In particular,
wise converges to xz, its sum will be equal to . _ -

It follows from (13) and (12) that Ao(m) € B(m) U | J Ao(T(m))

i=1
J(2, 21 X) < J(2%, 16 X) < CISK(-, 2 X(25). and

Therefore the elements ). satisfy all the requirements of the lemma. So, we q .
only need to prove the imequality (13). Ao(Tu(m)) € BT Q olF3im)-

It follows from the definition (11} of the elements g that ( (13} helds
almost everywhere on | Jy .z Bi. Hence it is enough to prove that the set Therefore

i m
{we]aw) £0}\ | Bu Ao(m) € B(m) U{J B(i(m)) U () Ao(IyLi(xm)).

kezn ‘ i=1 i,j=1
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Repeatedly using the embedding (15), we continue this process of replac-
ing the sets Ao(s) for s € 2, 1. Then we obtain

n

Amyc |J B@uly U Al

kEnm,l j=1s€ﬂj

m,l

Hence, taking into account (6) and (3), we have

N _
13 g (0) = X Ao () egn Bre | 202y S > 2 Il g o1l 2y
- g=1 seﬂj

[N

We also note that
m-l
S K@ 5 X) < CISK(,a D) ™)
SEQ‘;;,!
and it follows from ¢ € J(J?) that for fixed m, as | — —o0,
SK(,o X))@ ) =0,
Now, (14) directly follows from this. =
Similarly to Proposition 5.2 of [S], it is easy to obtain:
COROLLARY 1. Let the (n-+1)-tuple X be a retract (or partial retract) of
" an (n+ 1)-tuple of Banach function lattices. Then the Fundamental Lemma
with the Calderdn operator S holds for X.
It is well known (see [BL]) that the (n + 1)-tuple of Sobolev. spaces
_} [~ N .
Wg ;(Wﬁf,W;‘f,.@,Wzﬁf’), l<p<oo, k; 20(E=0,1,...,n),

is a retract of the tuple (Lp, (I8), Ly, (15%), ..., Ly, (15")). Therefore we de-
duce from. Corollary 1 that the Fundamental Lemma with the operator S is

valid for the tuple Wé‘
Similarly, since the (n + 1)-tuple of Besov spaces
— . ‘
Byt = (Bpo®, By, By, 1< pi<oo, 1< g €00, 03 >0,
is a retract (see [BL]) of the tuple (I59(Lypy), 5 (Lpy); - 157 (Lyp,)), the

. —
Fundamental Lemma with the Calderén operator S is also valid for B

Remark. In [Al] it was proved that the reiteration theorem is valid for
an (n+ 1)-tuple of Banach function lattices if there exist sets 4;(t,x) (j =
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0,...,n) which are nonoverlapping and have some monotonicity properties.
Later on the first author constructed the required sets for triples of Banach
function lattices, The proof was rather combinatorial and all attempts to
generalize it even to 4-tuples failed. In this paper we construct the sets
A;(t,z) (5 =0,...,n) satisfying weaker conditions than in [Al] and show
that they are sufficient. We rejected the idea of monotonicity of the set
Ag(t, =) and we do not need the sets A;(t, z) (2 > 0) to be nonoverlapping.

We would also like to note that Lemma 1 is not the first example of an
interpolation result which is true for Banach function lattices and not valid
in general. See, for example, [M]. This and some other results were reasons

for the hope that the reiteration theorem is true for (n-+ 1)-tuples of Banach
fuction lattices.

2. The equivalence and reiteration theorems. It was shown above
that the class of (n 4 1)-tuples for which the Fundamental Lemma with the
Calderdn operator S holds, is sufficiently wide and includes function spaces
which are important for applications. In this section we show that for such
(n -+ 1)-tuples the equivalence and reiteration theorems are valid.

DEFINITION. A Banach function lattice ¢ on R} with the measure % =
%’11- e %—’;‘L will be called a paremeter of the real method if the Calderén
operator & is hounded in @,

The most important example of parameters of the real method is the
lattice Pg 4. In this lattice the norm is defined by the formula

_ dt 1/(1

I£l0a = | § e-sen ]

R

where t7€ = 7% 400 9 = (8y,...,0,), 6; > 0, Y. fi<landge
[1, 00].

Similarly to the case & = $p 4, which was considered by Sparr [S], we

. . . Sk Bt
define the interpolation spaces Kg(X) and Js(X) by the norms

—
Il e, iy = K5 X,

: e ds
ol 5y = 8 {17003 Dl 1=  0t6)
e

TrEOREM 1 (The Equivalence Theorem). Let X = (Xo, ..., X) be an
{n + 1)-tuple of Banach spaces for which the Fundamental Lemma with the
Calderén operator § s valid. Then for any parameter & of the real method
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we have
Ka(X) = Jo(X).

Proof. The embedding Js ()? )— Kg ()_5 ) immediately follows from the
definitions of the norms of these spaces and the fact that the Calderdn
operator S ig bounded in ¢.

The opposite embedding follows from the fact that the Fundamental

Lemma with the operator S is valid for the (n+1)-tuple X. Let z € K. g,()? ).
This means that K(-,m;f) € ¢. Ience SZK(-,.’B;E} € P le z € cr()_f).
Therefore a decomposition of z into a series (1) satisfying the estimates (2)
is possible.

Let
Qu={5=(51,.-+,8n) | 2" S8 < gktl s =1....n}, keZ
We define
u(s) = 3 (In2) " zexqu(s),
keZn
where z is a summand in the decomposition (1) of z. Hence
ds
% = S u(s) .
R%

and for any s € R} from (2) and concavity of the K-functional we have
(16) J(s,u(s); X) < C[SK(-,z,X))(s
with the constant C > 0 independent of s and z ar(X )

Applying || - |ls to both sides of (16) we deduce from the boundedness

of the operator 5 in @ that Kg (j’? Y= Js ()? ), and this completes the proof
of the theorem. m

Remark, It should be noted (see [BK]) that in the case of couples the
equivalence theorem Ky = Jp holds if and only if the operator § is bounded
in &.

Txistence of a wide clags of (m + 1)-tuples for which the equivalence
theorem is valid leads to the necessity of distinguishing the class of “right”
(n+ 1)-tuples of Banach spaces.

DEFINITION. We shall call an (n -+ 1)-tuple of Banach spaces an LP-tuple
{Lions-Pectre tuple) if

Ka(X) = Jo(X)

holds for any parameter ¢ of the real method.

icm
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An important property of LP-tuples is:

THEOREM 2 (The Reiteration Theorem). Let X be an LP (n + 1)-tuple

of Banach spaces. Then for arbitrery parameters @9, $41,..., Py and & of
the real method we have

= — -, =

Ko (Ko (X),Kg,(X),.... Ks, (X)) = Ke(X),
where ¥ = Kg(Pq, Dy,. .., 8.

Proof. Let 2 € 3 ;Ko ) Take a “nearly best” decomposition of
this element, i.e, o = }:”;0 x; and

m
”:‘UU “K%()—{') + Z tin’i”Kﬂ(f)
=]

K, (X))

‘We denote by ¢ the function K{ - z; X) } and by ¢; the function K (-, s; X )

< (14K, z; K%()—{)),chl(f), e

(i=0,1,...,m). We note that ¢; € &; (i = 0,1,...,m) and ¢ < > ;"¢ ¢i.
Since
¢ = qu ¢
z [¥] *"'0 t
we have

m
I{(ti"’/);@Oa@l: R ang) S ”¢0H¢G + Zt'&”qb%”@t

i=1
+ Ztlilmluk

<(1 +€_)K(f,$;Kq;O(X), R

Applying the norm of the space @ to both sides, we obtain
—}

(Kﬁin( )

To prove the opposite embecldmg we note that since X is an LP-tuple,
it is enough to prove

(17) To(X) = Ka(Jao (XD,

= “‘T’U IK

Ko, <f>>.

o, (X)) < Ky (X).

Y
Let x € Jy (58 ). Then there exists a decomposition of 2 as

T = S u(s)%E (convergence in Z‘(X'_}))
K
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such that for g(s} = J(s,u(s);)?) we have
(18) lglle < {1+ €)llz|

Ly S

Ju{X)
— - —

Let the operator A : (&g, F1,...,8m) — (Jo,(X), Jo, (X}, ..., Ja,, (X)) be
defined by the formula

(s) ds
Ap= | 9o —— =
RS*_; (S)J(s,u(s);f) 8

It is clear that HA”@S-—J@.(J?) < 1 and Ag = z. Therefore

™m

—
(19) K(- 25 75,(X), ..., J5, (X)) SK(,0:%0, .., Pm).
Since ¥ = Kg(®y, ..., Pn), applying the norm of the space ¢ to both sides
of (19) and taking into consideration (18) we obtain

1K (@ a0 (), s T (D) s < B (930, Bl
—
= |lglle < (1 +&)lzl|.7; (X).
This proves the required embedding (17). =

As shown in Section 1, the Fundamental Lemma with the Calderén op-
erator 5 holds for tuples consisting of Besov BJ>? or Sobolev W;“ spaces.
Therefore by Theorem 1 such tuples are LP-tuples, and the reiteration the-
orem is valid for them.

Remark. It should be noted (see [BK]) that in the case of couples the
reiteration theorem holds without assuming that the operator § is bounded
in parameters. However, from [A4] (see also [A2]-[A5]) it follows that with-
out restrictions on parameters the reiteration theorem is not valid even for
the triple (L]_, Ll(l/tl), Ll(l/ig))

3. Some applications to interpolation of couples. Below it will be
shown that Lions’ and Semenov’s problems have positive solutions in the
case of Banach function lattices.

‘We need two remarkable theorems of Sparr [S]. For simplicity we shall
give them in the particular case we need.

Let U = (Ug, Uy, Us) be a triple of Banach spaces. Let

2
B={X=00 %) | 220 6=012), 3 x=1}
and -

H= {3\-2 ()\(],Al,Az) | A >0 (’-‘:'2 0,1,2), 22:)\@ = 1}

=0
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For A € H and g € [1,00] we denote by F)‘\,q the space defined by the norm

=M1y~ =, Ot dt
(20) [ll5,4 = { | Vet o (b, oy 2, T2 222 _2}
00 it

‘with the usual changes for ¢ = oco.

In the case X € H \ H we denote by L_T);’q the spaces

— — —
U0,0ne= U0, U100, = U1, Ugg,01),4 = Uz

and

— o
U0 = (W Udangs Ugo,30,0000 = (U1, U2)ag g

—)
Utro.0)ie = (U1, U)o

DeFINITION. We say that the power equivalence theorem is walid for U
if

— —
(21) : U, = Ux

for all X € H and ¢ € [1, o0].

g

Of course if T is an LP—triple, for example if U; (4 =0,1,2) are Banach
function lattices, then (21) is valid.

TuECOREM A ([S]). If the power equivalence theorem is valid for the triple

T = (Ug, Uy, Us) and the vectors A, X1, A% € H are linearly independent
thern

. — —

(a) the power egquivalence theorem is true for the triple (Uso ., Us:

qe? -qu?

—
UXJ N0 ) ?

(b) an analog of the Lions-Peetre reiteration formula holds for X =
(Ao, A1, A2) € H:
e —np — -
(22) (Ust,q0r Usa g Use )50 = UnpRota 31 4aai2,q-

Remark. It is important that X belongs-to H and not to H \ H, because
the formula

B = —r
(23) (Uso g0 Uszt g 000 = Un—pyXoqo3t g
does not hold in general (see [S]).

The next theorem indicates one particular case in which the formula (23)
is true. :
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TreEoREM B ([8]). If the power equivalence theorem is true for the friple
U= (Un, Uy, Ua) then for all 6, € (0,1) we have

.
(24) (T, Uzdo,gr (U1, U2)6,9) g = U1 -0) (1), (1-0) .6},

Remark. It would be interesting to investigate conditions for formula
(23) to be valid.

‘We shall also need

TusoreM C ([INP]). If the couple Z = (%o, %) s such that Zs, g, =
Z;l,ql for some By % 81 then Zy N Zy is closed in Zo+ 2y and Zp g = Zo N2y
for all 8 € (0,1) and g € [1,00].

Now we are ready to prove

THREOREM 3. Suppose that the power equivalence theorem is valid for the
triple U= (Uo, Uy, Us). Then

(a) if (Ug, U2)ag,q0 = (U1,Uz)ag,q0 for some 8 € (0,1) and gp € [1,00]
then
(25) (Us, Uz)o,q = (U, Uz)ag

for all8 e (0,1) and g € [1, o0,
(b) if Uy C Uy is a closed subspace of Uy then (Uy,Us)g,q is @ closed
subspace of (U1,Us)sq for all 8 € {0,1) and g € [1, 00].

Proof (a) Deﬁt}-(mi XO = (Uo, Ug)gn,qo and Xl = (Ul, UQ)BD’qO. Then from
Theorem A for any A € H we have

-_-} .
(26} V)_\,q = (X, X1, UO)X,q = U(Ao(1——90)-{-)\2,)\1(1~90)=(1—3\2)90).q
and

-~ oy

(27) Vi,q = (XO’Xli Ul)j\,q = U()\n(l—ﬂo).3\1(1ﬁ90)+/\2=(1”)\2)90)1€1'

As Ag+ Ay = 1~ A; there exists ¥ € (0, 1) such that Ag = {1 — X3)(1 =)
and Ay = (1~ Az)7. So if we apply Theorem B to the triple (Xo, X1, Up) we
have

Vx,q = ((XU:' UO))\:M;: (Xlu Uﬁ))\z,q)’Y,Q'
As Xy = X1 by assumption, from the last formula it follows that
Vg = (X0, Uo)as,g = (U, U2)on,0: Uo)aze = (U, Uz) (1= as)00,0-
And, analogously,
V3, = (U1, Us)(1-22)00,0
So we see that for fixed Az € (0,1) the family V5 , consists of spaces equal to

(Uo, Ua)(1-22)60,q and the family f/";’q of spaces equal to (U1, Uz)1—ag)80,¢-

icm
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On the other hand, from Theorem B and (26)-(27) it follows that for
fixed Az € (0,1) spaces from V3,q and 17;,(1 are §, ¢ interpolation spaces of
the couple ((Uo, Uz)(1-3)60.9» (U1, U2 }(1-2s)00.4)-

Applying Theorem C we obtain (U0, U2) 1 35)86,0 = (Un, Ua)(1-23)0,9-

So for 8 < 8y and q € [1, 00] we have

(28) (Wo,Us)g,g = (U1, Un)a g

If we interpolate the spaces from (28) with U, and use the reiteration theo-
rem for couples then we obtain (28) also for 6 > 8;:

(Uo, Uz) (1 yo-rpq = ((Us, Un)o,g, Uz )
= ((Uh Uz)ﬂ,qa U2).U-=q = (U17U2)(1—.u)9+ﬂ,¢

(b) Since (Ug,Us)s,q = Up, from Theorem B it follows that for A € H
the space

(29) Vi,q = (Uﬂa (U0=U1)6,qa U2)7\,q = U(AU+A1(1—9),A19,,\2),q
is equal to the space (Up, Uz)as.q _

Applying Theorem B to the triple U = (Up, Us,Us) we see that the
space on the right hand side of (29) can be obtained by interpolation from
the couple ((Ug, Ua)ay,q: (U1, Ua)ag,q)-

As the family V5 , for fixed A2 consists of equal spaces, from Theorem C

and the embedding U C Uy it follows that the spaces V5 , = (Us, Uz)a,,q
are closed in (U1,U2)x, 4. ®

From the next result it follows that Lions’ problem (see [L]) has a positive
solution for Banach function lattices.

COROLLARY 2. Let Xy, X1, Yo, Y1 be Banach function lottices and X;
be closed subspaces of Y; (i = 0,1). Then for oll 8 € (0,1) and g € [1,00]
the space (Xo,X1)g,q is closed in (Yo, Y1)e,q.

Proof First consider the triple {Xp, Yy, X1). As Xj is a closed subspace
of ¥p, from Thearem 3(b) it follows that (X5, X1)g,q is a closed subspace of
(Y5, X1)s,4- Analogously if we consider the triple (Xi,Y¥7,¥p) then we find
that (X4,Y0)s,, I8 a closed subspace of (¥1,Y5)s,q for all 4 € (0,1) and
g € [1,00]. From this and the general equality (Zo, Z1)e,q = (Z1,Z0)1-0,¢
wo obtain the regult. =

The next proposition shows that Semenov’s problem also has a positive
solution for Banach function lattices.

CoroLLARY 3. Let Xg, X1, Yo, Y1 be Banach function laftices and X; —

Y; (’i = 0, 1)' If (XU:X]-)30,G(J = (YOaYl)f)u,QD for some By € (0: 1) and go €
[1,00] then (Xo, X1)o,g = (Yo, Y1)e,q for all 8 € (0,1) and g € [1, x].
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Proof. First consider the triple (X, Y5, X1). The equality (Xo, X1)a,,q
= (Y5, Y1)6,q0 and the embeddings X «— ¥; (1= 0,1} imply that
(XO,XI)GO,CJO — (Y(Jle)ﬁm% —* (YOle)EuffIn = (XOv-Xl)Gmfm'

So (Xo, X1)6.q0 = (Yo, X1)60,q0- Now Theorem 3(a) shows that (Xo, Xi1)o,
= (Yo, X1)a,q for all 8 € (0,1) and g € {1, 00].

Analogous consideration of the triple (X1,Y1,Yp) leads to the equality
(X1,Y0)eq = (Y1,Yp)aq for all 6 € (0,1) and g € [1,00]. From this and
(Yo, X1)e.q = (X1, Y0)1-0,, the required statement follows. m

The next result which is usually called the uniqueness theorem for the
real method spaces was obtained in [CN] under some additional assumptions
(Fatou and some other properties).

COROLLARY 4. Let Xy, X1, Yo, Y1 be Banach function lattices. If
(X0, X1)6,,0: = (Yo.Y1)o,q: (=0, 1)
for some 0,81 € (0,1), 8y 7 61 and qo, g1 € [1,00], then
(Xo, X1)a.q = (Y0, Y1)o,q
for all 8 € (0,1) and g € [1,00].

Proof Without loss of generality we can assume that 6o < 8. If A €
(0,1) is such that (1 —6g)(1 - A) = L — 81 then

(30) (XD’X]-)GLQI = ((XO,Xl)ﬁn,qle)Am
and _ ‘
(31) (YO:Y1)6’1,Q1 = {(Yﬂayl)ﬁ’mqmyl))\m = ((Xg, Xl)ﬂn,qm Yl)laql

Consider the triple ((Xo, X1)8g,40» X1, Y1). From the equality (X0, X1)s,,q, =
(Yo, Y1), ¢, and (30)-(31) it follows that

((XO,Xl)ﬁoqqoa-Xl)A,m = ((XﬂaXl)ffo,Qo’Yl))\,Ql'
Applying Theorem 3(a) we obtain
((XO:XI)Bu,qle)Mq = ((XO!XI)GO:QOJm)M:Q = ((thyl)%,qmyl)mfl

for all & € (0,1) and g € [1,00]. From this and the reiteration theorem for
couples it follows that for 8 > 8y we have

(XD: Xl)@,q = (Yr[)ayl)ﬂ,q-
The case # < 4; is considered in an analogous way. =

Theorem 3 allows us to give a simple example of a triple for which the
power equivalence theorem is not valid. In [W] it was shown that there exists

a subspace M of codimension 1 in L; such that (M, Ly)e,, = (Ll,Lm)g,q'

for 8 > 1/2 and {M, Lo )1/2,2 18 n0t closed in {1, Liog)1/2,2. These properties
imply
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COROLLARY 5. The power equivalence theorem is not valid for the triple
(M: Ll: Loo) . ’

Proof. Otherwise from Theorem 3(b) it would follow that (M, Luo)e,q

is a closed subspace of (L1, Lo )s,q for all # € (0,1) and ¢ € [1, oc]. But this
is not the case for # = 1/2and g =2. =

Remark. The same example shows that Semenov’s problem has a neg-
ative answer for general couples.

A counterexample to Lions’ problem can also be found in [W].
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An open mapping theorem for analytic multifunctions
by

ZBIGNIEW SEODKOWSKI (Chicago, TiL)

Abstract. The paper gives sufficient conditions for projections of certain pseudocon-
cave sets to be open. More specifically, it is shown that the range of an analytic set-valued
function whose values are simply connected planar continua is open, provided there does
not exist a point which belongs to boundaries of all the fibers, The main tool is a theorem
an existence of analytic discs in certain polynomially convex hulls, obtained earlier by the
author.

Introduction and results. Analytic multifunctions are set-valued gen-
eralizations of analytic mappings (cf. [Ok], [S1]). They found applications
wostly in functional analysis: in spectral theory, the structure of the Gelfand
space of a uniform algebra and in the complex interpolation method for Ba-
nach spaces. However, they have also led to interesting new vistas in complex
analysis, in relation with polyncmially convex hulls and the corona prob-
lem. On the other hand, it is natural to ask which portions of the classical
function theory extend to analytic multifunctions. While this approach did
not always produce interesting questions, the problem of generalizing the
classical open mapping theorem, posed by Ransford [Ral], has proved to be
rather intricate. This paper is devoted to the above problem.

Recall that an upper semicontinuous compact-valued correspondence
(briefly, multifunction) z — K, : G — 25, G C C open, is called ana-
lytic if the set U = {(z,w): 2 € G, w & K.} is a pseudo-convex domain.

It is casy to sce that anaive generalization of the open mapping theorem
is false. Let I, be the closed segment joining z to 1, for z € I = {zeC:
2| < 1}. Then z — K, : D — 2° is an analytic multifunction but its range
is R(K) = | J{K, : z € D} = DU{1}, and is clearly not an open set. The
reason is that point 1 belongs to the boundaries of all the sets K,, 2 € [
These observations are due to Ransford who explored the problem initially
in [Ral] and modified it as follows.
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