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Schauder theorems for linear elliptic and parahbolic problems
with unbounded coefficients in R"

by

ALESSANDRA LUNARDI (Parma)

Abstract. We study existence, uniqueness, and smoothing properties of the solu-
tions to a class of linear second order elliptic and parabolic differential equations with
unbounded coefficients in R™. The main results are global Schauder estimates, which hold
in spite of the unboundedness of the coefficients.

1. Introduction. We consider a class of second order elliptic operators
in R™,

(L1)  Au(e Z gij (2) Digu(z +ZP1 ) Diu(z) +r(z)u(z),
f,m=1 t=1
= Tr(Q(z) D?u(x)) + (P(z), Du(z)) + r(z)u(=),
where the coefficients are regular enough and may grow not more than
exponentially as |z| — oco. The main assumptions are that r is bounded
from above,
(1.2) sup r(z) =rg < oo, VzeRY,
R'!G]R"’"
that the problem is uniformly elliptic,

"

(1.3) H; a5 @)ty 2 V(@€ Vo€ €RY, with inf v()=10> 0,
and that P satisfies a dissipativity condition,

(14) ZDm, J&ig; < p@)lef’, Va, £ €R™, with sup p(z) = pg < co.

5=l zeR™
Moreover, we agsume that there exist Ao 2> ro and a regular function ¢
such that
(1.5) lim () =00, sup (Ap(z) — dop(z)) < oo
||~ k"
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In the case where P is the gradient of a smooth function F, (1.4) means
simply that D?F is bounded from above. Sufficient conditions in order that
(1.5) holds are easily given; in its turn (1.5) yields a maximum principle for
the solution of {1.6) and (1.7).

We study existence, uniqueness and regularity of the solutions to

(16) M(z) - Au(z) = f(z), @eR,
ug(t,z) — Au(t, z) = g(t,z), 0<t< T, z€R",
{ zE Rﬂ.’

where f, g, up are bounded and continuous (or Holder continuous) functions,
and X > rp.

The main results of this paper are Schauder type theorems for both (1.6)
and (1.7}, as follows.

TusorREM 1. Let 0 < 8 < 1. If A > 1o, then for every f € C%(R?)
problem {1.6) has o unique solution u € C?T8(R™), and there exists C > 0,
independent of f, such that

(L7 w(0,z) = ug(z),

ulloas @y < Clifllcomn).

THEOREM 2. Let T > 0, 0 < 8 < 1, and g € C([0,T] x R™) be such
that g(t,") € C°(R") for every t and suPgci<r |90t Hlcomny < oo. Let
moreover ug € C*T#(R™). Then problem (1.7) has o unique bounded solution

u belonging to CY2([0,T] x R"), and there is C' > 0, independent of g, ug,
such thot

sup |[u(t, - )cavomny < C(lluolloaromey + sup gt Yoo @ey)-
0<t< T 0<t<T

While the literature about elliptic and parabolic problems with bounded
coefficients is very rich, there are much less results about equations with
unbounded coefficients (we mean of course global results, since the local
ones depend only on the smoothness of the coefficients). Even existence and
uniqueness of the solution to (1.6) and (1.7) for smooth data is not trivial,
in general,

If det @(z) = 1, a fundamental solution was proved to exist by Ito ([13])
under smoothness assumptions on the coefficients, and the only growth con-
dition (1.2). This allowed proving existence (not in general uniqueness) of a
classical solution to (1.7) for continuous L! data g, uq.

Later, Bodanko ([5]), Aronson and Besala ([1], [4]) allowed r to grow as
|z|* if the ellipticity constant v(z) grows not faster than [z]22, 0< A <2,
while P cannot grow faster than |z|. They proved existence and uniqueness
of the solution to (1.7) for data in suitable weighted spaces.

In’ [9] Schridinger operators {of the type u — ZZ =1 Dilay; Dju) — Vu,
with measurable and bounded a;;) are considered, from the point of view
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of symmetric Markov semigroups, under some “positivity” assumptions on
V. The results are then transferred to associated operators (again with un-
bounded coefficients) in suitable weighted spaces.

In all the above papers Holder regularity is not considered. Optimal
Hélder regularity results for (1.6) were proved by Canmarsa and Vespri in [6],
with different techniques and stronger hypotheses guaranteeing analyticity
of the agsociated semigroups: they assumed that € is bounded and that the
growth of 7 balances in a certain sense the growth of P. More recently, in [11]
we proved Schauder estimates for the Ornstein-Uhlenbeck operator, where
the coefficients ¢;; arc constant and the coefficients p; are linear. Then we
considered the case of bounded ¢;; and Lipschitz continuous p; ([17]), and
lastly the case of coefficients with polynomial growth has been studied by
stochastic methods by Cerral in [7], [8].

The initial value problem (1.7) arises naturally in important fields of
applied mathematics such as stochastic control and filtering theqry. Sefa for
instance [3], {12], [2], [19]. The connection with stochastic control is obvious:
if we perturb a dynamical system governed by ODE’s,

XI=P(X)y t>0:
X(0) =z,

by a white noise with coefficients depending on the solution,

dX = P(X)dt+ /2Q(X)dW,, t>0,
X{0) =z,

then the solution X (¢,z) is related to problem (1.7) with r = 0 by the
equality u(t, z) = E(ug (X (¢, 2))).

Our study begins from problem (1.7), with ¢ = 0 and T = oo..We
prove that for every continuous and bounded ug problem (1.7) has a unique
classical solution, which is bounded in [0,7] x R™ for every T >.0. The
associated semigroup 2'(t) enjoys very nice smoothing propertlgs: 1t' ma}zs
continuously C'(R") {(the gpace of continuous and boundgd funcfflons in IR )
into C*(R™) {the space of thrice differentiable functions in R* with continu-
ous and bounded derivatives up to the third order), and moreover there are
C, w € R such that

(1.8) | T()uolleo + £ i | DT )uollee -+t D 1 DisT(Euolloo

t=1 i,5=1

+802 3 Dy Bunlloo < Ce“/fuolloo >0

L RESH
In general such a semigroup is not analytic and it is not strongly continu-
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ous in C{R™) (not even in BUC{R™), as proved in [11]}, so that the usual
semigroup theory is not of help in the study of problem (1.7).

The main point is to find o priori estimates of the type (1.8). Then
existence of the solution may he shown by an approximation procedure,
which however is not straightforward (see Section 3).

The a priori estimates (1.8} are proved in an elementary way, applying
the maximum principle to the equation satisfied by

(3 T 11
z=u? 4 atZ(Dmf + att? Z (Dyju)? + o3 Z (Dijiu)?,
i=1 ii=1 i, l=1
with v > 0. Indeed, an easy although lengthy computation shows that 2
satisfies
(1.9) ze(t, ) — Az{t, z) — (1+ 2ro)2(t,z) = g(t,z), ¢>0, z € R",
l Z(O,CL’) = (U’U(x))za r e RY,
where the continuous function g has nonpositive values in [0, 1] xR™ provided
@ is suitably small. Thanks to assumption (1.5), the classical maximum
principle may be adapted to our equations with unbounded coefficients, and
it gives
28, M 2o (o,1)xmm) < € luollZ,
for some w € R. By using then the semigroup law, (1.8) follows easily.
Arguing similarly, we can also prove that

(1.10) [T (@)uollcs@mny < O |lug|losmay,
for every uo € C*(R™). By interpolation we get

Oewt
IT(EH Lico ), oo mry) < Ho—8)/2’

t >0,

(1.11) t>0,0<0<ax<3,

which coincides with the well known Holder estimates in the case of bounded
coefficients. Then we apply the interpolation procedure of [L5]: given three
Banach spaces Yy 2 Y; D Y5 and a semigroup T(t) such that
1T | va,xsy < Cet /%, t>0,4=1,2,
withw >0, 0 < 711 <1 < g, the domain of the “generator” (in a suitable
sense) of T'(t) in Y} is continuously embedded in the interpolation space
(Y1,Y2)8,00

with 8= (1 —71)/(v2 — 7).

Choosing Yo = C*(R"), ¥1 = C*(R™), and V3 = C2+*(R™), with 0 <
¢ < a <1, we find that the domain of the realization of A in C*(R™) is
continuously embedded in

(CH(R™), 02+Q(Rn))1u(a—9)/2,oo = C*9 (™).
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This is nothing but an optimal Schauder regularity result for problem (1.6):
indeed, it implies that if f € C®(R™) then the solution u is in C*H(R™).
A similar interpolation method for abstract parabolic problems gives the
optimal Schauder regularity and estimates of Theorem 2.

2. Maximum principles and a priori estimates. We state belQW
some probably well known generalizations of the classical maximum prin-
ciple to parabolic and elliptic problems in R™.

PROPOSITION 2.1. Let the data gi; : [0, 7] xR™ — Randr : [0, T]xR* —
R satisfy

n
21) Y @;(t9)&€ 20, r(tz) vy, 0<t<T, 2, R,
i,j=1
and assume that there exists o CF function o R™ — R satisfying (1.5) with
Ao >rg. Let z:[0,T] x R* — R be a bounded classical solution of

T T
Z = z qi; Dijz + ZpiDiz +rz+gltz), 0<t<T, ze R,
(2.2) Byiasl =1

2(0,2) = z({x), =z &R,
where
g(t,z) <0, 0<t<T, zcR™
If supz > 0, then
sup z(t,x) < ™ sup zofz), 0<t<T
sER® zeRm

Similarly, if
glt,z) 20, 0<t<T, weRY,
and inf 2z < 0, then

i ) > e inf zle), 0<t<T.
:c]$£'- z(f’w) =€ el 0( )

In particular, if g = 0 then
l2(t, Moo < € 20lloos 0 SEST
(t,

Proof. Let A = Ao, A > ro and set v(t, ) = 2(t, z)e~*. Then

ve(t, 2) = Aw(t, z) — Au(t, z) +g(t,m)e““, 0<t<T, R,
v(0,2) = z9(x), =e&R™
Assume that sup z > 0, so that supv > 0. We claim that

(2.3) gup  v{t, ) < sup 2o-
0<t< T, nERn
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This means that suppe;cr semn (£, 2)e™ < sup z so that, by letting A —
Ao, the statement follows.
Counsider the sequence

wn(t,2) = o(t, ) - 7p(z).

Then limy_, oo SUp v = sup v. Moreover, for k sufficiently large, v;, has a posi-
tive maximum at some point (g, x ). If t = 0 for all & then sup vy < sup zg—
info/k and (2.3) follows; if & > 0 then Dyuy(tx,zx) > 0, Avg (b, z3) —
rovk(te, 2x) < 0, and glt, 21 )e™** <0, so that

(A= ro) maxon < T(Ap(or) ~ Ap(aw)),

which is impossible for k large enough. Therefore (2.3) holds, so that the
first statement holds. The second statement may be proved similarly. m

A similar maximum prineiple holds for elliptic equations.

PROPOSITION 2.2. Let z € Mps1 WP (R™) be a bounded solution of

(2.4) Az — Z qz-jDijz — ZP-L'DZ'Z —rz= f(CE), T E Rn,

i1 i=1
where the data gz, p;,7, f : R* — R and X € R satisfy

n
Z 4566520, 1 <7rg, f continuous and bounded,
Li=1

and there exist Ay > ry and ¢ € C*(R™) such that (1.5) holds. Then for
every A > Ag, A > ry we have

sup |z(xz)| < su z)|.
mERr;l()l py—— weﬂgff()l

Proof. In [14, §3.1] it has been proved that if z & Nps1 Wi (R™)
N L*=(R*) is such that Au is continuous, then at any relative maximnum
(respectively, minimum) point zg we have Au(zo) < 0 (respectively, Au(zg)
> 0). The rest of the proof is quite analogous to the proof of Proposition 2.1
and it is omitted.

REMARK 2.3. Sufficient conditions for (1.5) to hold are easily given. If
for instance (z) = |z|?, then (1.5) is satisfied if there is Ap such that

Sup (2Tr Q=) + 2(P(x),2) + (r(z) — Ag)|2]?) < oo.

We may now derive the a priori estimates which are a erucial step of the
paper.
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THEOREM 2.4. Let ¢i5, pi, and r be smooth functions satisfying conditions
(1.2)-(1.4) and such that there exists v satisfying (1.5). Moreover, assume
that there exists K > 0 such that for every z € R,

(i) | DPqy(z) £ Kv(z), 18] = 1,2,3,
(2.5) (1) |DPpi(x)| € K(1+Ip(2)]), 16]= 2.3,
(i) |DPr(z)| S K4 r(z))), [B1=1,2,3

Let ug be continuous and bounded, and let u be a bm{,nd}ed cllassz'cal solution
to (L7) with g = 0 such thot t — [ Diult, )|l ez 8 in L (03 1) for Zvery
i=1,...,n and for every compact subset K C R™. Then u is smooth for
t> 0 and for every T > 0 there is ¢ = C(u, 70, Ao, K, n,T) > 0 such that

) Julty s < e fuglloo
(1) [#*2D%u(t, o < Cllualioo,

0<t<T,

26) 0<t<T, |8 =1,23

Proof. Proposition 2.1 applied to equation (1.7) with g = ‘0 gives im-
mediately (2.6)(i). From the gencral regularity theory of pa;a/mzbol’;c problems
it follows that v is smooth for ¢ > 0 and moreover lim;_.o t7/*1) uw(t,z) =0
for every x & R™, |8] = 1,2,3. Define a function z(t,z) by

zt'z ‘ aata 2 n
z = u? + at| Dul? + 9——2——1D2u|2 + —3—|D3u[ , t>10,zelR",

2 112,42

where o > 0 is to be chosen later and U;“F = Vi (Dw)?, D f]tio;
1La

Ezj:l(DiJ’u)za |D3'U|2 = szJ:l(D'iﬂu) . An elementary comp

gives

{zt(t, 2) — As(t,z) = g(t,z) + r(@)2(t,z), 0<t<T, z€RY,

2(0,2) = uplz), =z=&R",
where
B
g(t,x) = zgi(ta z);
f=l,
n n
g = —2 Z Gig DiuDju — 2ot Z gij DuuDju
ig=1 ‘ 1,0,0=1
; o't Zn: i3 Ditmie D jtmb s
— 2t Z q,ij,D.,;,;muDjzm’u - T o gij Lilm 3
4,7, mesl L J by T 75

10 9 0 2 12 a3t2 D3 l2
g2=ay_ |Dul* + o’ D?ul* + —5—| D%l

i1
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n n
g3 = Z Dlgij (QO!thuD@ju + 2022 Z D;muDijmu
i,5,d=1 m=1

n
+Dd3t3 Z DlmkuDijmku)

m, k=1

n n
+ Z Dlmq:'j (a2t2DImNDiJ‘u - a3t3 Z D;mkuDijku)

£,9,d,m=1 k=1
3,3 n
a°t
+ . E Dimrgis DimiuDiju,
g0 my k=1

T n
g4 = Z Dyp; (QQtD;uDiu + 20242 Z DynuDipu

id=1 me=1

n
+ a3t Z D;mkubimku)

m,k==1

n )
T Z Dimp; (azszszD.iu + a’t Z D;mkuDiku)

im=1 k=1
3,2 n
avt
+ 5 E Dy pi DimauDyu,
’i,l,m,k:l

T

n n
gs = Z Dyr (2atuD;u + 26782 Z DinuDpu + o t? Z ngkquku)
I=1

m=1 m, k=1

n T
-+ Z Dypr (aztzuDzmu + ol Z ngkuDku)

Im==1 L=1
3.3 Lid
ot
+ —*-'3 U E DlmkrDlmku-
Iy k=1

We claim that if e is snitably small then
(2.7 9(t, z) + r(z)a(t,z) < (1 +2ro)z(t,z), 0<t<T, xR
Then Proposition 2.1 applied to equation {1.7) with the modified operator
A=A+ (1+2r)1

and Ag replaced by wo = max{\, 3ry + 1} gives 2(t,z) < €“°f|ug||oo for
0<t<T,z€R" and estimates (2.6)(ii) follow.
Let us estimate g. Concerning g; we have

2,2 3.3
g1 < —2v(x) (|Du{2 + at|D%ul? + (—x%JDaulz + ggt—w]D‘lu]z) ,
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so that taking o £ vg we get

2 2 2, 02 s 0B
g1 + g2 < —v(z)| |Dul? + at|D?y| +T|D U +T|D ul* ).

Let us estimate ga. By assumption {2.5)(i) we have, for every £ > 0,

= (D;u)g £
m(to) < Kufe) {20t Y (L4 £ 0y07)
i)jﬂ =1
n g
2,2 (Dimw) Eirp. o2
A+ 2ot | IZ: ) ("‘—"’—‘—2&_ + Z(Dnm’u‘) )
1,4yl mes
. - D 2 ¢
+ adt? Z (-(-wi%léﬁL + ~2~(D¢jmku)2)
©.J,m k=1
" Diw)? 1
+ a2t2 Z (L._%_T‘i)_.. + '2'(Dl'mu)2)
i,4,l,m=1
. (Digru)® 1 2
o - (——2—~—~ + 5 (Dimxu)
£y k=1
alt? = (Diju)2 1 2
+ el .’Zk 1 Y + E_(-Dlmk'u‘) .
1"J"|m! =

Take ¢ small (¢ = 1/(8nK)) in such a way that

£ [ 9
Kv(z) (2ugt§n|D2uj2 + 2v§t2§n|D3u]2 + ugt3-2-n|D4u| )

343
1 2, 1B g 1o Lyt g o
< V(m)(zijoﬂDzul - ZT}D u| + 5 3 ID ’U.|
and then take a small enough in such a way that

v(z)

Kv(z)aTn*\Dul*/e < -—2—~|Du[2,

22,3 1

Ku(x) (oaTnQ(% + 1) +2 ™ )|D2u2 < Zu(m)iDzuF,
1
4

6
L7 v(x)
KJ/(CE)CET’!’LZ (EE + ’é) |D3u|2 S —-‘-?---|D3u\2

Then

- ? 2uft + S8 Do 1+ S i),
ftgtos< —-au(m) | Dul|? + at| D%u| + 5 3
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Let us estimate gq: for every £ > 0 we have

ga(t, 2) < 20tp(z)| Dyl + 202t*p(z (z)| D?ul? + 2t p{z)| D3|

FxpEb{at 3 (50 + 0w

lan,i=1

(';’(Dlmku)z -+ 2_16'(D12k“)2)

n

+ ot Z

t,m,i,k=1
o33 = £ 2 1 2
MR (5(Pmea” + 50w ) .

If p(z) > 0 take £ = 1 to get
n? 49,0 33 2
gat,z) < (Zatpo+ K(1 -I-Pﬂ)(—:z—a - 5 t° ) }|Du|
2
+ (2a2t2po + K (1 +p0)( a’t? + %a3t3)) |D%u)?
) )

+ (aat?’po + K(1 -+ po) (Ea3t3 + Easte‘)) |D3u)%,
Taking o small enough we get

o < 2(1Du? + atlput + £F Do),

so that

(2.8) g1+9g2+93+ g4 <0.

If p(z) < 0 take € small (¢ = 3/(4Kn?)) in such a way that
20%t%p(z) + K|p(z)In®a?t’e/2 < o®?p(z),

a®t3p(z) + K |p(z)(na®t®e/2 + nalt3e/6) < o®t3p(z)/2,
and then take a small enough such that
22, 2 88,3
a*Ten Lo T3n ) < %,

2aTp(z) + K(1 + [p(z)]) (

2 be
KaTn £ T2n?
oTp(a) + =5 + K(1 + |p(a)) =5 < 2,
ofne  alne v(z)
T < .
oep (z)-'_'K( 2 6 ) =

Then also in this case (2.8) holds.
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Let us estimate gs. For every ¢ > 0 we have

gs(t,z) < K(1+|r(z {2atz ( (Dyu)? 218u2)

+ 20782 E ( (Dimu)? E(Dmu)‘?)

lm=1

1
+01[:3 Z ( ngku +£(Dm,ku)2)

L, k=1
1
+at2§ ( D;mu2+£u2)
lm=1
1
3.3 2
t E (D —
o lmkl( ;mku +2£(Dku))

A s 1
—l**é““ (g(Dlmku) +2—E-u )}
Ly, k=l
Let & be so small {¢ = 1/(14K)} that
Ke(vot| Dul? + 3032 | D?ul2/2 + Tvdt3 | DPul?/6) < -;;:
and then let o be so small that

Kol ((n+aTn®/2+ *T?n8 /6)u® + (n+aTn?/2)| Dul® +n|D%u|? /2) < %

Then

5] < (1 +|r(z)[)z,
so that if r{x) < 0 then gg+rz <z, and if 7(z) > 0 then gs+rz < (1+2rg)z.
Recalling (2.8) we get (2.7), and the statement follows. m

REMARK 2.5, In the case where assumptions (2.5) are replaced by the
less restrictive ones:

(2.9) @ [DPq(2)] € Ku(a), 181 =1,

(i) [D7r(z) S K1+ ()}, 18=1,

the procedure of Theorem 2.4 gives bounds for u and Du. It is sufficient to
replace the function z by

% =12 - at| Dul?,
and to apply the maximum principle of Proposition 2.1 to the equations
satisfied by w and 7, to get

(i) “u(ta )”00 < ethUOHm:
(i) [[E2D%u(t, )l < Clluolloe

0<t<sT,

2.10
(210) 0<t<T, |8 =1
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Arguing again as in the proof of Theorem 2.4 the following a priori
estimates may be proved.

THEOREM 2.6. Let the assumptions of Theorem 2.4 be safisfied. Let ug
be a CF bounded function hoving bounded derivatives up to the third order,
and let u be a classical solution to (1.7) with g = 0. Then for every T > 0
there is C = C(vg, 70, Ao, K,n,T) > 0 such that

(2.11) IDPut, J|eo < Clluollcsqmny, 0<t<T, |8 =1,2,3
3. The semigroup associated with .4. Even if the very strong a priori
estimates (2.6) hold, it is not clear whether the problem

{ut(t,m) —Au(t,z} =0, ¢t>0, zeR",

(3-1) u(0,z) = ug(z), &R,

has a solution. This section is devoted to proving existence, uniqueness and
regularity of the solution of (3.1) and then of (1.7). The proof is in three
steps: first we consider the case where P is Lipschitz continuous and it
has bounded second and third order derivatives, then the case where P is
Lipschitz continucus, and then the general case. In any case we shall prove
the following results.

THEOREM 3.1. For every up € C(R") problem (3.1) has a unique bounded
classical solution w. In addition, w is smooth for £ > 0 and it satisfies (2.6).
If ug € C3(R™), then u satisfies (2.11).

Thanks o Theorem 3.1 we may define a semigroup of linear operators
in C(R"*) by

(T(t)ug)(z) = ult,z), t=0, zeR", uyc CR"),
where v is the unique bounded solution of problem (3.1). By taking 7' =1

in estimates (2.6), (2.11), and using the semigroup law, it follows that there
exists w € R such that

ewt
(3.2) HT(t)HL(G(ggn),Cla{Rn)) < 1:"’7’ k=
”T(t)”L(CS(R”l)) < C’e“’t, t> 0,
8o that by interpolation

1,2,3;

Cs,aewt

(3.3) 1T | iesrmy,cnmey < fa-nys 0S f<a<s.

Therefore, as far as spaces of continuous functions and Holder spaces are
concerned, T'(t) has the same behavior of semigroups generated by elliptic
operators with bounded coeflicients.

Unfortunately, in general T'(t) is not strongly continuous in C(R™) (not
even in the space BUC(R") of uniformly continuous and bounded functions),
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and it is not analytic (not even in L#(R")), as the counterexamples in [11]
and [18] show. So we cannot use the standard semigroup theory to study
the inhomogeneous problem {1.7), but we shall use the strong smoothing
properties of T'(2).
We shall see that if g has some mild smoothness property then the
(unique) solution of (1.7) is given by the variation of constants formula
t
(34)  w(tz) = (TEuo)(z) + [ (Tt - 5)g(s,))(z) ds,
0
We define the function spaces which will be involved in the proof.

DerFINITION 3.2. Let @, 8 2 0 and o < b. C*#([a,b] x R*) denotes the
space of continuous functions u such that ¢ — w(t,z) € C*{[a, b} for every
z € R, v ut,x) € CP(R™) for every ¢ € [a,b], and

0<t<T.

lullgasapxrey = sup ful-, 2)||geqam + sup llut, )|gemn < co.
cER™ té[a,b]

If o > 0, we denote by C%#((a,b] x R™) the space of continuous functions
g (a,b] x R* — R such that g(t,-) € CP(R") for every ¢ € (a,b] and

Ny wy = Sup (¢~ a)%|g(t, - ny < 00,
191607 (ay a<'t2b( )*llg(t, Hics@ny < oo

PROPOSITION 3.3. Let o, 6 € (0,1), 6 < < 2+ 0 and let ug € C(R?)
and g € CLP({0,T] x R™). Then the function v defined by (3.4) belongs to
C({0, T]xR™) N CY2((0, T]xR™) N CY7HL((0, T] xR, aind it is the unigue
bounded solution of (1.7). Moreover, there is C > 0 such that for 0 <t < T,

[[ut, Moo + 2 tult, Yl gaso < Cluolloo + sup |lgt,-)lcs @ny)-
0<tLT

If in oddition wy € C*(R") and ¢ — g(t,-) € CY¥([0,T] x R"), then
we CL2[0,T] xR*) N CO2H9([0,T) x B*), and there is C > 0 such thot

[w(t, Mlenre £ Clluollgase + lglleosqorsmny)y 0SS T

Note that the last statement of the proposition is weaker than the state-
ment of Theorem 2, since 8 > ¢ To prove Theorem 2 we will need a more
refined technigue. However, we will need the result of Proposition 3.3 as a
preliminary step. In the proof we shall use the next two technical lemmas.

LEMMA 8.4. If {¢;}sen is a bounded sequence in C(R™) converging to a
function o uniformly on every compact subset of R™, then for every T'> 0
and for every compact set K C R we have

lm  sup |T(t}(se5 ~ @)k llpeo(z) == 0.
Jmroe gepe T

The second lemma deals with Halder continuity of certain integrals de-
pending on a parameter.
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" LEMMA 3.5. Let 6 € (0,3), not an integer, let I be a real interval, and let
@ : T — CU(R™) be such that for every © € R™ the real function t — o (£)(x)
is continuous in I, and ||@(t)]|cs < c(t} with ¢ € LY(I). Then the function

flo)=Yp()(x)dt, zeR",
T
belongs to C?(R™), and
ifllge < lleil iy
Proof. We recall that C?(R"™) is the space of functions f € C(R") such

that
3
e su h _9} flz+1h)
s m,hemﬂghﬂ i ;
and the norm
f=lfllee + [flo

is equivalent to the C? norm. See e.g. [T, Sect. 2.7.2]. If i : [ — C9(R") is
such that t + (#)(z) is continuous for every z € R™ and {¢(t)cs < ¢(t)
with ¢ € L(I), then for every z,h € R*® we have

‘Z o(®)(z + Ih) dt| ‘i(wl)lcp(t)(
=0

so that f (m) = {; o(t)(z)dt belongs to C?(R™), and the statement follows. m

The next subsections will be devoted to proving Theorem 3.1, Proposi-
tion 3.3, and Lemma 3.4.

©+ lh)'dt < | Ke(t) dt |Al?,
I

3.1. The case where P is Lipschitz continuous with bounded second and
third order derivatives. Throughout the whole subsection we shall assume
that (1.2)-(1.5) hold, and moreover that P is Lipschitz continuous with
bounded second and third order derivatives.

Proof of Theorem 8.1. Tt is not difficult to construct a family of approx-
imating problems with bounded coefficients which satisfy the assumptions
of Theorem 2.4. Indeed, for every k € N let ¢ : R — R be any smooth

for |z| < &,

function such that
T
pr(z) =< k+1 forzzk+1,

—k~1 forz< k-1,
0<pp(e) <1, Jekl(e)l <2, |ei'(#)] <2,
and set

@k(z) = (Epk($1), N
Qr(z) = Q(Px(2), Pulz)=

ee(zn)), z€RT,

P(@y(z)),  ra(z) =1(Pi(z)), =zeR™
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Then @k, Py, rr are smooth and bounded, with bounded derivatives up to
the third order; moreover, they satisfy estimates (1.4) with v(z) replaced by
v(Pr(z)) < vy, p(x) replaced by p(Px(x)), and r(z) replaced by r(Px(x)).
By the standard theory of parabolic equations with bounded coefficients the
problem

Dyug(t, z) = Tr(Qr(z) D%ult, x))

+ {Prlz), Dult, )) + re(z)u(t,z), t>0, z &R,
uk(oim) = MU(SG), z € R,

has a unique classical bounded solution ug, and tP1/2| Dy, (t, )|, 18] =
1,2,3, is bounded in {0, 1) xR*. By Theorem 2.4, uy satisfies estimates (2.6),
with constants independent of k. Therefore the sequence u; is bounded in
CY3([e,T] x K) for every 0 < & < T < oo, and for every compact K C R,
Let us show that {uy : & € N} is equicontinuous in [0, T] % K for every T > 0
and for every compact KX C R™.

Fix any K > 0 and let 8 be a smooth cutoff function such that

(35) 0<@#(z)<1, #=1 onB(0,R), 6=0 outside B(O,R+1).

The fanction vg(t,2) = wup{t, 2)0(z) is continuous and bounded, and for
k> R+ 1 it satisfies

E%ykmAkarqpk, 0<t<«T, ze B(O,R+ 1),
(3.6) ou(t, ) = 0, 0<t<T, «edBO,R+1),
(0, z) = ug(x)8(z), =€ BO,R+1),
where
(3.7) ty = -2 Z 2i; Di0 Dyurlt, ) — up(t, = ( Z gi; D10+ szp 9).
l.’n‘""l ,3”“1

For every k, ¢y, is coutinuous in (0, T] x B{0, R + 1) and vy is bounded.
Therefore,
i
(3.8) gty ) = Tr(£)(uaf) + | Tr(t — s)(s, ) ds,
0
where T (%) is the analytic semigroup generated by the realization of A with
Dirichlet boundary condition in C(B(0, R+1)). Since |t (t, Hleo < Ct~1/2
for every t € (0,7, with constant C independent of k, by the standard
theory of parabolic equations in bounded sets (¢, z) ++ Sf) Tr(t—s)u(s, ) ds
belongs to C#28([0,T] x B(0, R + 1)) for every B € (0,1/2), with norm
independent of k. Therefore the sequence v is equicontinuous in [0, T] x
B(0, R+ 1), and since ug(t,z) = vi(t,®) for |z| < R, the sequence uy is

0<t<T,
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eqquicontinuous in [0, 7] x B(0, R). Since R is arbitrary, ux is equicontinuous
in [0,7] x K for every compact K ¢ R™.

A subsequence converges to u in C([0,T] x K) N C*~*3=%([g, T x K)
for every «« € (0,1), 0 < ¢ < T < o0 and for every compact K C R". Such
a u is a solution of problem (1.7} with g = 0, and it is the unique bounded
solution thanks to Proposition 2.1. Since the data are smooth, v is smooth
for ¢ > 0. Since u is the pointwise limit of a sequence of functions satisfying
(2.6), it also satisfies (2.6). If in addition ug € C®(R™) then every uy satisfies
{2.11) and hence u satisfies (2.11).

All the statements of Theorem 3.1 follow, with the exception of the esti-
mates on the third order space derivatives. They are recovered by applying
once again Theorems 2.4 and 2.6. =

Proof of Lemma 3.4. Set f; = @; —
smooth cutoff function satisfying (3.5).

For every k € N let T)(#) be the analytic semigroup generated by the
realization of the operator ‘

= TT(QDz) + (Pk,, DYy 4+ d
in C(R™) (see the proof of Theorem 3.1). The function
vik(t2) = (Tu(t) £} ()8 ()™

is continuous and bounded, and for k > R + 1 it satisfles

3
5l = Avie = Xvg H e, ue(0,0) = £56,

@, and fix any R > 0. Let § be a

where

TN 0 Db D (Th(t) f5)

4=l

Yk = — 2e

— B_M (Tk (t)fj) ( Z q'ijDijg =+ ZpiDio) .
1=l =1
Now, ¢t r 145 (¢, -) belongs to C((0,T];
Therefore,

X)N LH0,T; X) for every § and k.

t

= e ML (1)(£;6) +

0

Since |15k (t, Yoo < Ct71/2 for every t € (0, T), with constant ¢ indepen-
dent of § and k, we have

vsx(t, ) e AT (6 — s)psuls, ) ds, O0<t<T.

Loo(=atr )(1 o)
o3t VMoo 5 el 4 o732 (20

o
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Fix any £ > 0 and let Ag be so large that C7/? S(l) el—Ao+rolil-o)
g. Then

o2 de <

NIk (t) f5)0llo < €™ £58]|ee + ee™?.
Since € vanishes outside B(0, R 4+ 1) and f; goes to 0 uniformly on every
compact set, for j large enough we have {|f;8) . < e. Therefore,

Hm sup || Te(#)(
J00 0T, kEN

Since the function 7'(£) (@,
of Ty (t) {5

- ‘P)IB(D,R)”Lm(B(O,R)) = (.

—)|8(0,Rr) s the uniform llmlt of a subsequence
=~ )iB(0,R), We geb

lim  sup ||7(t)(ey
J—o gL

As R is arbitrary the statement follows. m

~ @)Bo,m) !l Lo (8(0,R) = 0.

FProof of Proposition 8.5. The proof is similar to the one given in [17],
with minor modifications; we write it down for the reader’s convenience.
Let us prove that u is continuous in [0, 7] x B™. We already know that
(t,z) — T{t)up(z) is continuous. By Lemma 3.4 the function (t,8,2) =
(T(t— s)g(s, ))(x) is continuous in {{t,s): 0 < s <t < T} x R, so that
t
v(t,2) = { (T~ 9)g(s,))(z) ds,
0
is well defined and continuous.
Let us prove that v(¢,-) € C**(R") for every t & (0, T]. By estimates
(3.3) we have |7t — S)HL(G-G(R”),C’HS(Rﬂ)) < Qi ~ 8)1_( —8)/2 for 0 <5<
t < T Therefore,

L

Since 5 — (s%(t — s)1~F=/2)~1 45 in [1(0,t), by Lemma 3.5 we have
v(t,) € C?H(R™) for every t € (0,7, and
4
‘ ds oy
ot Jllgase < C’é so(t - 8)1-(F-0)/2 = ta+(ﬁ-—a)/2”9”6'2'”((0,Tl><1ﬂ")'

0<t<T, zeRY,

=73 191l ee (o,

Therefore t = w(t,-) is bounded in [g, T] with values in C?¥(K) for every

€ (0, T) Since v is continuous, it belongs to C{[0,T}; C(K)) for every
compact set K < R". By [14, Prop. 1.1.3(iii), 1.1.4(iii)], ¢ — wv(%,-) be-
longs to C([e,T; C*(K)). Therefore, v and its first and second order space
derivatives are continuous and bounded in [g, 7] x R". Concerning the reg-
ularity with respect to ¢, we know that for every ¢ € C(R") and 2 € RB*
the function t + (T{t))(z) is continuously differentiable in (0, 00), with
(/T () ) () = (AT(t)¢)(z). Therefore for every s & [0,7} the func-
tion ¢ — (T'(t ~ s)g(s, )}x) is continuously differentiable in (s,T], and



188 A. Lunardi

(AT(t — s)g(s, ))(z). By (3.3), if |#| £ R we

(B/9)t(T(t — s)g(s,-N(z) =

have

Ar-s(s, Nl <2 (7

so that (8/8)(T'(t — s)g(s,))(z) is in L'(0,%). Then v is continuously dif-
ferentiable with respect to time and
i
v = SAT(t —s)g(s)ds -+ g
0
Moreover, for every multiindex 8 with |8! = 1,2 and for ¢ € (0,77 the func-
tion s — DP(T(t — s)g(s, ")) x belongs to C(O T,C(K))n L0, T); C(KY)
for every compact set K C IR®. The realization of the derivative D? is a
closed operator in C'(K), so that
% t
DB |7t = 5)g(s, )(s) ds = | DIT{t - $)gs, )(z) ds
0 0
for every £ € K. Therefore
¢
ve=A{T(t - s)g(s)ds+g in (0,T] x R™.
0
By (3.3), the function # — t*¥8/2T'(t)ug is bounded with values in C2T¢(R™).
Mareover, (£,z) — (T{t)uq)(z) belongs to C**((0,7] x R™). Then the func-
tion

1
t—-g)l=8/2

R
+ = 3)1/2—/3/2) lgll oo (0,715

in (0,7 x R™.

v=T{)u +v, 0<t<T, zeR",
belongs to C12((0,T] x R™), satisfies (1.7), and

sup t"H2{luft, Yooy < K(||uolles + sup t*[lg(t, Micemny)-
0<t<T 0<t<T
If in addition g is bounded with values in C? (R?) then v(¢
up to ¢ = 0 with values in C*T¢(R"), since by (3.3),
T 208 (an cave anyy < C6— 8)THTE=O/2 € Li(s,1).

Again by (3.3), if up € C2T?(IR") then also t+— T'(t)ug is bounded with values
in C*+¥(R™). Then, arguing as above, one sees that u € CV2([0,T] x R*). »

,) is bounded

3.2, The case where P 45 Lipschitz continuous. Throughout this sub-
section we shall assume that (1.2)-(1.4) hold, that there exists ¢ satisfying
(1.5), and that P is Lipschitz continuous. Then the procedure of the previous
subsection cannot be followed to prove Theorem 3.1 because the truncated
functions P do not satisfy in general the coercivity condition (1.4). To
overcome this difficulty we shall argue as in [17, Prop. 2.3].
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Proof of Theorem 8.1. Let ¢ be any mollifier, and set

(3.9) P)= | Plz - v)e(y)dy, = ek
i

Then P is smooth, with bounded derivatives of all orders. Moreover,

|P(e) - P(@)| S | |P(m—y)~ Pl)le(y) dy < [Plup | lyle(y)dy,

B Rr
s0 that P — P is bounded.
Set
(3.10) Au(z) = Te(Q(z) D*u(x)) + (B(=), Du(z)) + ru,

and let f(t) be the associated semigroup, which exists thanks to the results
of the previous subsection. By the change of the unknown function v(t, z) =
e *u(t,z), with A > 0, problem (3.1) is transformed into

w=Jdv— >, 0<t<T xR
v(0,2) = uola),

z € R,
which is equivalent to

{vt—jv=—)\v+(ﬁwP,Dv),

(3.11)

<T "
(3.12) 0<t LT, zeR7,
2(0,2) = uo{z), =& R™
By setting

¢
(Bg)(t,z) = [

0
for every g € C{[0,T] x R™), problem (3.12) is equivalent to

(313)  v(t,a) = (o)t @) = e T(t)uo(z) + [B((F - P, Do))(t, ),
0<t<T, z & R,

G=)T(t — s)g(s, ) ds(z),

We are going to prove that " maps the space

Y= ([0, 7] x B*) N CYE5H{(0, 7] x BY)

into itself, and it is a comractwn 1f A 18 large enough. For evary 4 € Y,
each derivative D;u belongs to %8 (5,200, T] x B} and ¢ — Dyu(t, ) is in

C((0,T); C#(K)) for every B € (() 1) and for every compact set K. Indeed,
using the well known interpolation estimates for Halder norms (see e.g. [20,
§2.7.2]) we get

y (1+6)/(2+6) 140) /(20
ut, Yleres oy < Cllult ) SHe v lu(t, ) =gty

c
< spaysllvlly, 0<t<T,
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so that Dyu € C?lf_ﬁ)/z((o, T]xR™). Moreover, since t — u(t, -) is bounded in
[, T] with values in C*7¢(K) and continuous in [¢, T with values in C(K)
for every compact set K, by [14, Prop. 1.1.3(iil), 1.1.4(iii)] it belongs to
C([e, T); C*(K)) for every o < 2-+6. Consequently, D;u € C((0,T); C#(K)).

Since P -- P is Lipschitz continuous and bounded, the function
g(s,2) = (P(z) — P(a), Du(s, )}, 0<s<T,
belongs to O?l’iﬂ)/z({O,T] x R") and s — g(s,-) is in C((0,T]; C#(K)) for
every 3 € (0,1).
Fix once and for all any @ € (6,1). By Proposition 3.3 applied to the
semigroup e~*7'(t), the operator I' maps Y into itself. We revisit the esti-

mates of Proposition 3.3 to prove that I' is a contraction for A large enough.
Arguing as in the proof of Proposition 3.3 we see that for u, v in Y we have

“(Fu) (t: ) - (FU)(t: ')||C2+6(]Rn)
t
Ce(-—)\+r0)(t——s)
: §, st sp-ear 4 lolloys L omxe);

0<t <,

where now
g(s,x) = (P(z) - P(x), (Du(s, z)
It is not hard to see that

—Du(s,z))), 0<s<T zeR".

{~A+rg)(t—s)
L)) = Fl+8/2 €
)= o S A2 = 5)i-B-073

goes to 0 as A goes to 0. Moreover, for every u € Y, each derivative Dyu is
bounded by C/+/t. Indeed, from [20, §2.7.2] we get for 0 < t < T

It ey < Gl NG s ) < -l
so that /% Dju(t, ) is bounded. It follows that for every z € R” we have
{=Xpro){t—sg)
e
[(Tu)(t) (=) — )()(«"3)|<C§—";I/2——

Agam it is easy to see that

slglly, 0<tsT.

& {—A+treo)(t—s)
Ca(\) = sup tl+9/25 aliiiicing

ds
DT 2 gl/2

goes to 0 as A goes to oo. Therefore, for A large enough I is a contraction
in ¥, so that it has a unique fixed point v € ¥.

From Proposition 3.3 we know that v belongs also to C%2((0,T] x R?)
and it satisfies (3.12) pointwise. Therefore, u(t,s) = e*w(t,z) belongs to
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CH2((0,T] x R™), it satisfies (3.1), and
H’u.”oo + Oﬁltlg tl-I-G/ZHu, HC"B-+~B (Rny = e’\TH’UHy < EATC’HUOHDO.

In the case where ug € C%¢(R™) the operator I" is defined in the space
Y = C([0,T] x K*) n CO*([0, T x B™).
Arguing as above it is not difficult to show that it maps ¥ into itself and it

is a contraction if A iy large enough.
The statement follows. m

Proof of Lemma 3.4, Let f; = @; — ¢ and set
vty @) = e (1 ()fj)( ), 0<t<T, zeR"

We know from the proof of Theorem 3.1 that if X is sufficiently large we
have

vi{t, ) = e T () fy +

t

S (t—‘ﬂ)f(t _

0

where P is defined in (3.9). From estimates (3.2) we get [(P—P, Dv; (s, )}| <
Clelw—2og=1/2 with constants €, w independent of 7, so that

s)(P — P, Du;(s,-)yds, 0<t<T,

vt )] < e (T (t)f’.')( )|
{(ru—A)(1—a) o(w—A)o
+Gt1/2§e - e do, 0<t<T, zeR.
0 a

Fix ¢ > 0 and take X large enough in order that

1 (ro=X)(1=2) (w=A)o
_ 1/2¢ € [
Cy(A) = o1/ § pvp

(T ()] S (T fy) (=)

and since (7T(£) Fi)iie goes to 0 wniformly on every compact set K C R™ as
J — 0o, the statement follows, m

ds < &.

Then
[-hee*, 0<t<T, re R,

The proof of Proposition 3.3 is based uniquely on Lemma 3.4 (see the pre-
vious subsection). Since Lemma 3.4 holds, so does the statement of Propo-
sition 3.3,

8.3. The case where P satisfies (1.4) with po = 0. In this subsection we
assume that (1.2)-(1.4) hold with pg = 0, and that there exists ¢ satisfying
(1.5)

Proof of Theorem 8.1. We introduce the Yosida approximations of P,
Pk(m) = P(mk), keN,
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where z; is the unigue solution of
Ty %}P(mk) =z.
Then Py(z) — P(z) as k — oo, uniformly for z € K for every compact
K c B*, and it satisfies the dissipativity assumption
(DP(2)6,6) <0, @,{cR"

Moreover, every Py is Lipschitz continuous (with Lipschitz constant possibly
blowing up as k — oc). Anyway, the problem

Dy, — Te(Q(z)D%u)
— {Py(z), Dug) — rug = 0,
T € R”,

has a unique bounded classical solution vy which is smooth for ¢ > 0. By
Remark 2.5 it satisfies
it ) oo < Clluolioos

C
[ Duk(t, ) oo < —=lluolle, 0<t< T
Vi

(3.14) 0<t<T 2R,

uk(0, x) = up(z),

(3.15)

This is enough to prove existence of the solution to (3.1) through standard
arguments. Indeed, fix any R > 0 and let 8 be a smooth cutoff funetion
satisfying (3.5). For k> R + 1 the function vy g = fuy, satisfies

Dyvgr — Tr(QD%wg r ~ rug.r) = ¥,

vk, r(0,%) = ug(x}d(z), ax€ BO,R+1),

vg,r(t,z) =0, 0<t<T, z€dB(0,R-+1),

(3.16)

where n
Pi(t, ) = 8{Py(z), Dug) ~ Z dij (urDyz6) + 2D4ue D,
iyf=1
0<t<T, zeB0OR+1)

The right hand side of the differential equation is bounded by C/+/%, with
constant C' independent of k. By the usual theory of parabolic problems
we see that vy g is bounded in C*~*/22=%(| T| x B(0, R - 1)) for every
€ > 0, by a constant independent of k. Since vy iy = uy in B(0, R), it follows
that uy is bounded in C*~%/222([g, 7] x B(0, R)) for every ¢ > 0, by
a constant independent of k, go that each derivative D;uy is bounded in
CH2-e/2l~([c T]x B(0, R)) for every £ > 0, by a constant independent of
k. Considering again problem (3.16) with R replaced by R — 1 and applying
again the standard theory of parabolic problems we deduce (taking into
account that DP; is bounded on B{0, R) by a constant independent of
k) that ve,r—1 is bounded in C1~%/22-%([¢,T] x B(0, R)) for every a €
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{0,1), ¢ € (0,T), by a constant independent of %, so that u; is bounded in
CH8/2248([e, T] x B{0,R — 1)) for every ¢ € (0,T) and g € (0,1), by a
constant independent of k. Moreover, the functions w;, are equicontinuous in
[0,T] % B{0, R—1). The usual diagonal procedure gives a subsequence which
converges to a function u in C([0,T] x B(0, R)) N CY*([e,T] x B(0, R)) for
every € € (0,7") and R € N. Such a function u is a bounded classical solution
of (3.1). Since the data are smooth, u is smooth for £ > 0. Theorem 2.4 may
be applied to conclude that u satisfies (2.6). u

The proof of Lemma 3.4 is quite similar to the one of Subsection 3.1
and it is left to the reader. Once Lemma 3.4 is established, the proof of
Proposition 3.3 is the same as in Subsection 3.1.

3.4. The case where P satisfies (1.4). Finally, consider the case where P
satisfles (1.4) with py arbitrary. The function

P(z) = P(z) - pox

satisfies (1.4) with po replaced by 0, so that by the results of Subsection 3.3

the statements hold if P is replaced by P. Arguing now as in Subsection 3.3
we get Theorem 3.1 and Lemma 3.4, and consequently Proposition 3.3. m

4. The relations between T'(t) and A. As we remarked in the pre-
vious section, the semigroup T'(£) is not necessarily strongly continuous nor
analytic in X = C'(R™), even upon replacing X by BUC(R™). So, we cannot
speak of “generator” of T'(t) in the standard sense. Nevertheless, a realiza-
tion of the operator A in X is naturally associated with T°(t), as follows. For
every A > Ao consider the operator

o0
(4.1) (RO () = | e (D)) (@) dt,
0

z e R".

The integral may not converge in L(X), but for every compact set K C
R™ the function ¢ — T(t)f is continucus with values in C(K'}, so that
(R(A)f)(z) is well defined and continuous. Therefore, R(A) € L(X)}, and
since ||T(¢) fllco < €0%||f||co We have

1
< .
[Rzex) < 5= T
Moreover, R()) satisfies the resolvent identity because T'(t) is 2 semigroup,
and it is one-to-one because for every £ € R™, (R(A)f){z) is the anti-Laplace
transform of the real continuous function ¢+ (T'(t)){2), which takes the
value f(z) at t = 0. Therefore there exists a closed operator

A:D(A)— X, D{A)=RangeR()A} for A> Ao,
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such that R(A) = R(A\,A) for A > Ao, We are going to show that A is a
realization of A in X. The proof is similar to the corresponding omes in
17, [14]

ProrosITION 4.1. We have

D(4) = {f e (WLI(R)NX : Af € X}, Af=Af ¥feD(a).
pz1

Moreover, D{A} is continuously embedded in C*(R™) for every 8 € (0,2),
and there 43 C(8) > 0 such that

I fllcngany < CENFIL AL,

Proof. First we prove the inclusion C. Let w be the constant appearing
in estimates (3.2) and (3.3). If ¢ € C1(R™) and A > w, estimates {3.3) with
¢ = 1 and Lemma 3.5 imply that R(\)¢ € C**(R™) for every o € (0,1).
Using the equality (AT'(t))(z) = (8/0t){T(t)¢)(x) for all = we get

AR(M¢ — AR(A)¢ = ¢,

Yf € D(A).

50 that
AR(N)¢ = AR(N\)¢.

From the general theory of elliptic differential equations with regular coef-
ficients, for every p > 1 and R > 0 we get

(4.2) 17N @llweezio,ry < Cllélzero,.rt1)):

with € independent of ¢, possibly depending on R.

Let f € D(A), A > w, and set ¢ = Af — Af. Let {¢p} C C*(R") be
a sequence converging to ¢ in C(K) for every compact set K < R™. Set
fa = R(A)¢n. Then f, € CHR") and fr — f, Afy — Af in C(K) as
n — oo, thanks to Lemma 3.4. Applying estimate (4.2) to ¢, — &y, we see
that {f,}nen is a Cauchy sequence in W2P(B(0, R)) for every p > 1 and
R >0, s0 that f ¢ Tt’[flif (R™) and the equality Af, = Af, for all n implies
Af = Af. The inclusion C is thus proved.

Let now f € [, WP (R") N X be such that Af € X. Fix A > w
and set ¢ = Af — Af, g = R(A)p. Our aim is to show that f = g. From
the first part of the proof we know that g € MNps1 T/T/’li’f {(R™) N X and that
Ag—Ag = ¢. Therefore, A(f - g) — A(f — g) = 0. By Proposition 2.2, f = g,
so that f € D(A).

Let us prove that D(A4) c C(R™) for every 6 € (0,2). Let 0 % f € D(A),
A>wand set o = Af — Af. Then

o]

fl@) = { M T (t)p) () dt,

a
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so that by Lemma 3.5 and estimates (3.3), f € C?(R"), and for 6 # 1,

I(1—6/2) co -0/

| fllce@ny < C’mf_ﬁ"gﬁ[\tﬁllm < W(Allﬂlm + [[Afloo)-

Taking the minimum for A > w we get

| fllcome) < CrOIFIL 2 en; + C2(8) £l

and the statement follows. m

5. Proof of Theorems 1 and 2. Once we have established the funda-
mental estimates (3.3) and the representation formula
O
u(z) = | T ) dt
0
for the solution of the elliptic problem (1.6), the Schauder regularity the-
orems 1 and 2 are easily proved by the method of [15]. We cannot apply
directly the results of [15] which were stated with X replaced by BUC(R"™)
and with slightly more restrictive assurnptions on I'(£).

r € R?,

Proof of Theorem 1. Uniqueness of the classical bounded solution of (1.6)
follows from Proposition 2.2.
Let f € C*(R™) and A > Xg. Then X € g(4), so that the function

u@) = | e T () dt

is well defined and belongs to D{A). By Proposition 4.1, u & V[flif(R”) for
every p > 1 and ’

A — Au = f,
moreover u € C?(R™) and

o (e
[ullore) < CONulis* ulfey < = ort=rs

Let now 7 > w, w being the constant in estimates (3.2) and (3.3). Then
nu—Au= f-+(n-Au=

[1Fco-

with
n— AC(H)
lellcomny < (1 + (L_—Toj_l_:én/?)”f”m(m”)'
Since w > Ag, we have 5 € p(A), so that
u(@) = | eI (BR) ) dt.
0
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Let us prove that for every a € (6,1),
u € (C(E), O (R i (antyjace = CPH(RY).

(The last equality is well known, see e.g. [20, Thm. 1, §2.7.2]).
We recall that if ¥p € ¥7 are Banach spaces then

(Y1:Y2)“h00 = {U el HUH'}‘,OO = sup_ 5—71(('5:”) < OO}:
0<é<l

where
K(u) = _int (Jallv +[blsa).

For every £ > 0 set

£ co
a(z) = {e " (T(t)p) (@) dt,  b(z) = | ™™ (T(t)p)(2)dt,
0 . £

Then u = a + b, and by Lemma 3.5 and estimates (3.3),

z e R".

¢
laca@mey < C {02 dt||gllcomn) = e @020 o gy

0
o
[bligagny < € § 7702 dt o] gogany = C"6™ "2 g]| cogun,
£
so that taking v = 1 — (@ — 8)/2 we get u € (C*(R"), C?+*(R")),00 and

n — AC(6)

ull4,00 < (C+ C")|¢llge ny < S Wi=0

(€ + O fllco e
and the statement is proved.

Proof of Theorem 2. From Proposition 3.3 we know that problem (1.7)
has a unique solution u € C*2([0,T] x R™), given by the variation of con-
stants formula

u(t, z) = (T(t)uo)(z) +v(t, ),

where ‘
v(t,z) = ST(t -~ 8)g(s, )(x) ds.
0

Thanks to estimates (3.3) the first term T°(£)uy belongs to C2H¢(R™) for
every { and

[T (E)uoligaragmny < Clluollcrromny, 0Lt T
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To estimate the second term we use the arguments of Theorem 1. Fix any
t € 10,T), and for every £ € (0,1) set

| (Tt~ s)g(s, ) (@) ds €<,
t—¢§

L(@(t- s)g(s, ) (x)ds  HE>t
\ 0

a(z) = <

£ t—¢
) = ¢ § (T(t— s)g(s,))(z)ds &<t

L0 ifé>t.

By Lemma 3.5 and estimates (3.3), for 6 < a < 1 we have
£

lallge@y <€ | (t—9)7"%%ds sup g(s, oo
D<s<T
max(t—&,0) -
< Olﬁl_(a_e)/z sup ||9(51')HO“(R“)>
0Ls<T
and
max(t—£,0)
bllgzta@mny < C S (t—8) B2 ds sup |ig(s, Hlicemn)
0 0gs<T
< Cué--(a—Q)ﬂ sup Hg(sa.)ncg(mﬂ)’
0<s<T
so that v(t,-) € (C*(R™), C*T*(R™))1—(a—0)/2,00 = C*F(R?), and

Su’p ||’U(t)”g2+9(]kn)<(c’ O”) sup “Q(f:‘)llcﬂ(lﬂ“)-
0<t< 0<E<T

The statement follows. m
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