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On inessential and improjective operators

by
PIETRO AIENA (Palermo) and MANUEL GONZALEZ (Santander)

Abstract. We give several characterizations of the improjective operators, introduced
by Tarafdar, and we characterize the inessential operators among the improjective opera-
tors. It is an interesting problem whether both classes of operators coincide in general. A
positive answer would provide, for example, an intrinsic characterization of the inessen-
tial operators. We give several equivalent formulations of this problem and we show that
the inessential operators acting between certain pairs of Banach spaces coincide with the
improjective operators.

1. Introduction. An important class which oceurs in the perturbation
theory of Fredholm operators is that of inessential operators, introduced by
Kleinecke [7] as the inverse image in £(X) by the quotient map

7 L(X) — LX)/ K(X)
of the radical of the Calkin algebra £L{X)/K(X), where X is a Banach space,
L{X) is the set of all (continuous linear) operators on X and KC(X) is the
subset of all compact operators.

Other authors [9, 10] have defined and studied inessential operators act-
ing between different Banach spaces X,Y. Let £{X,Y) be the set of all (con-
tinuous linear) operators acting from X into Y. An operator T' € £(X,Y) is
Fredholm, in symbols T' € (X, Y), if its kernel ker(T") is finite-dimensional
and its range R(T) is finite-codimensional. The inessential operators can be
defined by

In(X,Y) = {T € L(X,Y): Ix — 5T € #(X) for every § € L(¥,X}},
where Ix is the identity operator in X and ¢(X) = (X, X). Equivalently
[2],

In(X,Y):={T e L{X,Y): Iy —-T85 € &(Y) for every § € L(Y, X)}.
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This class of operators can be characterized in more algebraic terms.

THEOREM 1.1 ([9], [2, Lemma 1.1 and Theorem 1.4]). For on operator
T e L(X,Y) the following assertions gre equivalent:

() TeIn(X,Y);

(b) ker(Ix — ST) is finite-dimensional for every S € L(Y, X);
(c) ker(Iy — T'S) is finite-dimensional for every S € L(Y, X);
(d) R(Ix — ST) is finite-codimensional for every S € L(Y, X);
(€) R(Iv — TS) is finite-cedimensional for every § € L(Y, X).

It is well known that Zn(X,Y) is a closed subspace of L(X,Y). Moreover,
the class Zn of all the inessential operators is an operator ideal, in the sense
of Pietsch [10], that contains the operator ideals which oceur in Fredhelm
theory, namely the compact, the strictly singular and the strictly cosingular
operators.

The characterizations of T € In existing in the literature are expressed,
like these in Theorem 1.1, in terms of the properties of the product of T by
a large class of operators. It is a problem of certain interest to find an “in-
trinsic” characterization of the inessential operators, for instance in terms
of their action on the complemented subspaces. This would be obtained, for
example, if the class Tn coincided with the class of the improjective opera-
tors, introduced by Tarafdar in [11, 12]. As a consequence, we would obtain
some structural information about the complemented subspaces of products
cf Banach spaces: if no infinite-dimensional complemented subspace of X
is isomorphic to a complemented subspace of V', then every complemented
subspace of X x ¥ would be isomorphic to the product of a complemented
subspace of X and a complemented subspace of ¥ (see {4]).

In fact, inessential operators are improjective, but it is not known if
these two classes coincide. Tarafdar [12] gave an affirmative answer in some
special cases.

In this paper we give, in Theorem 2.3, a dual characterization of the
improjective operators. We apply this result to study these operators and
to characterize the inessential operators among the improjective operators,
in Theorem 2.6.

In the third section we consider the question whether the classes of
inessential operators and improjective operators coincide. We give several
formulations of this question and describe some related problems.

Finally, in the fourth section we describe some families of pairs of Banach
spaces X, Y such that the improjective operators in £(X,Y') are inessential.

Along the paper, K is the field R of real numbers or the field C of com-
plex numbers. The results are valid in both cases if the field is not explicitly
mentioned. Further, X, Y, Z and W are Banach spaces over K, and we de-
note by X* the dual space of X, and by £ the class of all (continucus linear)
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operators between Banach spaces. Given a subclass A of £, the subsets
AX,Y) = AN L(X,Y)
are called the components of A. Moreover, A(X) := A(X, X).
We denote by T™ € L{Y™, X*) the conjugate operator of T € L(X,Y).
Subspaces of a Banach space are not necessarily closed. Given a closed
subspace M of X, we denote by Jas the inclusion of M into X , and by Qs
the quotient map from X onto X/M. A subspace M of X is complemented
if there exists P € L(X) so that P2 = P (ie., P is a projection) and
R(P) = M. Of course, complemented subspaces are closed. Given subspaces

M of X and U of X*, we denote by M+ C X* and U/, C X their respective
annihilators.

2. Characterizations of inessential operators and improjective
operators. Improjective operators were introduced by Tarafdar in the fol-
lowing way.

DErINITION 2.1 [11, 12]. An operator T € £(X,Y) is said to be im-
projective if there is no infinite-dimensional closed subspace M of X such
that the restriction TJyr is an isomorphism and T(M) is a complemented
subspace of Y.

We denote by Tmp the class of improjective operators. It was proved in
(11, Theorem 3.6] that Zmp(X,Y") is a closed subset of £(X,Y).

Next we give a lemma which will be ugeful in the study of these operators
and their relation to other classes of operators. A result similar to the first
part was proved before in [11, Lemma 1.1].

Lemma 22, Let T € L(X,Y).

(a) If M is a closed subspace of X such that T'Jy s an isomorphism,
T(M) is complemented in'Y and N is a closed complement of T(M), then
M is complemented in X and T~ (N) is a closed complement of M.

(b) If N is a closed subspace of Y such that QnT is surjective, T (N)
is complemented in X and M is a closed complement of T~ (N), then N
is complemented in'Y and T(M) is a closed complement of N.

Proof (a) If N is a closed complement of T{M) in ¥ and TJy is an
isormorphism, then T7Y(N) M M = {0}, both 7-}(N) and M are closed
subspaces and X = T1(N) & M. Hence the result is a direct consequence
of the closed graph theorem.

{b) If M is a closed complement of T~1(N) in X, then since ker(T') is
contained in T-1(N), we have T{M) N N = {0}. Moreover, since QnT" is
surjective, we obtain T(M)® N = T(X)+ N =Y, and it follows from [13,
Theorem IV.5.10] that T(M) is closed; hence N is complemented in Y. =
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Improjective operators admit the following characterization in terms of
quotient maps.

THEOREM 2.3. An operator T € L(X,Y) is improjective if and only if
there is no infinite-codimensional closed subspace N of Y such that QnT is
surjective and T—*(N) is a complemented subspace of X.

Proof. Assume that T € £(X,Y) is improjective and let N be a closed
subspace of Y such that QT is surjective and T~1(N) is a complemented
subspace of X. By Lemma 2.2, if M is a closed complement of T~1(N) then
T(M) is a closed complement of N. Observe that the restriction of T to M is
an isomorphism and T is improjective. Therefore T'(M) is finite-dimensional;
hence N is finite-codimensional.

Conversely, assume that T is not improjective and take an infinite-
dimensional closed subspace M of X such that T'Jys is an isemorphism
and T(M) is complemented in V. Given a closed complement N of T'(M B
we see that N is infinite-codimensional and @nT is surjective. Hence, by
Lemma 2.2, we conclude that M is a closed complement of T~*(N). m

Tarafdar [12] proved, for operators in £(X), that inessential operators
are improjective. Here we give an elementary proof for the general case.

PROPOSITION 2.4. Inessential operators ave improjective.

Proof. T € L(X,Y) is not improjective, then there exists an infinite-
dimensional closed subspace M of X such that the restriction T'J3s is an
isomorphism and T(M) is a complemented subspace of Y. By Lemma 2.2,
M is also complemented in X and

X=MgT " (N) and Y =T(M)&N,

where N and T~ (N} are closed subspaces of ¥ and X, respectively. So we
can define an operator S € L(Y,X) by

Sy = {(TlM)“ly if y € T(M),
0 ifyeN.

We have ker{Ix — ST) = M; hence by Theorem 1.1, the operator T' is not
inessential. m

The following lemma will be the key to characterizing the inessential
operators among the improjective operators.

LEMMA 2.5. Let T € L(X,Y) and S € L(Y, X).

{a) If the subspace M := ker{Ix —ST) is complemented in X with closed
complement U, then both subspaces T(M) and S™1(U) are complemented
in Y in fact, we have Y = T(M) & S~1(U).
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{(b) If the subspace N = R(ly — TS) is complemented in Y with closed
complement V, then both subspaces T~ (N) and S(V) are complemented in
X; in fact, we have X = S(V) & T—1(N).

Proof. {a) Let P denote the projection from X onto M along Uf; thus
R(P) = M and ker(P) = U. Since (Ix - ST)P = 0, we have P = STP.
Therefore, defining Q = TPS, we have Q*> = TP(S5TP)S = TP2S = @Q;
ie., @ is a projection in Y.

From P = STP we obtain ker(T} N R{FP) = {0}; thus

ker(@) = ker(PS) = 5~H(U).

Moreover, P = STP implies that ST(M) = M; hence S~ (U) N T(M) =
{0}. On the other hand, from Q = T'PS, it follows that R(Q) C T(M); thus
we conclude that R(Q) = T{M).

(b) Denote by @ the projection from ¥ onto V along N. Then we have
Q(Iy —TS) = 0; hence @ = QTS. Therefore, as in the previous part,
P == S5QT defines a projection in X.

From @ = QTS we obtain ker{S) N R(Q) = {0}; thus

ker(P) = ker(QT) = T~H{N).
Moreover, Q = QTS implies that (T78)~*(N) = N; hence S(V) N T~ *(N)
= {0}. On the other hand, from P = §QT, it follows that R(P) C S(V);
thus we conclude that B(P) = S(V). »

Finally, we give several characterizations of the inessential operators
among the improjective operators in terms of the complementability of some
subspaces.

THEOREM 2.6. For an operator T' € L(X,Y) the following assertions are
equivelent: .

(a) T € In(X,Y);

(b) T € ITmp(X,Y) and ker(Ix — ST) is complemented for every § €
L(Y, X);

(¢) T € Imp(X,Y) and ker(ly — TS) is complemented for every § €
E(Yi X );

(d) T € Imp(X,Y) end R(Ix — ST) is complemented for every § €
LY, XY,

() T € Tmp(X,Y) and R(Iy —T5) is complemented for every =
LY, X).

Proof. First we show that (a) implies the other assertions.

Assume that T is inessential. By Proposition 2.4, T is improjective.
Moreover, by Theorem 1.1, for every S € LY, X), ker(Ix — ST) and
ker(Iy — T'S) are finite-dimensional, and R(Ix — ST) and R(Iy —T'S) are
finite-coclimensional; hence all of them are complemented.
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(b)=(a). Assume that T € Imp(X,Y) and M := ker(Ix - ST} is com-
plemented. Then T is an isomorphism on M and, by Lemma 2.5, T'(M) is
complemented. Hence M is finite-dimensional.

We have seen that (b) implies that ker(Ix — ST) is finite-dimensional
for every S € £(Y, X). By Theorem 1.1 we conclude that T € Zn.

(c)=(a). Assume that 7' € Imp(X,Y)} and N := ker(Iy — T'S) is com-
plemented. Then § is an isomorphism on N (so that S(N) is closed), T is
an isomorphism on S(N) and T(S{N)) = N is complemented. Hence N is
finite-dimensional.

We have seen that (c) implies that ker(Iy —7'S) is finite-dimensional for
every S € L(¥, X). By Theorem 1.1 we conclude that T € Tn.

(d)=(a). Assume that T € Imp(X,Y) and M = R(Ix — ST is com-
plemented. Since Qur{Ix — ST} = 0, we have QST = Qus; in particular,
R(ST)+ M = X. Then R(T) + S~H{M) =Y, ie., Qg-1(anT is surjective.
Moreover,

T8N (M) = (ST) (M) = ((ST)* (M)
= (T*8* (ker(Ix» — T"S5™)) L
= (ker{Ix» —T"S*))1 =M
is complemented. By Theorem 2.3 we deduce that $~1(M) is finite-codimen-
sional; hence so is M = T-1S71(M).

Therefore, (d) implies that R(Ix ~ ST) is finite-codimensional for every
S & L(Y, X). By Theorem 1.1 we conchude that T € Tn.

(e)=(a). Assume that T € Tmp(X,Y) and N := R(Iy — 7'5) is com-
plemented. Since Qn({ly — T'S) = 0, we have QnT'S = Qu; in particular,
QnT is surjective and, by Lemma 2.5, T~1(N) is complemented. Applying
Theorem 2.3 we conclude that N is finite-codimensional.

Therefore, (e) implies that R(Iy — T'S) is finite-codimensional for every
5 & L(Y, X). By Theorem 1.1 we conclude that T € Zn. m

8. On the inclusion In(X,Y) C Imp(X,Y). We begin this section
by giving an alternative proof of the fact that the improjective operators
form an ideal with respect to the product, and introducing the concept of
quasi-operator ideal, which will be useful in our discussions.

PROPOSITION 3.1 [11, Theorem 1.2]. Let A€ L(Y,Z), K € Tmp(X,Y)
and B € L(W,X). Then KB € Imp(W,Y) and AK € Imp(X, Z).

Proof. Assume first that AK is not improjective. Then we can find
an infinjte-dimensional closed subspace M of X such that AKJy is an
isormorphism and AK (M) is complemented in Z. Note that K Jys is also an
isomorphism; hence K (M) is closed.
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Since AJg(ar) is an isomorphism, it follows from Lemma 2.2 that K {M)
is complemented in Y. Hence K is not improjective.

In the case in which KB is not improjective, Theorem 2.3 allows us to
select an infinite-codimensional closed subspace N of ¥ such that Qn KB
is surjective and (KB)~1(N) is a complemented subspace of W.

Putting M := K~1{N) we deduce that M is an infinite-codimensional
ciosed subspace of X such that QB is surjective and B~ (M) is comple-
mented. It follows from Lemma 2.2 that M is complemented in X. Moreover,
QK 18 surjective; hence it follows from Theorem 2.3 that K is not impro-
jective. m

Let 7 denote the class of all operators with finite-dimensional range.

DErFINITION 3.2. A subclass A of £ is said to be a quasi-operator ideal if
it satisfies

(a) FC A

(by Ac L(Y,Z), Kc AX\Y), Be L(W,X)= AKB ¢ AW, Z).

A quasi-operator ideal is an operator ideal (in the sense of Pietsch [10]) if
and only if A(X,Y) is a subspace of L(X,Y) for every pair X,Y of Banach
spaces.

The main guestion that remains open concerns the equality Zn = Zmp.

QuesTION 1. Is it true that In(X,¥) = Imp(X,Y) for every pair X,V
of Banach spaces?

We say that a quasi-operator ideal A is proper if Ix € .A for no infinite-
dimensional space X.

Asg far as we know, it is an open problem whether In is the greatest
proper operator ideal. However, we have the following result, essentially due
to Tarafdar [11, Corollary 3.3], which follows easily from Definition 2.1 and
Proposition 3.1.

ProroSITION 3.3. The class Zmp of all improjective operators is the
greatest proper quasi-operator ideal.

Therefore, a positive answer to the following guestion would provide a
description of the greatest proper operator ideal.

QuesTION 2. Is it true that Zmp(X,Y) is a subspace for every pair X, ¥7

Later we shall show that the equality Zn{X,Y) = Imp(X,Y) holds in
many cases. We think that Questions 1 and 2 are difficult. So a positive
answer to the following one could be useful. For example, it would show
that the previous two are equivalent.

QUESTION 3. Fix apair X, ¥ of Banach spaces. Is it true that Zn(X,Y") =
Imp(X,Y) whenever ITmp(X,Y) is a subspace?
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The next result shows a symmetry of the equality Zn = Tmp.

PROPOSITION 3.4. Let X and Y be Banach spaces. Then In(X,Y) =
Imp(X,Y) if and only if Tn(Y,X)=TImp(Y,X).

Proof. Suppose that Zn(X,Y) = Imp(X,Y) and let T € Tmp(Y, X).
We only have to show that T" € In.

Given S € L{X,Y), by Proposition 3.1 we have ST'S € Imp(X,Y)} =
Tn(X,Y); hence (T'S)? € Tn. Therefore Ix—(T'S)? = (Ix+TS){(Ix-TS) €
&(X), and hence ker(Ix — T'S) C ker(Ix — (7'5)?) is finite-dimensional. By
Theorem 1.1 we conclude that T € Tn. =

Let X be a Banach space and let T € L(X). Given an nvariant sub-
space M of T, i.e., M closed and T(M) C M, we can define two associated
operators '

Ty :M—M and T™:X/M — X/M
in the natural way: Tasm := Tm and T™ (x + M) = Tz + M.

To give some sufficient conditions for Tn(X,Y) = Imp(X,Y), we con-

sider two classes of operators {2 and (2. introduced in [1]:

2,(X):={T e L{X) : T is an (into) isomorphism for no
infinite-dimensional, invariant subspace M of T'}
R_(X) = {T € LX) : T™ is surjective for 1o
infinite-codimensional, invariant subspace M of T'}

THEOREM 3.5. Let A be o quasi-operator ideal and let ¥ be o Banach
SPaCE.

(2) If A(Y) C 2.(Y), then A(Y,Z) C In(Y,Z) for every Banach
space & .

(b) If A(Y) C R2.(Y), then A(X,Y) C In(X,Y) for every Banach
space X .

Proof. (a) Suppose that there exists T' € A(Y, Z) \ Zn(Y, Z). By The-
orem 1.1, we can find § € L£{Z,Y) so that M := ker(Iy — ST) is infinite-
dimensional. However, since ST € A(Y) ¢ R.(Y) and ST coincides with
the identity on M, we find that M is finite-dimensional; a contradiction.

(b) Suppose that there exists T € A(X,Y)\In(X,Y). By Theorem 1.1,
we can find § € L(Y, X) so that N := R(Iy — TS) is infinite-codimensional.
However, since T'S € A(Y') C 2_(Y), N is an invariant subspace of 7'S and
(TS)Y is surjective, we deduce that IV is finite-codimensional; a contradic-
tion. m

In the case A = Tmp, we obtain further characterizations of pairs X, Y
satisfying Zn(X,Y) = Imp{(X,Y).
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COROLLARY 3.6. For o Banach space X the following statements are
equivalent:

(a) In(X) = Imp(X);
(b) ITmp(X) C £24(X);
(¢) Tmp(X) C N._(X);
(d) In{X,Y) = Imp(X,Y) for every Banach space V.

Proof For the implications (a)=(b) and (a)=(c), it is enough to
observe that In{X) C 2.(X) N 2.(X). Indeed, if T € L(X) \ In(X),
then using Theorem 1.1 we can find an operator § € £(X) so that M :=
ker(Ix — ST) is infinite-dimensional. Since the restriction of T' to M is an
isomorphism and T(M) C M, we conclude T' ¢ £2,. Analogously, we can
conclude T' & 2__.

(b)=>(d) follows from Theorem 3.5 and Zn(X,¥) C Imp(X,Y).

{c}=>(d) follows from Theorem 3.5, the inclusion Zn(Y, X) C Zmp(Y, X)
and the equivalence In(Y,X) = Imp(Y, X) & In(X,Y) = Imp(X,Y),
proved in Proposition 3.4.

(d)={(a) is trivial. =

Corollary 3.6 shows that Question 1 is equivalent to the following one.
QUESTION 4. Is it true that In(X) = Imp(X) for every Banach space X7

Let X be a complex Banach space X and T' € £(X). Recall [6, §48, page
203] that a subset ¢ of the spectrum o{T) of T is a spectral set if both ¢
and o(T)\ o are closed.

ProrosiTION 3.7. Let X be an infinite-dimensional complex Banach
space and let T € ITmp(X'). Then we have

(a) 0 € o(T);
(b) if o C o(T) is a spectral set and 0 ¢ o, then the spectral projection
associoted with o has finite-dimensionel range.

Proof, (a) Clearly, an invertible operator in an infinite-dimensional
space cannot be improjective.
(b) Let P denote the spectral projection associated with o (see [6, §49]).

" Then taking M := R{P), we have T(M) = M and the restriction T Jpr is

an isomorphisu. Since T' € Tmyp we deduce that M is finite-dimensional. m

Next we show that, for complex Banach spaces, Question 4 can be for-
mulated in terms of the spectral properties of improjective operators.

PROPOSITION 3.8, Let X be a complez Banach space. Then Imp(X) =
In(X) if and only if for every T € Tmp(X), the spectrum o(T) is either a
finite set or a sequence which clusters at 0.
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Proof The direct implication follows from a well-known property of
the spectrum of inessential operators {1].

For the converse, fix an operator T' € Imp(X). For every § € L{X),
we have ST € Imp{X). Now, by the hypothesis and Proposition 3.7, either
Ix — ST is bijective, or 1 is an isolated point in o(ST) and the spectral
projection associated with the spectral set {1} has finite-dimensional range.
In any case, ker([x — ST is finite-dimensional, and applying Theorem 1.1,
we conclude that T is inessential. =

Proposition 3.8 shows that, for complex Banach spaces, Question 4 is
equivalent to the first part of the following one.

QUESTION 5. Let X be a complex Banach space X.

(a) Is it true that «{T") is either a finite set or a sequence which clusters
at 0, for every T' € Tmp(X)?

(b) We remark that we do not know if the assertion of Proposition 3.8
is valid for a single operator, instead of the whole set ZTmp(X). Therefore,
we ask: Assume that the spectrum of T € Tmp(X) is either a finite set or a
sequence which clusters at 0. Is T inessential?

4, Some examples. Here we present several examples of pairs X,Y
of Banach spaces for which we have the equality Zn(X,Y) = Tmp(X, V).
Note that, by Proposition 3.4, this is equivalent to In(Y, X) = Imp(¥Y, X).
Some of these examples correspond to the case in which one of the spaces
admits many projections, like the subprojective spaces and the superprojec-
tive spaces, and some others to the opposite case in which cne of the spaces
admits only trivial projections.

First we recall some results of [2, 4] which give examples of pairs X,Y
such that £{X,Y) = In(X,Y), or equivalently, L(Y,X) = Za(Y,X) [4,
Proposition 1]. We refer to [4] for the definitions of the concepts involved in
the results.

THEOREM 4.1 ([2, Theorem 2.3], [4, Theorem 1]). We have the equalities
LX,Y)=Tmp(X,Y)=1In(X,Y)
wn the following cases:

(a) X is reflexive and Y has the Dunford=Pettis property;

(b) X has the reciprocal Dunford—Pettis property and Y has the Schur
property;

(c) X contains no copies of oo and Y = fog, H® or C(K) with K
o-stonian;

(d) X contains no copies of ¢ and Y = C(K);

(e) X contains no complemented copies of ¢y and ¥ = Clo,1);

(f) X contains no complemented copies of £y and Y = Ly (p);
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(g) X contains no complemented copies of bpand Y = £, 1 < p < oo
(h) X contains no complemented copies of £, or €y and Y = L,{0,1],
1< p<oo.

We observe that Theorem 4.1 incledes and extends the list of examples
of Tarafdar [11, 12] of pairs XY for which £(X,Y) = Imp(X,Y).

It was proved by Tarafdar [12, Theorem 3.2] that £(X,Y) = Tmp(X,Y)
if and only if no infinite-dimensional complemented subspace of X is iso-
morphic to a complemented subspace of ¥, So, the following question is
natural.

QuesTION 6. Let X and ¥ be Banach spaces such that £(X,Y) =
Imp(X,Y). Is it true that every complemented subspace of X x Y is isomor-
phic to the product of a complemented subspace of X and a complemented
subspace of Y'?

The answer is affirmative when £{X,Y) = In(X,Y) [4, Theorem 3].

DerFINITION 4.2. A Banach space X is said to be subprojective if every
inflnite-dimensional closed subspace of X contains an infinite-dimensional
subspace which is complemented in X. The space X is said to be superpro-
jective if every infinite-codimensional closed subspace of X is contained in
an infinite-codimensional subspace which is complemented in X.

The spaces £, (1 < p < co) are subprojective and superprojective, and
the spaces Ly[0, 1] are subprojective for 2 < p < oc and superprojective for
1 < p < 2. Moreover, £1 and ¢; are subprojective, but L1[0,1] and C[0, 1]
are neither subprojective nor superprojective [15]. For further information
on subprojective and superprojective spaces, we refer to [2].

If one of the spaces is subprojective or superprojective, the improjective
operators are inessential.

TEEOREM 4.3, Assume that one of the spaces X,Y is subprojective or
superprojective. Then Imp(X,Y) =In{X,Y).

Proof. Assume first that YV is superprojective. f T ¢ £(X,Y) is not
inesseutial, then we can find an operator S € £(Y,X) such that M :=
R(Iy — T8 is infinite-codimensional in ¥. We take an infinite-codimen-
sional, complemented subspace N of Y containing M, and we select a pro-
jection. P with ker(F) = N,

We see that R(P) is infinite-dimensional. Moreover, since P(Iy — T'S)
= 0, we find that PTS restricted to R(P) coincides with the identity op-
erator. Then PT'S is not improjective, and by Proposition 3.1, 7' is not
improjective.

Now we consider the case in which X is subprojective. If T € L(X,Y) is
not inessential, then we can find an operator § € £(Y, X)) such that M :=
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ker(Ix — ST) is infinite-dimensional in X. We take an infinite-dimensional,
complemented subspace N of X contained in M.

Since 97 restricted to the subspace N coincides with the identity, we see
that T(N) is closed, the restriction S.Jp(yy is an isomorphism and S(T'(N))
is complemented. Hence, by Lemma 2.2, T'(N) is complemented. Since T'Jy
is an isomorphism, we conclude that T is not improjective.

For the remaining cases it is encugh to apply Proposition 3.4 and the
previously proved cases. =

Recall that an operator T' € L{X,Y} is strictly singular if no restric-
tion TJyr of T to an infinite-dimensional closed subspace M of X ig an
isomorphism. The operator T is strictly cosinguler if there is no infinite-
codimensional closed subspace N of ¥ such that R(T)+ N =Y. We denote
by 8§ and SC the classes of all strictly singular and strictly cosingular op-
erators, respectively. These classes are closed operator ideals [10, 1.9, 1.10,
4.2.7). Moreover, both S8 and SC are contained in Zn [10, 26.7.3]. In par-
ticular, the inclusion

SS(X,Y)USC(X,Y) C Imp(X,Y)

holds for each pair X, ¥ of Banach spaces.

In the following result we show that, in some cases in which one of
the spaces is subprojective or superprojective, the improjective operators
coincide with the strictly singular or the strictly cosingular operators. We
observe that part (a) was proved before in [11, Theorem 1.3].

THEOREM 4.4. (a) If Y is subprojective, then Imp(X,Y) = SS(X,Y).
(b) If X is superprojective, then Imp(X,Y) = SC(X,Y).

Proof. (a) Assume that Y is subprojective and T € L(X,Y) is not
strictly singular. Take an infinite-dimensional closed subspace M of X such
that T'Jar is an isomorphism. Since Y is subprojective, we can take an
infinite-dimensional subspace IV of 7'(M') which is complemented in Y. Then
A := (T)pr)"'(N) is an infinite-dimensional closed subspace of X contained
in M. In particular, T'J4 is an isomorphism. Moreover, T{A) = N is com-
plemented in Y. Hence T is not improjective.

(b} Assume that X is superprojective and T' € £{X,Y) is not strictly
cosingular. Take an infinite-codimensional closed subspace N of ¥ such
that QnT is surjective. Then ker(QnyT) = T-Y(N) is closed and infinite-
codimensional; indeed, if A is an algebraic complement of T-!(N) in X,
then Y = N ¢ T(A).

Since X is superprojective, we can take an infinite-codimensional com-
plemented subspace L of X containing 77*(N). Now, since Qn7 is sur-
jective and ker(QnT) C L, we see that QnT(L) is closed; hence B :=
QN (QNT(L)) = T(L) + N is closed as well.
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Note that QgT is surjective and T-1(B) = I: in particular, B is infinite-
codimensional. Therefore, by Theorem 2.3 we conclude that T is not impro-
jective. m

The following examples show that we cannot change the order of the
spaces X, Y in Theorem 4.4. In (a), if X is subprojective, then Tmp(X,Y) =
S8S(X,Y) is not true in general, and analogously in (b).

EXAMPLE 4.5. (a} The space £; is subprojective and, by Theorem 4.1{c),
we have

ﬂ(fz,foo) = Imp(ﬂg, Eoo) = In(fg,fm);

however, L£(€a,lx) #* S8(fs, L), becanse £ comtains a closed subspace
isomorphic to £3 [3, Theorem IV.IL.2].

Another example may be derived from the fact that the natural inclusion
of Ly[0,1] in L1[0, 1] is not strictly singular, because it is an isomorphism
on the closed subspace generated by the Rademacher functions [3, Propo-
sition VI.1.1]. However, by Theorem 4.1(f), we have £(L3[0,1], I1[0,1]) =
Imp(L2[0,1], L1 [0, 1]).

(b) The space £3 is superprojective and, by [3, Proposition IV.1.2], every
operator T € L£(€1,£,} 18 strictly singular. Therefore, we have

,C(fl, 82) == Imp(ﬂl,ﬂg) = In(ﬂl, fz).

However, £(#,£2) # SC(£y,£a), because £; has a quotient isomorphic to £3
[3, Theorem IV.IL.1].

Next we consider some examples X, Y for which Zn(X,Y) = Imp(X,Y)
because one of the spaces has very few projections.

DEFINITION 4.6. A Banach space X is said to be indecomposable if it
does not contain pairs of infinite-dimensional closed subspaces M, N so that
X=M®&N.

Recall that an operator T € £(X,Y) is upper semi-Fredholm, in symbols
T e $..(X,Y), if its range B(T) is closed and its kernel ker(T') is finite-
dimensional; T is lower semi-Fredholm, in symbols T' € &_(X,Y), if R(T)
is Ainite-codimensional (hence closed [13, Theorem IV.5.10]).

The following result, essentially proved by Weis {[14, Corollary 2.3] con-
tains the hard inplications), characterizes the class of Banach spaces such
that any operator either is somi-Fredholm or belongs to one of the operator
ideals SS or SC, in terms of the decomposability of their closed subspaces
or quotients. We include a proof for the convenience of the reader and for
future reference to some of the steps.
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THEOREM 4.7 [14]. Let Y be a Banach space.

(a) We have L(Y,Z) = 88(Y, Z) U $.,.(Y, Z) for every Banach space Z
if and only if all the closed subspaces of Y are indecomposable.

{(b) We have L(X,Y) = SC{X,Y)UP_(X,Y) for every Bonach space
X if and only if oll the quotients of ¥ are indecomposable.

Proof. (a) Assume that T ¢ £(Y,Z), but T ¢ SSU P, Since T is not
strictly singular, we can find a number § > 0 and an infinite-dimensional
closed subspace M of Y such that ||Tz|| > d||z| for every # € M. Now,
since T' is not upper semi-Fredholm, there exists an infinite-dimensional
closed subspace N of Y so that ||Tz| < (6/2}||z] for every 2z € N. It is
immediate to check that M NN = {0} and M + N is closed; hence the
closed subspace M @& N of ¥V is not decomposable.

Conversely, assumne that not all the closed subspaces of ¥ are indecom-
posable. Then we can find two closed infinite-dimensional subspaces M, N
of ¥ such that M NN = {0} and M + N is closed. Thus, the quotient map
Qn € L(Y,Y/N) does not belong to SSUP.,, because @ is an isomorphism
on M and IV is infinite-dimensional.

(b) Assume that T € £(X,Y), but T ¢ SCUS_. Since T is not strictly
cosingular, we can find an infinite-codimensional closed subspace M of V'
such that QasT is surjective. By the open mapping theorem, there exists a
number § > 0 so that 6By C QuT(Bx); hence ||T*f|| = &||f)| for every
feMt

On the other hand, since 7' is not lower semi-Fredholm, there exists an
infinite-codimensional closed subspace N of Y so that [|QnTz| < (§/2)]z||
for every z € X; hence ||T*f| < (§/2)||f]| for every f € N*. We have
M-NN+ = {0} and M+ + N> is closed. Then M + N =¥ and M NN
is infinite-codimensional in A and in N, hence the quotient ¥/{(M N N) =

M/(MnN)e N/(MnNN)is decomposable. Therefore ¥ is not quotient
hereditarily indecomposable.

Conversely, if not all the quotients of ¥ are indecomposable, then we can
find closed subspaces U, M and N of ¥ such that U = M N N, M4+N=Y
and both M/U and N/U are infinite-dimensional, i.e., Y/U = M/U & N/U
is not indecomposable. Then the natural injection Jas € L(M,¥) does not

belong to SCU &, because R(Jy) + N = Y and both M and N are
infinite-codimensional. w

We observe that, at the time Weis proved this result, the existence of
Banach spaces satisfying the hypothesis of Theorem 4.7 was an open prob-
lem. However, Gowers and Maurey [5] have recently constructed examples
of spaces satisfying these conditions.
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ExAMPLE 4.8 {5]. There exists a reflexive Banach space X gy such that

all its closed subspaces are indecomposable. Hence, all the quotients of X &y
are indecomposable.

Now we can show further examples of Banach spaces X,Y for which

Imp(X,Y) = In(X,Y). Given a complex Banach space and an operator
T € L(X), we define

o (T)={2eC:z2lx -Tgd.}, o_(T) = {zeCizlx -TgS_}.

We need the following fact.

Lemma 4.9, Let X be an infinite-dimensional complex Banach space.
Then for every operater T' € L(X), the sets ¢ (T) and o_(T") are compact
and non-empty.

Proof. It is well known that o.(T") := {z € C: 2Ix — T ¢ &} is a non-

empty compact set, because it coincides with the spectrum of the image of T
in the Calkin algebra £{X)/K(X) [6, §53]. Moreover, by the stability of the

index of a serni-Fredholm operator under small perturbations (8, Proposition
2.¢.9], the boundary of o.(T) is contained both in ¢4(T) and in o_(T). =

Part (a) of the following result was proved by Gowers and Maurey [5].
However, their proof is quite long. Here we present a much shorter proof,
based on Lemma 4.9 and some ideas in [5].

PROPOSITION 4.10. Let X be an infinite-dimensional Banach space.
(a) If every closed subspace of X is indgcomposable, then

LX) = {KIx}® SS(X).
(b) If every quotient of X is indecomposable, then

L{X) = {KIx}® SC(X).

Proofl. (a) First we assume that K = C, the complex fleld. Let T' €
L(X). By Lemma 4.9, there exists 29 € C such that zoIx — T ¢ &,.. Since
all the closed subspaces of X are indecomposable, by Theorem 4.7, zoIx =T
is strictly singular, and the result is clear. _

In the case & = R, denote by S the natural extension of T' to the
complexification X of X. Observe that X can be represented by a prodgct
X x X. We refer to [8, Proof of Theorem 2.c.13] for a brief description. Using
this representation, it is easy to check that

(fou - S)(.’L‘, y) = (EIXc - S)(y: x):
where 7 is the complex conjugate of z. In particular, zIx; — 5 € &4 if and

only if ZIx, — S € P... Moreover, § € 8§ if and only if T € 85. Hence, by
Theorem 4.7, the set oy (5) contains at most one real number.

(z,y) € X x X,
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Assume that there exist numbers z,w € ¢4.(5) such that z # w # Z,

and define T, := T2 — 2RewT -+ |w|*Ix. Then we have

(8§ —wlx: NS —wIXC)(w,y) = (T, Twy)'

Therefore, T, and 75, are not upper semi-Fredholm, hence they are strictly
singular, and we get T, — T = aT + bix € &8, for some a,b € R, not
both 0.

Note that a £ 0. Otherwise, we would have I'x € &8, hence X finite-

dimensional, in contradiction with the hypothesis. Therefore, there is a real
number ¢ so that ¢ty — T € 88, and the result is proved.

(b) The proof is very similar. m

ProrosITION 4.11. Let X,Y be Banach spaces. Assume that each closed

subspace of X is indecomposable, or each quotient of X is indecomposable.
Then Imp(X,Y)=1In(X,Y).

Proef. By Corollary 3.6 it is enough to show that Tmp(X) = In(X).

So we fix T € L(X) \ Zn. By Proposition 4.10, in both cases we can write
T = AMx + S, where § € L(X) is inessential. Hence A # 0 and T is a
Fredholm operator. Thus T' & Zmp. m

(1
(2}

(3]
4]

(5]
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