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LP-improving properties of measures supported
on curves on the Heisenberg group

by
SILVIA SECCO (Torino)

Abstract. L?-L? boundedness properties are obtained for operators defined by con-
volution with measures supported on certain curves on the Heisenberg group. We find
the curvature condition for which the type set of these operators can be the full optimal
trapezoid with vertices 4 = (0,0), B = (1,1), C = (2/3,1/2), D = (1/2,1/3). We also
give notions of right curvature and left curvature which are not mutually equivalent.

1. Introduction. Let B be the Heisenberg group, that is, R? with the
product
(z,9,t) - (2, ¢, ) = (e + 2 y+ v 0+t + 3(zy —z'y)).

We consider a curve -y in H; whose tangent vector at any point is not parallel
to the center of H;. Without loss of generality we can define v by

(11) fY:I"—'}Hla SHW(S)= (52¢1(5)7¢2(S))?

where I = [a,b] is a bounded interval in R and ¢1(s), ¢a(s) are smooth
real-valued functions.

Consider the singular measure i on H supported on the curve (1.1) and
given by
(1.2) (1 £y = L F((s)) ds.

I
We define the right convolution operator by u:
(1.3) Tf(w) = f*plw) = S Flw (v(s)™) ds, weH.
I

We are interested in studying the type set 7 of T', that is, the set of points
(1/p,1/g) € [0,1] %[0, 1] such that T is bounded from L?(H; ) to L9(H; ). We
say that the measure u defined in (1.2) is LP-improving if T is not reduced
to the diagonal 1/p = 1/q.
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It is well known that if in (1.3) we replace the Heisenberg group convolu-
tion with the ordinary convolution in R®, then the LP-improving properties
of T' are closely related to the curvature and torsion properties of . In
particular, if 4'(s),~"(s),+" (s} are linearly independent for all s € I (or
equivalently, if

1(s)  5(s)
¢1'(s) ¢’”( )
for all s € I) then 7 is the closed trapezoid ABCD with vertices

21 11
p=au, ¢=(33) 2=(33)

(see [3], [4]). If either the curvature or the torsion degenerates at some point,
the type set becomes smaller in general [1], [5], [6], [8]. We study the LP-L9
boundedness properties of 7' on Hy adapting the “T™T method” which was
already used by Oberlin in [3] to reduce the problem to an LP - 5
estimate on RZ. In this way, in Section 3, we prove that the operator T is
bounded from L3/ 2(M; ) to L*(H;) if

$1(s)  @5(s) 4o (¢’"( )?
1" (s) ¢’”( )
and it is bounded from L?(Hy) to L® (I[-]Il) if
$1(s) @(s) | (#1(s))°
¢{'(s) ¢5'(s) 2

Conditions (1.4) and (1.5) are better understood if we give a group-invariant
notion of higher order derivatives of v. We must regard +'{s) as an element
of the tangent space T, H; at the point v(s). Before further differentiating,
we must transport the various v'(s) to the same tangent space. Hence we
consider the right translation

R'y(s) H IHIl —+ H1

which maps (=, y,%) to (z,y,t)-v(s). Its differential dR.(,) maps the tangent
space TpHy onto Ty H; . So we define

Vals) = dBZL,7 ()

A= (an):

(1.4) forall s [

{1.5) for all s € 1.

F o

At this point we can define

d
ey G
and % (s) similarly.

Condition (1.4) is then equivalent to saying that v%(s),y

_ (s), 7 () are
linearly independent for each s € I.
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Replacing right translations with left translations gives the correspond-
ing interpretation of (1.5). Therefore, analogously to the case of a curve in
%, when conditions (1.4) and (1.5) fail at some point s & I, we get a curve
v which has a sort of degenerate curvature and/or torsion at that point.
As an example of the curve (1.1) we consider in Section 5 the curve
(1.6) Yot [0,1] = Hy, 5 9,(s8) = (5,82 as®),
where « i3 a real-valued parameter.
Notice that v, satisfies condition (1.4) for all values of o except o =
—1/6, in which case (v,)% is identically zero. Similarly, (1.5) is satisfied
for all values of a except & = 1/6. Denoting by u, the singular measure
gupported on v, and by T, the right convolution operator by ua, ie.
1

(1.7) Tof(w) ={Flw- (va(s)) ") ds, weHy,
0

we are interested in studying the type set 7, of T,,.

If o # +1/6 we prove that 7, is the closed trapezoid ABCD, hence
we restrict our further attention to the degenerate cases o = +1/6. We
prove that the type set T.i/g is the closed triangle ABD and Ty¢ is the
closed triangle ABC (the fact that 7.,/ are not reduced to the diagonal
1/g = 1/p1is duse to the fact that ./ are analytic curves that generate the
full group [7]). This situation contrasts with the abelian case, i.e. when the
Heisenberg convolution in (1.7) is replaced by ordinary convolution. Here
the curve degenerates for o = 0, in which case it becomes completely flat
and consequently there is no LP-improving. Another interesting remark is
that the type sets of 41/ are not symmetric with respect to the diagonal
1/p+1/g = 1. This is a phenomenon which cannot occur in the abelian case.
We remark that asymmetry of convolution operators has been extensively
studied in the case p = ¢ and some explicit examples of asymmetric operators
have been given on the Heisenberg group [2]. As far as we know, no such
simple examples of asymmetric operators are known in the case p < ¢.

Tn the last section of this paper we consider a family of curves I',(s),
s € J ¢ R, whose vector {I';)}(s} does not vanish at any point s € J,
while the vector (I'>)4(s) is zero at an isolated point 59 € J. Up to group
automorphisms, we can suppose that sp is the origin and that the curve is
of the form

(1.8) L J—H, s [(s)=/(ss, —5/645),

where o > 3 and J == [0,4] for a sufficiently small § > 0 so that the curve
(1.8) has only the origin as a singular point. We define the operator U, as

(19)  Usf(w) = frvo(w)= | flw (Te(s) ™) ds,  w e,

J
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where v, is a singular measure supported on the curve (1.8), and we study
the type set U, of U,. We will see that U, is contained in the closed quadri-

lateral with vertices
(i1
T\2’°3

oc+1 a
A= =(1,1), P=|——0Dy — ],
©0, B=01), P=(Zi1 -2
with the only possible exception of the open segment DP and the point P.
This result also holds when the operator U, is defined on a curve more
general than (1.8), that is, on the curve

C:J =M, s+ C(s)=(s,s% ~s2/6+ (s)),

where J = [0, 4] for a sufficiently small § > 0, ¢ i3 a smooth real-valued
function which satisfles the following three conditions:

H0Y=0, &(0)=0, ¢"(s)=<Cs7"? ass-—0,
and o > 3.

2. Preliminaries. We begin with a lemma on EP-L? egtimates for con-
volution operators with a singular measure supported on a curve in RZ
which will be used in the proof of Theorems 3.1 and 6.1.

Let I = [a, b] be a bounded interval of R; define the curve

(2.1) T IR s W{s) = (5,%(s),

where 1(s) is a smooth real-valued function.
For any test function f on R?, consider the measure A on R? given by

(2.2) ) =11 (s))n(s) ds,

where 1 is a smooth real-valued function, and define the operator

(2.3) Sf(m1,m0) = f o A(z,22) = S flmy — 8,82 — 9(s))n(s) ds.

I

LEMMA 2.1. Let ¥ be the curve (2.1), suppose that [ (s)| = K > 0 for
all s € I, and let S be the operator defined in (2.3). Then

(2.4) 15 Fllzo@ey < K (mlloo + 012>/ ][22 £l osa ey

where ¢ 18 a positive constant.

The proof of this lemma is based on complex interpolation and follows
standard lines; therefore we omit the details.

REMARK 2.2. Suppose that the curve (2.1) has the form

F(s) = (6(s),¢(8)), sel,
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where 8, { are smooth real-valued functions satisfying the following two con-
ditions:

(2.5) 16 (s)¢"(s) — 8"(s)¢'(s)| = CL > 0,

(2.6) 0'(s)| = Cy >0

for all 8 € I, and define the operator

b
(2.7 Sf(zy, ) = Sf(:cl —~ B(8), 29 —~ ((s)) ds.

If we change variable in (2.7), namely if we put 7 = 6(s), we get the operator
a(b)
Sf(zi,ze) = | fl@r— 7z~ (o 67)(n))(071) () dr.
8(a)
Therefore to estimate the L3/2(R?)-L3(R?) norm of § we can apply Lem-

ma 2.1 where in this case we have

(2.8) ") = 07 C) = g

v (2.5) and putting M = max,c7 |6'(s)| we get
Cayirp| — | EHOTHENE () — (O ()8 (0 (7))
(2.9) [(Cef7H)"(r) = (6 (6—1(r)))®
LR OLINC Y
(#'(s))° T MP
for all s € I, and by (2.8) and {2.6) we have

1
< —.

Moreover, since '’ is a continuous function on I, there exists a non-negative
constant Cy such that |8”(s)| < Cs for all s € I. Therefore by (2.6) we get

(2.11)

b1 = g < G

Hence by (2.9), (2.10), (2.11), inequality (2.4) becomes

ciC "1 cs YR
R L e I “‘m) P lgorsguy

Let T be the operator defined in (1.3). We want to determine the oper-
ator IT™.
Let f,g € C°(H,). By definition,

T f,9) = (f.Tg)
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where
(.f)Q'):S.f(w)mdw: weHy.

For w € H; and vs = (s, $1(8), ¢2(s)), using Fubini’s Theorem and the right
invariance of the Lebesgue measure we have

(£,Tg) = | f(w)Tg(w)dw = | f(w) | g(w - vi'*) ds dw
I

= [ (§ 7w+ vo) ds)alw)dw = § £ + f(w)glw) dw = (£ # i, g)
I .

where
i £y =\ (s, 81(5), a(s)) ") ds.
I
Therefore we have T f(w) = f * j(w) for w € Hy.

3. Convolution estimates for the operator 7. In this section we
prove the following theorem.

THEOREM 3.1. Let T be the operator defined in {1.3).

(i) If condition (1.4) holds then T is bounded from L*?(Hy) to LA(Hy).
(ii) If condition (1.5) holds then T is bounded from L*(Hy) to L3(Hy).

Proof (i) We decompose the interval I into n disjoint subintervals
Iy = [0k, ar + 8] of length §, with § > 0 to be determined.

Define uy by

(;U'k,f) = S f(’Y(S)) ds
Ty

for any test function f on Hy, and Tk f = f * ui. Then T is bounded from
L32(Hy) to L2(HL ) if and only if T} T}, is bounded from L3/2(Hy ) to L3(H; )
for all £.

We write

T;:ka(w, y,t) - ‘ S f((x,y, t) ' (5a ¢1(3): ¢’2(3)) ' (Ta(ﬁl(""): f/’ﬁ(""))“l) dr ds

Iy Iy,

I
[
[ ]

5-.1‘

Ip I

4 3ulr) —?"¢1(8))—1) drds

(<m,y,t>-- ( — 5, 61(r) — 61(5), dalr) — da(s)

2

for any test function f on H;. Making the change of variables r — s = u,

icm
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8 =1 we get
s
= 1§ (@0 (wasto+0) - 610, a0+ ) - s
—§ Iy (w)
Lo+ —-2(v + u)qbl('u)) —1) o du
3
={ | f(cr:wu,y— (61{v +u)
=3 Iy (u)

_ (vt u) — (vt u)g (v)
2

— ¢1(v)), 1 — (d2(v +u) — da(v))

_z{d1(v+u) = ¢i(v) —yu
2

)d’udu
where
Te(u) = lag, 0r + 8] N o — u, 00 + 6 — )

%{{ak,ak+(5—u}, 0<u<y,
- [ag — w,ap+ 4], —-d<u<O

For |u| < ¢ and a fixed « € R, consider the curve 7, {v) on R* given by

o alv) = (m (0 +u) — b (o), dolv + ) — Ba(o)

+ (v-i-:r:)q;l(v—i-u) 3 (v-l—m-;u)fﬁl(v)), v € I(uw).

For any continuous compactly supported function g on R? we will prove
(3.2) g *1e Youllpome) < Clul =gl Loragaey,
where (7 is a positive constant which is independent of z and «. Assume for
a moment that (3.2) holds and put

fomu(t) = fl@ —w,y, 1)
Then (3.1) becomes

4

1
T Thf(x,v:t) = § (fomu e o) (y,t + 5%) du
—3
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and we get

¢ 1
S (Foeu *R2 Ye,u) (y,t—l~ §uy) du
8

;

W Tk fll o) = ”

L () 1123 (R)

du

LAY

<

1
(fm-—u HR2 ')’a:,u) (y:t + Euy)

L3(R)

3

S ;u|—2/3”fm—u”_53/2(]m2) du
~§

<C

LA(R)

By the boundedness of the Riesz potential of order 1/3 as a mapping from
L3/2(R) to L3(R), this last term is bounded by

Cll N Fallperz eyl o2 @azy = Cllf il Lorzqm)-

So, to prove that the operator T}Ty is bounded from L3/2(H;) to L*(Hy)
we need to establish inequality (3.2).
In R? we take coordinates £,7 and we observe that

(3.3) (9 *re Yau){€,7)
. g(s-¢1(v+u>+¢1(v),n_¢2(v+u)+¢z(u)

I ()
(oo b o) )
2
_ £ dilvtu)—dilv) n _ $2(v+u) —d2(v)
A
(z +v)(d1({v + u) — ¢1(v)) — ugs(v)
- v u2u v ! ))dﬂ

= Dl/u(Dug *ge %m,u)(‘gsn)

where for functions g on R? and ¢ € R, we put
DEQ(E) TJ') = g(€£= 5"7)

and 7., is the curve

(3.4) e (V) = (451(1) + ui)b - ¢51(v)’ Pa(v+ u,i — ¢a(v)

L o)ty ~ ) - wf’l(v))}

2u
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v € Ix(u). Therefore we are reduced to proving the estimate
(3.5) llg *re Fa,ullsme)y < Cllgll pore(ge)

where C is a positive constant which is independent of  and w.

In fact, once (3.5) is established, (3.3) implies (3.2) by a scaling argu-
ment. In order to prove (3.5), we conjugate the convolution operator by the
linear mapping

@
€m — (6= 3¢).
This allows us to replace the curve 7 ,(v) defined in (3.4) with the curve

(36)  7,() = (¢1 (w4 u) = d1(v) dalv -+ u) — ¢a(v)

i ’ 2

N v (v + u) —52(1))) - U¢1(UJ)’ v € I(u),

which is independent of z. The L3/*(K?)-L3(R?) norm of the convolution
operator by ¥y, (v) is equal to the L%/2(R?)~L3(R?) norm of the convelution
operator by %, therefore to get (3.5) we have to prove the estimate

(3-7) “9 *p2 ’HY-u”LS(IRﬂ) < CHQ”La/z(up)
where € is a positive constant which is independent of u.

We apply Lemma 2.1 to the curve F,{v), v € Ix(u). By the mean-value
theorem there exist 7; € (v,v+wu), i =1,...,5, such that

10) = (8400 e 4 B A0) | v 0]

(3.8)

7400) = (#/7 (r0) + o) — L2 4 2OLTE) ),

Condition {1.4) can be rewritten as

@66 - o (i) + HOL > o

(3.9) -

for all s € I, where Cy is a positive constant. In order to apply Remark 2.2
we want to prove that (3.9) implies

B (e (rs) + (81 m))? - B

(3.10)

> &
-2

@ ()Y () — ’1”(74;4'51(73) +¢'1”(T42)¢’1(U)

for v € Iy(u), 7 € (v,v+u),i=1,...,5
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The left-hand side of (3.10) is a continuous function of v, 71, .. ., 76, which
we denote as J(v,71,...,75)-

Assuming now |u| < b — a, we consider the interval I(u) defined as

. [a,b—1], 0<Lu<b—a,
I{w) = [a,B]N [a"%b““}r‘m{[a—ujb}, a—b<u<0.

and we suppose v € I{u). Set

E= {(U,ﬁ,?'l,.--,"i'f,) : "U;l < b"'ay UyTL, e 75 € ](U)}
Since (3.9) holds, we see that condition (3.10) is satisfied on the diagonal
R={(u,v,71,...,5)EFB:my=n,i=1,...,5}

Given a point P € R, there exists an open neighborhood B in E centered at
P of radius r such that condition {3.10) is satisfied by every point of B. Since
R is compact, we may cover it by a finite number of open neighborhoods
B; centered at P; € R of radius r; in which condition (3.10) is satisfied.
Taking r = min;{r;}, we see that condition (3.10) holds for every v and
T1,...,75 belonging to a neighborhood of v of radius r/2. Therefore, since
€ (v,v+u),i=1,...,5 if we take § < r/2 then the assumption (3.9)
implies condition (3.10) for v € I{u) and 7 € (v,v+u), i =1,...,5.

Next we notice that it is possible to split every interval Iy (u) into a finite
number N of disjoint subintervals where the curve (3.6) is a C2-graph and
this finite number is independent of u. To see this we put

;?u(v) = (9H ('U)a Cu (QJ))

where
Bu(v) = (”Jr”i h)
Culv) = alvt+u) = da(v) | viglv tu) —i(v) _ falv)
“ u 2u 2’
v & Ip(u), u € J={—4,6]. Set
Hy={{v,u):ueJ vel(u}

We take a point (vg,ug) € Hp where 6, (vg) # 0 or (], (vg) % 0. Such
a point exists because condition (3.10) implies that 7, (v) and F,(v) ate
linearly independent in Iy(u). Since § and ¢ are continuous functions of v
and u, there exists a neighborhood V' of (vg, u) in Hy, such that 8, (v) # 0
or £, {v) # 0 for all (v,u) € V. Since Hy, is compact, we may cover it by a
finite number N of such neighborhoods V. Relating to this covering we get
a subdivision of Iz{u} and J into a finite number N of subintervals Iy ;(u)
and J;, respectively, ¢ = 1,..., N, where the curve F,(v) is a graph and N
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is independent of u. So

(311) g *ge Fy'u('u) Zg *R2 ’Y'u. i
where

Vuyi = B0}, Culv)), v € Tn(u).
Let v be fixed in J; and let v € Ix;(u). We want to apply Remark 2.2 to
estimate the L3(R®) norm of g #g 7, ;, checking that the constants which
appear in this estimate do not depend on u.

Suppose that for all v € I, ;(u) we have 6, (v) # 0 (but we can proceed
in the same way if we suppose (},(v) # 0). Then, since ,{v) is a continuous
function of w and u varies in the compact set J;, there exist positive constants
Cy and M which are independent of u and such that

(3.12) Ca < |8 (v) < M

for all v € Ip;(u). Since (3.10) and (3.12) hold for all v € Ii:(u) we are
in the hypothesis of Remark 2.2. Moreover, we can notice that since 8,/ (v)
is a continuous function of v and u varies in a compact set, we may find a
non-negative constant Cs which is independent of w and such that

(3.13) () < Cs

for all v € Iy ;(v). Therefore, by {2.12), using (3.10), (3.12), (3.13) and the
fact that | Iy (u)| < |I| we get

(8.14)  ||g *m2 Vo illL3(r2)

oxe ~1/8 /¢ Cy 2/3
<o(S) (g + Gmetl) Nl < Clallrmce

where C' is a positive constant which is independent of u. Hence, taking into
account (3.11) and (3.14) we have

llg *ke Fullzoey < CNllgl| posamay,

which gives (3.7}, This concludes the proof of the first part of Theorem 3.1.

(ii) Arguing as in part (i), after decomposing the operator T as a finite
sum T o= 7 v=1 Tk, we can prove that TZ} is bounded from L3/ 2(Hy) to
L3 Hil) for all k. This implies that the operator T is bounded from L3/2(H, )
to L2(H;), which is equivalent to saying that T is bounded from L?(H ) to
L3(Hy). w

4. A geometric interpretation of conditions (1.4} and (1.5). Let
us consider a basis By of the Lie algebra of H; consisting of the right-
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invariant vector fields

6 1 8 8 1 0 4,
Xr= 5tV YR:@—Ewﬁ’ Tr = 4.
Given the curve 'y(s) defined in (1.1), we express the vector +'{(s) =
(1, ¢ (s), ¢4 (8)) with respect to the basis Br (or equivalently, using right
translations we transport this vector to the tangent space Tyl ). Hence we
obtain the vector
<f51( )

Yals) = (1,¢a<s> + (s )+¢a(s>).

Now, since the tangent vectors 7}1(3), s € I, are applied at the same point,
we can calculate the vectors

406) = (0.8106), 361(6) + 649 ).
(o) = (0,016, 42 "( L2+ oy ()

The condition of linear independence of v (s}, v4(8), 7 (s) at a point 5 € I
then states that

7" ) it 2
1(3) 5 (3) _MM 1 I
#0) #eTTe 0 D
which is condition (1.4).

In an analogous way we can consider a bagis By, of the Lie algebra of H;
consisting of the left-invariant vector fields

8 1 & o 1 8 o
5z 2% “THtwm T m

and we may express the vector v'(s) = (1, ¢ (s}, ¢4(s)) in terms of the basis
By, (or equivalently, using left translations we transport this vector to the
tangent space TplHy ). Therefore we get the vectors

(o) = (15060, 242 = 2at.0) + ),
o) = (0.6 ()——¢(s>+¢()),
(e = (08052 - o0+ 5419,

and the condition of linear mdependence of vy, (8), v (s}, 7' (8) at a point
s & I then states that

¢1(s)  ¢3(s)
th' (S) ¢IN(8)
which is condition (1.5).

XL =

Q) (¢”( ))?

for all s € 1,
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Therefore we can restate Theorem 3.1 as follows.
THEOREM 4.1. Let T be the operator defined in (1.3).

() If vR(s), ¥4 (8),¥E (5) are linearly independent for oll s € I, then T
is bounded from L3/2(IHI1) to L2(Hy ).

(il) If v5.(s), v} (8), 7 (s) are linearly independent for all s € I, then T
is bounded from L*{(Hh) to L®(Hy).

5. The twisted cubic. In this section we study the type set T, of the
operator T, defined in (1.7).

LEMMA 5.1, For any o, 7o is contained in the closed trapezoid with
vertices A = (0,0), B=(1,1), C =(2/3,1/2), D = (1/2,1/3).

Proof. We notice that T\, is a convolution operator so it is certainly
necessary that p < g if (1/p,1/g) € T,. Two further tests allow us to obtain
the other imitations on 7,.

(1) Let f. be the characteristic function of a small Euclidean ball of
radius € > 0 centered at the origin. We apply T, to fe:

Tofe(z,y,t) = S 2,9,t) - (5,87, as®)71) ds

0
1
Sfam——s,y—s t —as® + 2{—zs® +-ys)) ds.

Let S; be the set deﬁned by
Se = {(z,y,t) e Hy :

350 € [0,1] : |3 — 80| < 18, |y — 53] < c1e, [t —ash| < cie}
where ¢; is a small positive constant. For (z,v,t) € S, let 59 be a point in
[0, 1] such. that the conditions |v — so| < e1€, |y — s3] < &, [¢ — asi| < cie
are satisfied. If we put

V={s€e0,1]:|s— s| < ce}
where ¢ is a positive constant, then since
ool < |z —sol +lso= sl ly— sl < ly— 3|+ [sF — 5%,
b= s+ bys — Lost] < It — aod] + jasf — as®| + §(y — &+ [s* — s,
it is easy to check that we can choose ¢ so small that the inequalities
lw—sl <8, |y—s<e [t—as®+iys— las?| <e
hold simultaneously for s € V and (z,y,t) € Se. Then
Tufe(zy,t) > S ds > ce

Vv
on 8.
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Since the codimension of the curve (1.6) is 2, the Lebesgue measure of
S is greater than a constant times £, so that

1/q n
T fell Loy = ( S |To fe(z,y, t)|* de dy dt) > ce(m(8e )M > et/
Hy
Moreover,

| felloguyy = Ce®™.

Imposing the condition that T, is bounded from LP(Hy ) to LI(H;) we wust
have the inequality
gl < o3P

for & < 1. This implies that

¢
=R o]
IA
—

By duality it is also necessary that
3.2

9 b

Therefore 7, is contained in the region determined by these two conditions
and by the condition p < ¢, i.e. the triangle with vertices A = (0,0), B =
(1L,1),Q= (3/512/5)

(2) The operator T, is homogeneous with respect to the family of group
automorphisms

(5.1) 8 (z,y,t) = (5z, 6%y, 8%), 6 >0,

and the homogeneous dimension of H; with respect to the dilations (5.1)
is 6.
Let f. be the characteristic function of the set

Y

{(wyt) e H : ol <e, ly| <&, |t <%}
for a small positive &, Given (z,y,t) in the set
Se ={(z,u,t) € Hy : |2} < eue, |y| < ere?, [t < e}

where ¢; is a small positive constant, if we put 0 < s < ¢z for a sufficiently
small constant ¢ > 0, term by term majorization yields

2
T 4 ,
lz - 3| < g, {ym32|<52, tm-ozs"‘—-—z——l-%i < &%

Hence

Tofe(z,y,t) > ce
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on Se. Therefore, since the Lebesgue measure of S, is greater than a positive
constant times €%, we have

1/q
o fellzogeiy = { § [Tufele,y, 7 dedydt) " > ce(m(Se)Me = ce /9,
Hy

while

| fellzoy = Ce®/P.
Imposing the condition that T, is bounded from L?(H;) to LI(H;) we get
e116/4 < ¢/,

Letting € — 0 we have

1 1
-—=-x
g
So 7, is contained in the subset of the triangle AB@ which lies on or above
the line 1/p—1/g = 1/6, i.e. in the closed trapezoid with vertices 4 = (0, 0),

B=(1,1), C =(2/3,1/2), D = (1/2,1/3). u

S| =

Combining Lemma 5.1 and Theorem 3.1 we get

THECREM 5.2. Let Ty, be the operator defined in (1.7). If a % +1/6 then
T is the closed trapezoid ABCD.

We now look at o == £1/6.

THEOREM 5.3, Let Ty, be the operator defined n {1.7).

(i) If « = —1/8, then 1, is the closed triangle with vertices A = (0,0),
B=(1,1), D=(1/2,1/3).

(i) If @ = 1/8, then T, is the closed iriangle with vertices A = (0,0),
B = (1,1), C=(2/3,1/2).

Proof By Lemma 5.1, Ty /g is contained in the closed trapezoid ABC'D
and by Theorem 3.1, 7_; /¢ contains the closed triangle ABD and 7y /¢ con-
taing the closed triangle ABC.

Let B == (5/8,1/2) be the point of intersection of the segment BD with
the line 1/g = 1/2. To prove assertion (i) it is sufficient to show that 7_, 4
does not contain any point of this line on the right of E and this is equivalent
to proving that the operator T, ¢T. 15 cannot be bounded from LP(H;)

to L7 (L) if 1/p > 5/8. Let f; be the characteristic function of the set
{(z,y,t) €M1 : |z <&, |yl <& [t <}

for a small positive £. We have
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(5-2) Til/aT—l/ﬁfs(may:t)
= fe * /s * fro176(3, 9, )

2 _fi . 3 _T_a_ - drd
fE (mzyat)' 8,87, 6 T, 6 T Q8

-l
1 —
fe ((m,y, 1) (r N 32,——6(7"3 - &%)+ i(r-é—mi)—> ) dr ds.
0

Making the change of variable r - s = u, r + s = v in (3.2) we obtain

11 g —1
T2y /6T-1/6fe(zu,8) > C’S S Je ((m,y,t)- (u, W, —%—-) ) dv du,
0u

For a fixed point (z,y,t) in the set
M, = {(z,y,t) € Hy : |z| < 16, |y| < c1e, [t] < ere?},
where ¢ is a small positive constant, we want to find a sufficiently small
neighborhood V of u and v such that for (u,v) € V' we have
|t + $ud + L (~zuw +yu)| < €
It is easy to see that if we consider V = {(v,u) € R2 : 0 <u < g, u < v < ¢}

for a positive constant ¢ small enough, then inequalities (5.3) are satisfied
for (z,9,t) € M, and {v,u) € V. Therefore

Ly 6T 16t (@ y,t) > S dvduy > Ce
v

(6.3) |z—u|<e |Jyu—wur <s,

on M.. Hence
/ /e’
T2 6T 1se el Lo gy = ( VT2 6T /6 e @y, 8) P dedy dt)
THy

> Ce(m(M VP = Qelt4/Y
while

1 fellzoqm,) = Ce*™.
If we impose the condition that T, s6L-1/6 is bounded from LP(Hy) to
L¥' () we must have the inequality

gVt < Cgtlr

for £ < 1. This implies

<32
=3

Wi

which concludes the proof of assertion (i).
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Now let F' = (1/2,3/8) be the point of intersection of the segment AC
with the line 1/p = 1/2. Arguing as in the proof of (i) we can prove that 77 /6
does not contain any point of this line below F'. This is equivalent to the
fact that the operator Ty s6l7g cannot be bounded from L% (Hy) to LI(H,)
if 1/q < 3/8. Assertion (ii) is proved. m

6. Type set of U,. Using the results that we have obtained in the

previcus section, we now study the type set U, of the operator U, defined
in (1.9).

THEOREM 6.1. Let U, be the operator defined in (1.9). Then Uy 45 con-
tained in the closed quadrilateral with vertices
11
D=|-,z
(#3)

c+1 o
AZ(O,O), B=(171)1 P=( )1
with the possible exception of the open segment DP and the point P.

oc+3 oc+3

Proof. First of all, adapting the argurments used in the proof of Lem-
ma 5.1, we can prove that I{, is contained in the closed trapezoid ABCD.
Next we divide the proof into two steps.

(1) Assuming that U, is bounded from LP(H ) to L?(H, ), we will prove
that
1 bo -7
p = 420 —3)’
modifying the argument used in the proof of Theorem 5.3.
For a small positive €, let f; be the characteristic function of the set

{{z,yt) eH : =] <e, |y] <%, |t < g>t11

for 1 « a < 2. We have
8 e
U:Uﬂ‘fﬁ(w!yat) = ‘kfe (("E$y>t) ' (35321 ““6“ ‘|‘ SU)
0

a
0
3 -1
fr',:rz,—-G— -1—?*”) ) dr ds

58 3_ 3
= Sng((fE,'l,t)' (T_S,rz_szj_”' 6 =
0o
—1
e Y

By the change of variable r — s = u, s = v, we can write
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UrUo fe(m,u,t)

5/26/2 BN\
> S S fe ((L’C,y,t) : (u:u(u‘}" 2’0), (U + u’)a -7 — 'é—) ) dv du

0 0
5/26/2
= S Sfs(w*U,y—u(u-i—%),t_(v+u)°‘+1;=’
0 0
3 —_ -
+%+wu7mj—gﬂ)dvdu.

Given a point (z,y,t) in the set
Se = {(z,9,8) € Hy : |&| < c15, |yl < exe™, [£] < exe™th),

where ¢; is a small positive constant, we want to find a sufficiently smnall
neighborhood V of u and » such that for (u,v) € V' we have

o o-ul<e -uwen)<en
|t + 3u® — (v +w)7 + 07 + Jyu — Foulu+ 2v)| < et
Suppose that -

Vo= {(u,v) €[0,8/2] x [0,6/2] : u < ce, v < ce® '}

for a positive constant ¢ small enough. Then since 1 < & < 2, applying the
triangular inequality we get
|z —u| <lz|+u<e, |y—ulu+20)] <yl +u?+ 2w < e

Using the triangular inequality and the fact that

w2 b
(v+u)® — v =ov" M+ oo - l)v”"2? +o(c—1)(o - 2)7‘“"‘5%“,
where 7 € (0, §/2), we get
t+ 3u® — (v+ )7 + 07 + Syu — jaulu+ 2v)] < T
ifa>(c—1)/(c—-2). '
So if we take & = (0 — 1)/(c — 2) then the inequalities (6.1) are satis-
fled on

Se = {(z, 4, t) € Hy : |z] < 18, |yl < cael@ /=2 14| « ¢g(Fo=8)/(r2))
and for (u,v) € V', where

Vo= {{u,v) €[0,8/2] x [0,6/2] :u < c&, v < ec*/ 72},
Therefore

U:Ua"fa‘(m}'l it) > S du dv = OE(O'-—J.)/((:—-2)
v
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when {z,y,t) € Sc. Hence

!

1030 £l iy = ( § 0 Vodelary, OF dodyat)
> Cjzo—l)/(cr—Z)(m(SE))lfp’
= CE(U—l)/(U—Z)+((4U"6)/(U—2))(1/19'),
while
£l po gy = CelUo=0)/ e=/p),
Requiring that U*U, is bounded from L2{Hj;) to L? (H;) we must have

£(0=1)/(e=2+{(40 -8}/ (-=2)1/P) < 5l (4a—6)/(e=2))(1/p)

for £ < 1. This irnplies

4c—6 1 o~-1 do-—6 1
R + L=
c—2 p - o-2 o-—2 p
that is,
l< Bo -7 .
p~ 4{20 - 3)

(2) Since § is sufficiently small, the curve I';(s) defined in (1.8) satisfies
condition (1.5) for all s € J, therefore by Theorem 3.1, Uy is bounded from
I2(Hy) to L3(HY).

We now make a dyadic decomposition of J into the intervals J; =
[2-9-1§,2796], 1 = 0,1,..., and we define the measure

277§ 53
(M:njaf) = S f('S,sza_‘g' +Sa)ds'
2-i-15
The corresponding right convolution cperator Us j is
(6-2) Ua,jf(ma Y, t) = fx Va,j(wrywt)

271§ 3 -1
= ‘ f((a:,y,t)v (S,SZ,"—F—FSU) )ds,

9-i=1§
hence

[oa)
U, = Z Usj-
4=0

Every operator Uy, ; can be obtained from an operator Uo(,fg by dilation and
with a multiplicative factor. In fact, by changing variable in (6.2) we get

Uy flo,y,t) = Q"jD(zf,zzf,zﬂi)(Uc(r{gD(2—f.2"“,2‘sJ‘)f)(wa Y1)
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where
) § 33 . ol
6.3) U F@yt) = | f((m,y,t)-(s,s{-%— +2<3"f’)ls”) )(is.
572
Hence
o0

(6.4) ||Ugf||Lg(1H[1) < P ”D(gj’gzj_lg:ij)(U((r'fc),D(Q-«jg-&jJ‘-ﬁj),f)H[_,Et([[!11)
0

8

_ Z (1+6/LI)J|| DD(2 4,9~ 2-’J)f“MU
§=0

0= (48/9=6/2)3| T O oy oy I

Lr(H )

.
i
=]

Since the curve (s,s2, —s3/6 + 2(8=9)157) satisfies condition (1.4) for ail
s € Jy = [6/2,8], applying Theorem 3.1 we know that the operator U 0
is bounded from L%2(Hy) to L?(H;), but we want to analyse how the

L3/2(Hy )-L2(Hy ) norm of U( depends on j. Therefore, following the proof
of part (i) in Theorem 3.1, we consider the operator

§ 4

3 r
(6.5) (U, (?)) ( (Y t) = S S f((wnya t) - (31 327 —% 4+ 2(3_%)]‘9”)
5/28/2
7‘3 . w1
. (7", r2, Y o 2(3*“)’1"”) )dr ds
5 5 33
= S S f((m,y,t)- (’J"— 8,1 ——.5’2,—T 5 :
5/268/2
' Ay 1
+ 2(3—0’)j (?"a . sﬂ') o} if_g%:ﬁ) )drr' dﬁ.
By making in (6.5) the change of variables r — 8 = u, 8 = v we get
5/2 |
(Ua-,o U(jof(m Y, t) = S (fmwu g2 rﬂ,m,u,j) (y, t - "é“h’r'ﬂ) du
~6/2
where

fm—u(y:t) = f(.’E - u)y:t):

, 3 .
To,3(0) = (u(u +20), 2579 (v 4 W) =) — % %’Li@i;@)

v & Jo(u),
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6/2,8 —ul, 0<u<é/f2,
Jolu) =6/, 01N [=u+3/2,0 -] = { %—/u + 6/5]6] —6/g< u/< 0.

We need to prove that there exists a positive constant C{j) which depends
otly on j and not on x and u such that

(6.6) lg *g2 Tz usllzaey < CGMul™23 gl zosara)

where g is a continuous compactly supported function on R?.

Adapting the axgument used in the proof of part (i) of Thecrem 3.1 we
reduce ourselves to estimating the L3(R?) norm of g #g2 T'5u,j Where I'g . ;
is the cuxve

T (v) = (20,207 Vu((v +w)7 ~07), v € Jo(w).

Since by the mean value theorem we have

fg,”;j(v) = (0 2(3 o)d ( 1) ('U + 'U:)U_z —_ @‘7“2)

U
= (0, 28=Vg(g — 1)(o — 2)77~%)
for + € [8/2, 8}, it follows that [I"/ , ;(v)] > 239 for all v € Jo(u), and ¢

oty j
is a positive constant which is mdependent of u and j. Therefore, applying

Lemma 2.1 (here we have 7 = 1) we get
(6.7) lg *ms Toyo,illseae < €279 gl o/ ma)

where C is a positive constant which is independent of u, 7, and {6.7) implies
{6.6) with

(6.8) C(5) = Cle=3i/3,

So from (6.6) and (6.8) and from the L3/*(R)-L3(R) boundedness of the
Riesz potential of order 1/3 we have

(6.9) ||(U(J U(JOfHLB(HI

5/2
H f’v u*IRzFamu,J)(y:t+ Z)du
-5/2 s | L3 (R)
(5/:2 uy
< \ (fm--u *ps Fa’,m,u,j) (ya t+ “5‘) du
.-3/2 L8 (R} L8 ()
i/2 4
< Qz(a—-a)j/:iH Dl ey duHLa(m < 02 f | paragen.
—5/2

From (6.9) we then obtain
U FlRay < SR UYF psm) 1] zor2gney < C2 B Fl|Z /2, s
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that is,
(6.10) 1T Fllz2 )y < C27"H978| fl| paragay -

Now let {(1/p, 3/(2p)—1/2), 1/p € (2/3, 1], be a point on the segment BT. We
estimate the L?(H; )-L?/ G~/ (H; ) norm of the operator U(” by interpolat-
ing between the estimates L3/ (M, )-L?(Hy ), Ll(H‘I[j.)"LI(Hl), Let t € (0,1)
be a value such that

that is,

Since the operator U 7 ) is uniformly bounded on the diagonal 4B and since
(6.10) holds, applymg the Riesz—Thorin interpolation theorem we get

(6.11) U]
<

(H; ), L2p/ (32} (Hy )
) < Cole—8)e-1)5/ (4}

DHLS/Q(H].) L2(Hy) HU
Then by (6.4) and (6.11) we have

(we)
Ve £l p2or5-m ) S C Z ol(2p—~8)/p+{o—8)(p-1)/ (2p)}{ £ 2o m )
=0
and this series converges if

-3 (0 ~8)(p-1)
P 2p

<0,

that is,
o1
5 o+3
On the segment BC consider the point

g1 o
P={——70 .
(a+3’a+3)

It is easy to see that P is just the intersection of the segment BC and the
line joining the point I = (1/2,1/3) to the point

bo—T7 1
R=|—————r, =]
_ (4(20 -3)’ 2)
Finally, considering the triangles PRC and DRC, notice that U7, cannot
be bounded from LFo(Hy) to L% (Hy) if (1/po,1/g0) is a point inside the

triangle PRC (respectively if (1 /1o, 1/g0) is a point inside the triangle DRC)
since otherwise, interpolating between D (respectively an appropriate point
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between B and P) and (1/pg, 1/qo) we see that U, is bounded at some point
(1/p,1/2) with
5g — T 1
420-3) " p
contrary to what we have proved in part (1). This concludes the proof of
Theorem 6.1. m

2
<-<3,
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